

Silicon N-Channel MOSFET

Features

- 12A, 600V, $R_{DS(on)}(Max\ 0.65\Omega)@V_{GS}=10V$
- Ultra-low Gate Charge(Typical 43nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, DMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for high efficiency switch model power supplies, power factor correction and half bridge and full bridge resonant topology line a electronic lamp ballast.

Absolute Maximum Ratings

Symbol	Parameter		Value	Units
V _{DSS}	Drain Source Voltage		600	V
lo.	Continuous Drain Current(@Tc=25°ℂ)		12	Α
l _D	Continuous Drain Current(@Tc=100℃)		7.6	Α
Ідм	Drain Current Pulsed	(Note1)	48	Α
Vgs	Gate to Source Voltage		±30	V
Eas	Single Pulsed Avalanche Energy	(Note 2)	880	mJ
Ear	Repetitive Avalanche Energy	(Note 1)	25	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
D-	Total Power Dissipation(@Tc=25℃)		250	W
Po	Derating Factor above 25 ℃		2.0	W/°C
TJ, Tstg	Junction and Storage Temperature		-55~150	$^{\circ}$
T∟	Maximum lead Temperature for soldering purposes		300	$^{\circ}$

Thermal Characteristics

Cymbal	Darameter	Value			Linita	
Symbol	Parameter	Min	Тур	Max	Units	
Rajc	Thermal Resistance, Junction-to-Case	-	-	0.50	°C/W	
Rqcs	Thermal Resistance, Case-to-Sink	-	0.5	-	°C/W	
RQJA	Thermal Resistance, Junction-to-Ambient	-	-	62.5	°C/W	

Electrical Characteristics (Tc = 25° C)

Charac	teristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage cu	rrent	Igss	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
Gate-source bre	eakdown voltage	V(BR)GSS	$I_{G} = \pm 10 \ \mu A, \ V_{DS} = 0 \ V$	±30	-	-	V
Drain cut-off cur	rrent	IDSS	V _{DS} = 500 V, V _{GS} = 0 V	-	-	1	μΑ
Drain-source br	eakdown voltage	V(BR)DSS	I _D = 250 μA, V _{GS} = 0 V	600	-		
Break Voltage T Coefficient	emperature	ΔBVpss/	I _D =250μA, Referenced to 25°C	-	0.5	-	V/°C
Gate threshold v	voltage	V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	3	-	4.5	V
Drain-source Ol	N resistance	Rds(on)	V _{GS} = 10 V, I _D = 6.0A	-	0.37	0.65	Ω
Forward Transco	onductance	gfs	V _{DS} = 50 V, I _D = 6.0A	-	15	-	S
Input capacitance		Ciss	V _{DS} = 25 V,	-	1580	2055	
Reverse transfer capacitance		Crss	V _{GS} = 0 V,	-	19	24	pF
Output capacitance		Coss	f = 1 MHz	-	180	235	
	Rise time	tr	V _{DD} =250 V,	-	25	60	ns
	Turn-on time	ton	ID =12A	1	100	210	
Switching time	Fall time	tf	R _G =9.1Ω	-	130	270	
	Turn-off time	toff	RD=31Ω (Note4,5)	-	100	210	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} = 400 V, V _{GS} = 10 V,	-	43	56	0
Gate-source charge		Qgs	ID = 1 A	-	7.5	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	18.5	-	

Source-Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	IDR	-	-	-	12	Α
Pulse drain reverse current	IDRP	-	-	-	48	Α
Forward voltage (diode)	VDSF	IDR = 12 A, VGS = 0 V	-	-	1.4	V
Reverse recovery time	trr	I _{DR} = 12 A, V _{GS} = 0 V,	-	418	-	ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / μs	-	4.85	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

2.L=11.2mH,I_{AS}=12A,V_DD=50V,R_G=25\Omega,Starting T_J=25 $^{\circ}\mathrm{C}$

3.Isp \leq 12A,di/dt \leq 300A/us, Vpd<BVpss,STARTING TJ=25 $^{\circ}$ C

4.Pulse Test: Pulse Width≤300us, Duty Cycle≤2%

5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

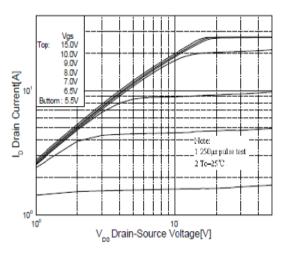


Fig.1 On-State Characteristics

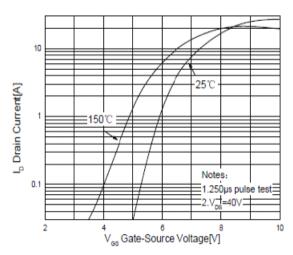


Fig.2 Transfer Characteristics

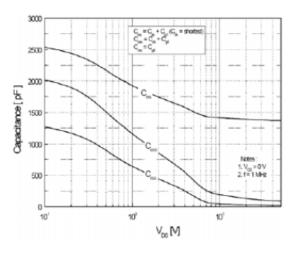


Fig.3 Capacitance Variation vs Drain voltage

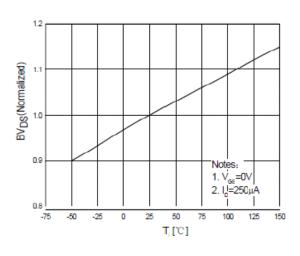


Fig.4 Breakdown Voltage Variation vs Temperature

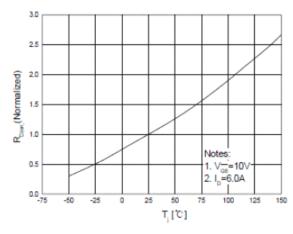


Fig.5 On-Resistance Variation vs Junction Temperature

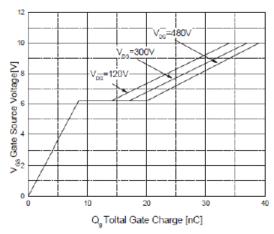
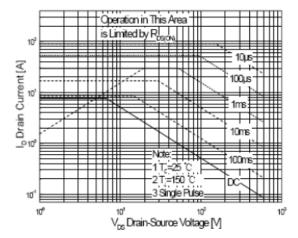



Fig.6 Gate Charge Characteristics

W

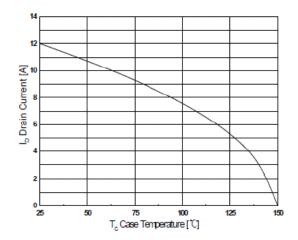


Fig.7 Maximum Safe Operation Area

Fig.8 Maximum Drain Current vs Case Temperature

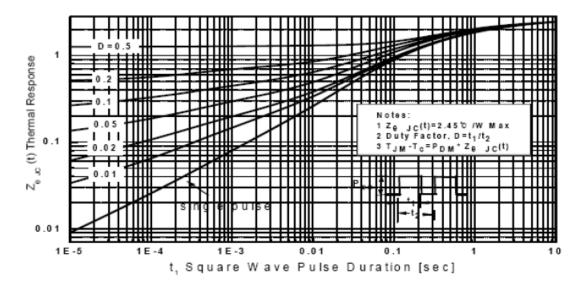


Fig.9 Transient Thermal Response curve

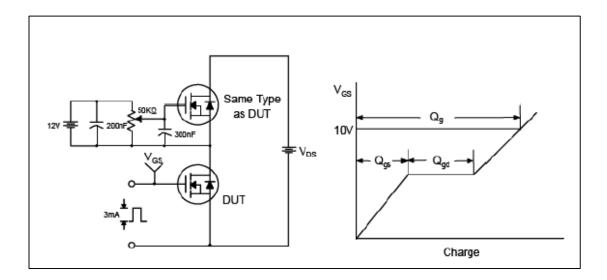


Fig.10 Gate Test circuit & Waveform

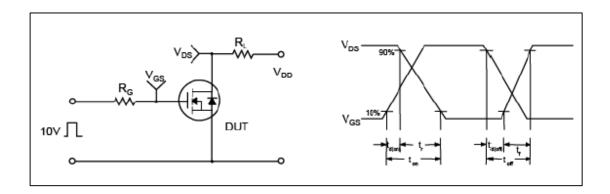


Fig.11 Resistive Switching Test Circuit & Waveform

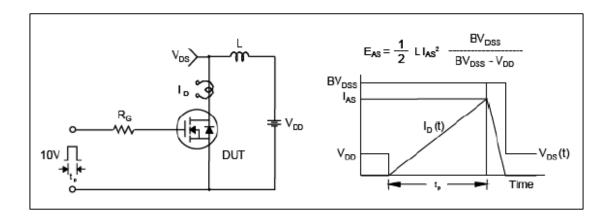


Fig.12 Uncamped Inductive Switching Test Circuit & Waveform

W

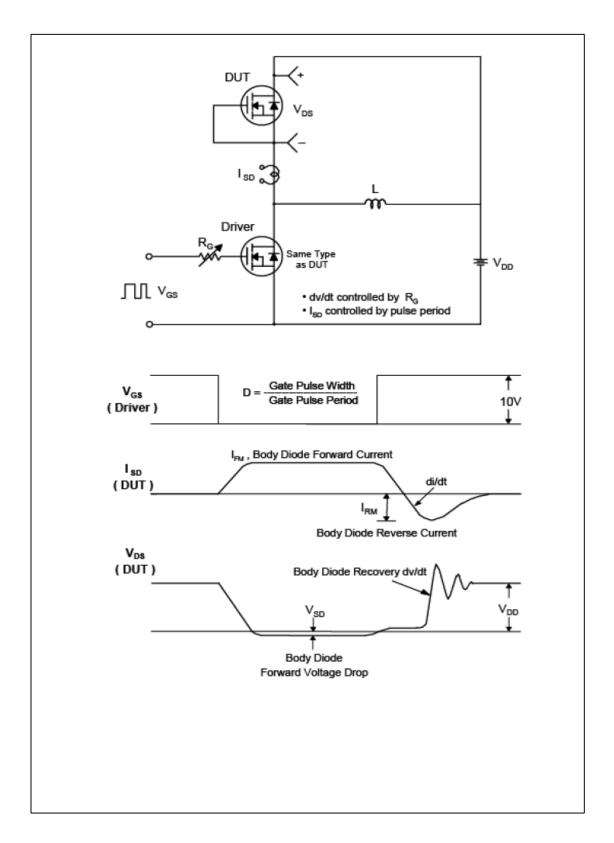
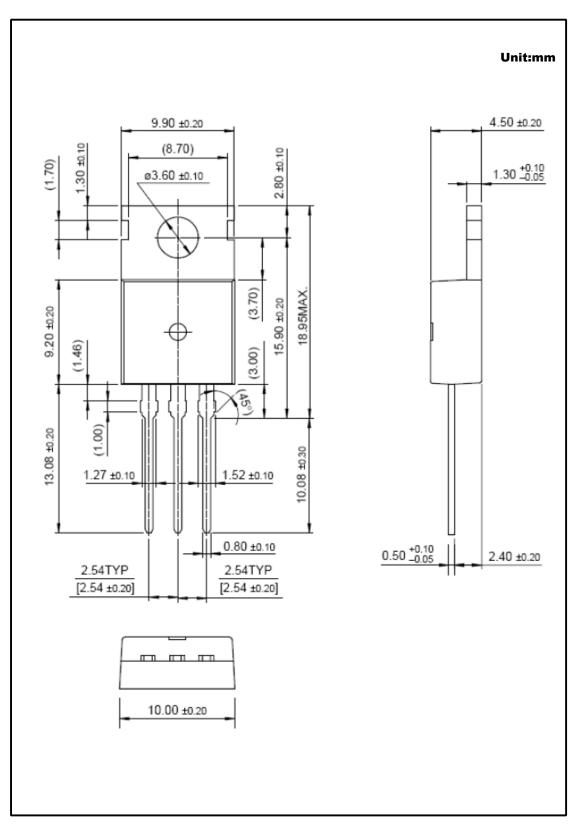



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

W

TO-220 Package Dimension

