HEXFET ${ }^{\circledR}$ Chip-Set for DC-DC Converters

$\mathbf{V}_{\mathrm{DSS}}$	$\mathbf{3 0}$	\mathbf{V}
$\mathbf{R}_{\mathrm{DS}(\text { on })}$ $\left(@ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}\right)$	11	$\mathbf{m} \Omega$
$\mathbf{Q}_{\mathbf{g} \text { (typical) }}$	$\mathbf{2 2}$	nC
\mathbf{I}_{D} $\left(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$	13	\mathbf{A}

Features

Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits

$\Rightarrow \quad$ Multi-Vendor Compatibility

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRF7805PbF-1	SO-8	Tape and Reel	4000	IRF7805TRPbF-1

Symbol	Parameter	Max.	Units
$\mathrm{V}_{\text {DS }}$	Drain-Source Voltage	30	V
$\mathrm{V}_{\text {GS }}$	Gate-to-Source Voltage	± 12	
$\mathrm{l}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, $\mathrm{V}_{\text {GS }}$ @ 10V (3)	13	A
l_{D} @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	Continuous Drain Current, V ${ }_{\text {GS }}$ @ 10V (3)	10	
IDM	Pulsed Drain Current (1)	100	
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Maximum Power Dissipation (3)	2.5	W
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	Maximum Power Dissipation (3)	1.6	
	Linear Derating Factor	0.02	W/ ${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \hline \mathrm{T}_{\mathrm{J}} \\ & \mathrm{~T}_{\mathrm{STG}} \\ & \hline \end{aligned}$	Operating Junction and Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Symbol	Parameter	Typ.	Max.	Units
$\mathrm{R}_{\theta \mathrm{JL}}$	Junction-to-Drain Lead(5)	-	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-Ambient (3)	-	50	

IRF7805TRPbF-1
Static @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {(BR)DSS }}$	Drain-to-Source Breakdown Voltage (6)	30	--	-	V	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-to-Source On-Resistance ©	-	9.2	11	$\mathrm{m} \Omega$	$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A}$ (2)
$\mathrm{V}_{\text {GS(th) }}$	Gate Threshold Voltage ©	1.0	-	3.0	V	$\mathrm{V}_{\text {DS }}=\mathrm{V}_{G S}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
ldss	Drain-to-Source Leakage Current	-	-	70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DS }}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	10		$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	150		$\mathrm{V}_{\text {DS }}=24 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}, \mathrm{~T}_{J}=100^{\circ} \mathrm{C}$
lgss	Gate-to-Source Forward Leakage	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-	-	-100		$V_{G S}=-12 \mathrm{~V}$

Dynamic Electrical Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$ (unless otherwise specified)

Q_{g}	Total Gate Charge ©	-	22	31	nC	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=16 \mathrm{~V} \\ & \mathrm{ID}_{\mathrm{D}}=7.0 \mathrm{~A} \end{aligned}$
$\mathrm{Q}_{\mathrm{gs} 1}$	Pre -Vth Gate-to-Source Charge	-	3.7	-		
$\mathrm{Q}_{\mathrm{gs} 2}$	Post-Vth Gate-to-Source Charge	-	1.4	-		
Q_{gd}	Gate-to-Drain Charge	-	6.8	-		
$\mathrm{Q}_{\text {sw }}$	Switch Charge (Qgs2 + Qgd) ©	-	8.2	11.5		
$\mathrm{Q}_{\text {oss }}$	Output Charge ©	-	30	36	nC	$\mathrm{V}_{\mathrm{DS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
R_{G}	Gate Resistance	0.5	-	1.7	Ω	
$\mathrm{t}_{\text {don }}$	Turn-On Delay Time	-	16	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}(2) \\ & \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=2 \Omega \\ & \text { Resistive Load } \end{aligned}$
t_{r}	Rise Time	-	20	-		
$\mathrm{t}_{\text {(0ffi }}$	Turn-Off Delay Time	-	38	-		
t_{f}	Fall Time	-	16	-		

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)(1)	-	-	2.5	A	MOSFET symbol showing the
Ism	Pulsed Source Current (Body Diode)	-	-	106	A	integral reverse p -n junction diode.
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage(6)	-	-	1.2	V	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
$\mathrm{Q}_{\text {rr }}$	Reverse Recovery Charge ©	-	88	-		$\begin{aligned} & \mathrm{di} / \mathrm{dt}=700 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A} \end{aligned}$
$\mathrm{Q}_{\text {rr }}$	Reverse Recovery Charge ©	-	55	-		$\begin{aligned} & \text { di/dt }=700 \mathrm{~A} / \mu \mathrm{s}(\text { with } 10 \mathrm{BQ} 040) \\ & \mathrm{V}_{\mathrm{DS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=7.0 \mathrm{~A} \end{aligned}$

Notes:

(1) Repetitive rating; pulse width limited by max. junction temperature.
(2) Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.
(3) When mounted on 1 " in square copper board, $\mathrm{t}<10 \mathrm{sec}$.
(4) Typ = measured - Qoss
(5) R_{θ} is measured at T_{J} of approximately $90^{\circ} \mathrm{C}$.
(6) Devices are 100\% tested to these parameters.

Fig. 1 Normalized On-Resistance
vs. Temperature

Fig. 3 Typical Rds(on) vs. Gate-to-Source Voltage

Fig. 2 Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 4 Typical Source-Drain Diode Forward Voltage

Fig 5. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline (Dimensions are shown in millimeters (inches)

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
c	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
E	.1497	.1574	3.80	4.00
e	.050 BASIC	1.27 BASIC		
e 1	.025 BASIC	0.635 BASIC		
H	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
y	0°	8°	0°	8°

SO-8 Part Marking Information

EXAM PLE: THIS IS AN IRF7101 (MOSFET)
DATECODE (YWW)
P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL)
Y = LAST DIGIT OF THE YEAR WW = WEEK
A = ASSEMBLY SITE CODE
LOTCODE
PART NUMBER

IRF7805TRPbF-1

SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 \& EIA-541.

NOTES:

1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 \& EIA-541.

Qualification Information

Qualification Level	Industrial	
Moisture Sensitivity Level	SO-8	MSL1 2
RoHS Compliant	(per JEDEC J-STD-020D) ${ }^{\dagger}$	

\dagger Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments
$10 / 16 / 2014$	\bullet
	Corrected part number from" IRF7805PbF-1" to "IRF7805TRPbF-1" -all pages
	\bullet
$08 / 23 / 2016$	\bullet Changed datasheet with Infineon logo - all pages.
	\bullet Corrected typo Qoss from typ/max "3.0nC/3.6nC" to "30nC/36nC" on page 2.

Trademarks of Infineon Technologies AG

 OPTIGA ${ }^{\text {TM }}$, OptiMOS ${ }^{T M}$, ORIGA $A^{T M}$, PowIRaudio ${ }^{T M}$, PowIRStage ${ }^{T M}$, PrimePACK ${ }^{T M}$, PrimeSTACK ${ }^{T M}$, PROFET ${ }^{T M}$, PRO-SIL ${ }^{T M}$, RASIC $C^{T M}$, REAL3 ${ }^{T M}$, SmartLEWIS ${ }^{T M}$, SOLID

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?
Email: erratum@infineon.com

Document reference

ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

