

flow2

Output Inverter Application

1200V/50A

General conditions

3phase SPWM

15 V V_{GEon} = V_{GEoff} -15 V

 R_{gon} 8Ω =

 R_{goff} 8Ω

Figure 1

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

150 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

IGBT Figure 3

Typical average switching loss as a function of output current

Αt

 $T_j =$ 150 \mathcal{C}

DC link = 600 ٧ f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 \mathbf{At} $T_j =$

150 ${\mathfrak C}$

Figure 4

Typical average switching loss as a function of output current

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

 $P_{loss} = f(I_{out})$

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$

150 ${\mathfrak C}$

DC link = 600 ٧

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

flow2

Output Inverter Application

1200V/50A

Αt

 ${\mathfrak C}$ $T_j =$ 150 DC link = V 600 kHz $f_{sw} =$

60 °C to 100 °C in steps of 5 °C T_h from

Typical available 50Hz output current as a function of

Αt

 $T_j =$ 150 C DC link = 600 ٧ 80

 ${\mathfrak C}$

At

 ${\mathbb C}$ $T_j =$ 150 DC link = 600

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 150 \mathcal{C} DC link = 600

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

flow2

Output Inverter Application

1200V/50A

Typical available peak output power as a function of heatsink temperature $P_{out} \! = \! f(T_h)$

Αt

 $T_j =$ 150 °C DC link = 600 V

DC link = 60 Mi = 1

 $\cos \phi = 0.80$

f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical available overload factor as a function of motor power and switching frequency $P_{\text{peak}}/\,P_{\text{nom}} = f(P_{\text{nom}},f_{\text{sw}})$

Αt

 $T_j = 150$ °C

DC link = 600 V

Mi = 1

 $\cos \phi = 0.8$

 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

At

 $T_j = 150$ °C

DC link = 600 V

Mi = 1

 $\cos \varphi = 0.80$ f_{sw} from 2 kHz to 16 kHz in steps of factor 2