Features

$$
V_{D S}(V)=55 V
$$

$$
\mathrm{I}_{\mathrm{D}}=2.1 \mathrm{~A}\left(\mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}\right)
$$

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<160 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}\right)
$$

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<200 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}\right)
$$

General Description

The AO3422 uses advanced trench technology to provide excellent $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and low gate charge. It offers operation over a wide gate drive range from 2.5 V to 12 V . This device is suitable for use as a load switch. Standard product AO3422 is Pb -free (meets ROHS \& Sony 259 specifications). AO3422L is a Green Product ordering option. AO3422 and

AO3422L are electrically identical.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted				
Parameter		Symbol	Maximum	Units
Drain-Source Voltage		$\mathrm{V}_{\text {DS }}$	55	V
Gate-Source Voltage		$V_{G S}$	± 12	V
Continuous Drain Current ${ }^{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.1	A
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	ID	1.7	
Pulsed Drain Current ${ }^{\text {B }}$		I_{D}	10	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1.25	W
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		0.8	
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics					
Parameter		Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ${ }^{\text {A }}$	$\mathrm{t} \leq 10 \mathrm{~s}$	$\mathrm{R}_{\text {өJA }}$	75	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction-to-Ambient ${ }^{\text {A }}$	Steady-State		115	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction-to-Lead ${ }^{\text {c }}$	Steady-State	$\mathrm{R}_{\text {өJL }}$	48	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ($\mathrm{T}_{\boldsymbol{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	55			V
Idss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=44 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$			5	
$\mathrm{l}_{\text {GSS }}$	Gate-Source leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{GS}(\mathrm{m})}$	Gate Threshold Voltage	$\mathrm{V}_{\text {DS }}=\mathrm{V}_{G S} \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.6	1.3	2	V
$\mathrm{l}_{\text {d(ON) }}$	On state drain current	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}$	10			A
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.1 \mathrm{~A}$		125	160	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		175	210	
		$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$		157	200	$\mathrm{m} \Omega$
g_{FS}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.1 \mathrm{~A}$		11		S
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{l}_{\mathrm{s}}=1 \mathrm{~A}$		0.78	1	V
$\mathrm{I}_{\text {s }}$	Maximum Body-Diode Continuous Current				1	A
DYNAMIC PARAMETERS						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		214	300	pF
$\mathrm{C}_{\text {css }}$	Output Capacitance			31		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			12.6		pF
R_{g}	Gate resistance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		1.3	3	Ω
SWITCHING PARAMETERS						
Q_{9}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=27.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.1 \mathrm{~A}$		2.6	3.3	nC
Q_{gs}	Gate Source Charge			0.6		nC
Q_{gd}	Gate Drain Charge			0.8		nC
$\mathrm{t}_{\mathrm{D}(\text { (an) }}$	Turn-On DelayTime	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=27.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=12 \Omega, \\ & \mathrm{R}_{\mathrm{GEN}}=3 \Omega \end{aligned}$		2.3		ns
t_{r}	Turn-On Rise Time			2.4		ns
$\mathrm{t}_{\text {(foff) }}$	Turn-Off DelayTime			16.5		ns
t_{f}	Turn-Off Fall Time			2		ns
$\mathrm{t}_{\text {r }}$	Body Diode Reverse Recovery Time	$\mathrm{l}_{\mathrm{F}}=2.1 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		20	30	ns
$\mathrm{Q}_{\text {r }}$	Body Diode Reverse Recovery Charge	$\mathrm{I}_{\mathrm{F}}=2.1 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		17		nC

A: The value of RÿJA is measured with the device mounted on 1 in
2
FR-4 board with 2oz. Copper, in a still air environment with $\mathrm{T} \mathrm{A}=25^{\circ} \mathrm{C}$. The
value in any given application depends on the user's specific board design. The current rating is based on the $t \ddot{y} 10$ s thermal resistance rating.
B : Repetitive rating, pulse width limited by junction temperature.
C. The R ÿJA is the sum of the thermal impedence from junction to lead RÿJL
and lead to ambient.
D. The static characteristics in Figures 1 to 6 are obtained using 80 ÿs pulses, duty cycle 0.5% max.
E. These tests are performed with the device mounted on 1 in

2
FR-4 board with 2oz. Copper, in a still air environment with $\mathrm{T} A=25^{\circ} \mathrm{C}$. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 2: Transfer Characteristics

Figure 4: On-Resistance vs. Junction Temperature

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTIC؛

Figure 7: Gate-Charge Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 8: Capacitance Characteristics

Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

