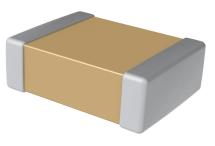
High Voltage with Flexible Termination System (HV FT-CAP), C0G Dielectric, 500 – 3,000 VDC (Automotive Grade)

Overview


KEMET's Automotive Grade High Voltage with Flexible Termination (HV FT-CAP) surface mount MLCCs in COG dielectric address the primary failure mode of MLCCs– flex cracks, which are typically the result of excessive tensile and shear stresses produced during board flexure and thermal cycling. Featuring several of the highest CV (capacitance/voltage) values available in the industry, these devices utilize a pliable and conductive silver epoxy between the base metal and nickel barrier layers of the termination system. The addition of this epoxy layer inhibits the transfer of board stress to the rigid ceramic body, therefore mitigating flex cracks which can result in low IR or short circuit failures. Although flexible termination technology does not eliminate the potential for mechanical damage that may propagate during extreme environmental and handling conditions, it does provide superior flex performance over standard termination systems.

KEMET's high voltage surface mount MLCCs in COG dielectric feature a 125°C maximum operating temperature and offers the most stable voltage and temperature performance of all ceramic dielectric materials. COG (NP0) dielectric capacitors exhibit no change in capacitance with respect to time and voltage and boasts a negligible change in capacitance with reference to ambient temperature. Capacitance change is limited to ± 30 ppm/°C from -55°C to +125°C.

These devices exhibit low ESR at high frequencies and find conventional use as snubbers or filters in applications such as

switching power supplies and lighting ballasts. Their exceptional performance at high frequencies has made high voltage MLCC's the preferred dielectric choice of design engineers worldwide. In addition to their use in power supplies, these capacitors are widely used in industries related to automotive (hybrid), telecommunications, medical, military, aerospace, semiconductors and test/diagnostic equipment.

Whether under-hood or in-cabin, these capacitors are designed to provide reliable performance in mission and safety critical automotive circuits. Stricter testing protocol and inspection criteria have been established for automotive grade products in recognition of potentially harsh environmental conditions. KEMET automotive grade series capacitors meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements.

Ordering Information

С	2225	X	393	J	С	G	Α	С	AUTO
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance ¹	Rated Voltage (VDC)	Dielectric	Failure Rate/ Design	Termination Finish ²	Packaging/Grade (C-Spec)
	0805 1206 1210 1808 1812 1825 2220 2225	X= Flexible Termination	Two significant digits + number of zeros.	$B = \pm 0.10 \text{ pF} \\ C = \pm 0.25 \text{ pF} \\ D = \pm 0.5 \text{ pF} \\ F = \pm 1\% \\ G = \pm 2\% \\ J = \pm 5\% \\ K = \pm 10\% \\ M = \pm 20\%$	C = 500 B = 630 D = 1,000 F = 1,500 G = 2,000 Z = 2,500 H = 3,000	G = COG	A = N/A	C = 100% Matte Sn	See "Packaging C-Spec Ordering Options Table" below

¹ Additional capacitance tolerance offerings may be available. Contact KEMET for details.

² Additional termination finish options may be available. Contact KEMET for details.

Packaging C-Spec Ordering Options Table

Packaging Type ¹	Packaging/Grade Ordering Code (C-Spec) ³
7" Reel	AUTO
13" Reel / Unmarked	AUTO7411 (EIA 0603 and smaller case sizes) AUTO7210 (EIA 0805 and larger case sizes)
7" Reel/Unmarked/2 mm pitch ²	3190
13" Reel/Unmarked/2 mm pitch ²	3191

¹ Reeling tape options (Paper or Plastic) are dependent on capacitor case size (L" x W") and thickness dimension. See "Chip Thickness/Tape & Reel Packaging Quantities" and "Tape & Reel Packaging Information".

² The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

³ All Automotive packaging C-Specs listed exclude the option to laser mark components. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking".

³ For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information".

Benefits

- · AEC-Q200 automotive qualified
- -55°C to +125°C operating temperature range
- Superior flex performance (up to 5 mm)
- Lead (Pb)-Free, RoHS, and REACH compliant
- EIA 0805, 1206, 1210, 1808, 1812, 1825, 2220 and 2225 case sizes
- DC voltage ratings of 500 V, 630 V, 1 KV, 1.5 KV, 2 KV, 2.5 KV and 3 KV
- Capacitance offerings ranging from 1 pF to 39 nF
- Available capacitance tolerances of ±0.10 pF, ±0.25 pF, ±0.5 pF, ±1%, ±2%, ±5%, ±10% and ±20%
- No piezoelectric noise

- Extremely low ESR & ESL
- · High thermal stability
- · High ripple current capability
- Preferred capacitance solution at line frequencies & into the MHz range
- · No capacitance change with respect to applied rated DC voltage
- Negligible capacitance change with respect to temperature from -55°C to +125°C
- No capacitance decay with time
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability

Applications

Typical applications include switch mode power supplies (input filters, resonators, tank circuits, snubbed circuits, output filters), high voltage coupling and DC blocking, lighting ballasts, voltage multiplier circuits, DC/DC converters and coupling capacitors in Ćuk converters. Markets include power supply, LCD fluorescent backlight ballasts, HID lighting, telecom equipment, industrial and medical equipment/control, LAN/WAN interface, analog and digital modems, and automotive.

Automotive C-Spec Information

KEMET Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO". This C-Spec was developed in order to better serve small and medium sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET's OEM Automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below).

Product Change Notification (PCN)

The KEMET Product Change Notification system is used to communicate primarily the following types of changes:

- · Product/process changes that affect product form, fit , function, and /or reliability
- Changes in manufacturing site
- Product obsolescence

KEMET Automotive	Customer Noti	fication due to:	Days prior to
C-Spec	Process/Product change	Obsolescence*	implementation
KEMET assigned ¹	Yes (with approval and sign off)	Yes	180 days Minimum
AUTO	Yes (without approval)	Yes	90 days Minimum

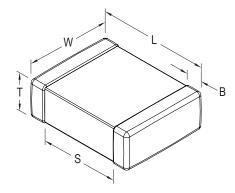
¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

Production Part Approval Process (PPAP)

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design record and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part

KEMET Automotive		PPAP (Product	Part Approval	Process) Level	
C-Spec	1	2	3	4	5
KEMET assigned ¹	•	•	•	•	•
AUTO	0		0		


¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

• Part Number specific PPAP available

• Product family PPAP only

Dimensions – Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0805	2012	2.00 (.079) ± 0.30 (.012)	1.25 (.049) ± 0.30 (.012)		0.50 (0.02) ± 0.25 (.010)	0.75 (.030)	Solder Wave or
1206	3216	3.30 (.130) ± 0.40 (.016)	1.60 (.063) ± 0.35 (.013)		0.60 (.024) ± 0.25 (.010)		Solder Reflow
1210	3225	3.30 (.130) ± 0.40 (.016)	2.60 (.102) ± 0.30 (.012)		0.60 (.024) ± 0.25 (.010)		
1808	4520	4.70 (.185) ± 0.50 (.020)	2.00 (.079) ± 0.20 (.008)	See Table 2 for	0.70 (.028) ± 0.35 (.014)		
1812	4532	4.50 (.178) ± 0.40 (.016)	3.20 (.126) ± 0.30 (.012)	Thickness	0.70 (.028) ± 0.35 (.014)	N/A	Caldas Daflaw Oak
1825	4564	4.60 (.181) ± 0.40 (.016)	6.40 (.252) ± 0.40 (.016)		0.70 (.028) ± 0.35 (.014)		Solder Reflow Only
2220	5650	5.90 (.232) ± 0.75 (.030)	5.00 (.197) ± 0.40 (.016)	1	0.70 (.028) ± 0.35 (.014)		
2225	5664	5.90 (.232) ± 0.75 (.030)	6.40 (.248) ± 0.40 (.016)		0.70 (.028) ± 0.35 (.014)		

Qualification/Certification

Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC–Q200, please visit their website at www.aecouncil.com.

Environmental Compliance

Lead (Pb)-Free, RoHS, and REACH compliant without exemptions.

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	−55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±30 ppm/°C
Aging Rate (Maximum % Capacitance Loss/Decade Hour)	0%
¹ Dielectric Withstanding Voltage (DWV)	150% of rated voltage for voltage rating of < 1,000 V 120% of rated voltage for voltage rating of \ge 1,000 V (5 ±1 seconds and charge/discharge not exceeding 50 mA)
² Dissipation Factor (DF) Maximum Limit at 25°C	0.1%
³ Insulation Resistance (IR) Limit at 25°C	1,000 megohm microfarads or 100 G Ω (500 VDC applied for 120 ±5 seconds at 25°C)

¹DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor. ²Capacitance and dissipation factor (DF) measured under the following conditions:

1 MHz ± 100 kHz and 1.0 Vrms ± 0.2 V if capacitance $\leq 1,000$ pF

1 kHz ±50 Hz and 1.0 Vrms ±0.2 V if capacitance > 1,000 pF

³To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to G Ω limit. Select the lower of the two limits.

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

	High Temperatu	ıre Life, Biased	Humidity, Mois	ture Resistance	•
Dielectric	Rated DC Voltage	Capacitance Value	Dissipation Factor (Maximum %)	Capacitance Shift	Insulation Resistance
C0G	All	All	0.5	0.3% or ±0.25 pF	10% of Initial Limit

Table 1A – Capacitance Range/Selection Waterfall (0805 – 1808 Case Sizes)

			Ca	ise	Siz	ze/	Sei	ries	6	С	080	5X		C	1206	6X			С	121(X				С	1808	BX		
				Ve	oltag	e Co	ode			С	В	D	с	В	D	F	G	С	В	D	F	G	С	в	D	F	G	z	H
Capacitance	Cap Code		F	Rateo	l Vol	tage	e (VC)C)		500	630	1000	500	630	1000	1500	2000	500	630	1000	1500	2000	500	630	1000	1500	2000	2500	3000
		Ca	apa	acit	anc	e T	ole	rar	nce		-	-		Pro	duc	t Av	ailal	bility	and	d Ch	ip Tl	hick	ness	S Co	des	-	~	~	
1.0 - 9.1 pF*	109 - 169*	В	C	D						DG	DG	DG	1	3	eei	able	210	or CÌ I	прі	mer	ines	5 01	LB	LB	LB	LB	LB	LB	LB
10 pF	100				F	G	J	к	М	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
11 pF	110				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
12 pF	120				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
13 pF 15 pF	130 150				F	G	J	K	M	DG DG	DG DG	DG DG	EU EU	EU EU	EU EU	EU EU	EU EU	FM FM	FM FM	FM FM	FM FM	FM FM	LB LB	LB LB	LB LB	LB LB	LB LB	LB LB	LB
16 pF	160				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
18 pF	180				F	G	J	ĸ	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
20 pF	200				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
22 pF	220				F	G	J	K	Μ	DG	DG	DG	ΕU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
24 pF	240				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
27 pF	270				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
30 pF	300				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
33 pF 36 pF	330 360				F	G	J	K	M	DG DG	DG DG	DG DG	EU EU	EU EU	EU EU	EU EU	EU EU	FM FM	FM FM	FM FM	FM FM	FM FM	LB LB	LB LB	LB LB	LB LB	LB LB	LB LB	
39 pF	390				F	G	J	K	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
43 pF	430				F	G	J	ĸ	M	DG	DG	DG	EU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LE
47 pF	470				F	G	J	К	M	DG	DG	DG	ΕU	EU	EU	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LE
51 pF	510				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LE
56 pF	560				F	G	J	Κ	Μ	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LE
62 pF	620				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LE
68 pF	680 750				F	G	J	K	M	DG DG	DG DG	DG DG	EF EF	EF	EF EF	EU EU	EU EU	FM FM	FM FM	FM FM	FM FM	FM FM	LB LB	LB LB	LB LB	LB LB	LB LB	LB LB	LB
75 pF 82 pF	820				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FIN	FM	LB	LB	LB	LB	LB	LB	
91 pF	910				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LB	LB
100 pF	101		_		F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LC	LB
110 pF	111				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FM	FM	FM	FM	FM	LB	LB	LB	LB	LB	LC	LB
120 pF	121				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FZ	FZ	FZ	FM	FM	LA	LA	LA	LA	LB	LC	LE
130 pF	131				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FZ	FZ	FZ	FM	FM	LA	LA	LA	LA	LB	LC	LC
150 pF	151				F	G	J	K	M	DG	DG	DG	EF	EF	EF	EU	EU	FZ	FZ	FZ	FM	FM	LA	LA	LA	LA	LB	LC	LC
160 pF 180 pF	161 181				F	G	J	K K	M	DG DG	DG DG	DG DG	EF EF	EF	EF EF	EU EU	EU EU	FZ FZ	FZ FZ	FZ FZ	FM FM	FM FM	LA LA	LA LA	LA LA	LA	LC LC	LC LC	
200 pF	201				F	G	J	K	M	DG	DG	DG	EF	EU	EU	EU	EU	FZ	FZ	FZ	FM	FM	LA	LA	LA	LA	LC	LC	
220 pF	221				F	G	J	K	M	DG	DG	DG	EF	EU	EU	EU	EU	FZ	FZ	FZ	FM	FM	LA	LA	LA	LA	LC	LC	
240 pF	241				F	G	J	K	M	DG	DG	DG	EF	EU	EU	EU	EU	FZ	FZ	FZ	FM	FM	LA	LA	LA	LB	LC	LC	
270 pF	271				F	G	J	K	Μ	DG	DG	DG	EF	EU	EU	EU	EU	FZ	FZ	FZ	FK	FK	LA	LA	LA	LB	LC	LC	
300 pF	301				F	G	J	K	M	DG	DG		EF	EU	EU	EU		FZ	FZ	FZ	FK	FK	LA	LA	LA	LB	LC	LC	
330 pF	331				F	G	J	K	M	DG	DG		EF EU	EU	EU	EU		FZ	FZ	FZ	FK	FK	LA	LA	LA	LB	LC	LC	
360 pF 390 pF	361 391				F	G	J	K	M	DG DG	DG		EU	EU EU	EU EU	EU EU		FZ FZ	FZ FZ	FZ FZ	FK FK	FS FS	LA LA	LA LA	LA LA	LB LB	LA LA	LC LC	
430 pF	431				F	G	J	K	M	DG	DG		EU	EU	EU	EU		FZ	FM	FM	FS	FS	LA	LB	LB	LC	LA	10	
470 pF	471				F	G	J	K	M	DG	DG		EU	EU	EU	EU		FZ	FM	FM	FS	FS	LA	LB	LB	LC	LA		
510 pF	511				F	G	J	к	M	DG	DG		EU	EU	EU	EU		FZ	FM	FM	FS	FS	LA	LB	LB	LC	LB		
560 pF	561				F	G	J	K	M	DG	DG		EU	EU	EU	EU		FZ	FM	FM	FS	FS	LA	LB	LB	LC	LB		
620 pF	621				F	G	J	K	M	DG			EU	EU	EU			FZ	FM	FM	FS	FS	LA	LB	LB	LA	LC		
680 pF	681				F	G	J	K	M	DG			EU	EU	EU			FZ	FM	FM	FS	FS	LB	LB	LB	LA	LC		
750 pF 820 pF	751 821				F	G	J	K	M	DG DG			EU EU	EF EF	EU EU			FZ FZ	FM FM	FM FM	FM FM		LB LB	LB LB	LB LB	LA LA			
910 pF	911				F	G	J	K	M	100			EU	EF	EU			FM	FM	FM	FIVI		LB	LB	LB	LA			
1,000 pF	102				F	G	J	K	M				EU	EF	EU			FM	FM	FM	FY		LB	LB	LB	LB			
·			F	Rateo	l Vol	tage	e (VC)C)		500	630	1000	500	630	1000	1500	2000	500	630	1000	1500	2000	500 630 1000 1500 2000				2500	3000	
Capacitance	Cap Code			V	oltag	e Co	ode			c	В	D	с	в	D	F	G	с	В	D	F	G	С	В	D	F	G	Z	H
		-																											

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 1A – Capacitance Range/Selection Waterfall (0805 – 1808 Case Sizes) cont'd

		Ca	se Si	ze/	Ser	ies	i	C	080	5X		C	1206	6X			С	121(X				С	1808	BX		
			Volta	ge Co	ode			С	в	D	С	в	D	F	G	c	в	D	F	G	c	в	D	F	G	z	н
Capacitance	Cap Code	R	ated Vo	ltage	e (VD	C)		500	630	1000	500	630	1000	1500	2000	500	630	1000	1500	2000	500	630	1000	1500	2000	2500	3000
		Capa	citan	ce T	ole	ran	се					Pro S	duc ee T	t Ava able	ailal 2 fo	bility or Cl	/ and hip T	l Ch hick	ip Tl nes	hick s Di	ness men	s Co sior	des Is				
1,100 pF	112		F	U U	J	K	М				EF	EU				FM	FK	FK	FS		LC	LC	LC	LB			
1,200 pF	122		F	G	J	K	М				EF	EU				FM	FK	FK	FS		LC	LC	LC	LC			
1,300 pF	132		F	G	J	K	М				EF	EU				FM	FS	FS			LC	LC	LC	LC			
1,500 pF	152		F	G	J	K	Μ				EF	EU				FK	FS	FS			LC	LC	LC	LC			
1,600 pF	162		F	G	J	K	Μ				EF	EU				FK	FS	FS			LC	LC	LC				
1,800 pF	182		F	G	J	K	М				EF	EU				FK	FS	FS			LC	LC	LC				
2,000 pF	202		F	G	J	K	М				EU	EQ				FK	FL	FS			LC	LA	LB				
2,200 pF	222		F	G	J	K	Μ				EU	EQ				FK	FL	FS			LC	LA	LB				
2,400 pF	242		F	G	J	ĸ	М				EU	EQ				FS	FL	FS			LC	LA	LB				
2,700 pF	272		F	G	J	ĸ	М				EU	EQ				FS	FL	FS			LC	LA	LC				
3,000 pF	302		F		J	К	М				EQ	EQ				FS	FL				LA	LA					
3,300 pF	332		F		J	к	М				EQ	EQ				FS	FM				LA	LA					
3,600 pF	362		F	-	J	K	M				ER	ER				FL	FM				LA	LB					
3,900 pF	392		F		J	K	М				ER	ER				FL	FY				LA	LB					
4,300 pF	432		F	-	J	K	М				ES	ES				FM	FY				LA	LC					
4,700 pF	472		F		J	K	M				ES	ES				FM	FY				LA	LC					
5,100 pF	512		I F	-	J	ĸ	M									FY	FS				LA						
5,200 pF	562		l F	-	J	ĸ	M									FY	FS				LB						
6,200pF	622			-	J	ĸ	M									FY	FE				LC						
6,800pF	682			-	J	ĸ	M									FY	FE				LC						
7,500pF	752		F	-	J	K	M									FS					1						
8,200pF	822		I F	-	J	ĸ	M									FS											
-)F.		R	ated Vo					500	630	1000	500	630	1000	1500	2000	200	630	1000	1500	2000	500	630	1000	1500	2000	2500	3000
Capacitance	Cap Code		Volta	ge Co	ode			с	в	D	с	в	D	F	G	c	в	D	F	G	c	в	D	F	G	z	н
		Ca	ase Si	ze/S	Seri	ies		С	0805	5X		С	1206	X			С	1210	X				С	1808	3X		

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 1B – Capacitance Range/Selection Waterfall (1812 – 2225 Case Sizes)

		Case Size/Series			Cí	1812	2X					C1	82	5X					C	222	0X					C2	222	5X		
	Сар	Voltage Code	с	в	D	F	G	z	н	С	в	D	F	G	z	н	с	в	D	F	G	z	н	с	в	D	F	G	z	н
Сар	Code	Rated Voltage (VDC)	500	630	1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000
		Capacitance Tolerance			-	-	N	N	~	Pro	odu	ct A	vai	labi	lity	and	d Ch hicl	ip 1	Гhic	kne	ess (Cod	les			•		N	N	
10 pF	100	F G J K M						GK									JK	JK	JK	JK	JK	JK	JK	KF						
11 pF	110	FGJKM FGJKM	GK GK	GK	GK GK		GK GK	GK GK	GK GK								JK	JK	JK	JK	JK	JK JK	JK	KF	KF KF	KF	KF	KF KF	KF KF	KF KF
12 pF 13 pF	120 130	F G J K M F G J K M	GK	GK GK	GK		GK	GK	GK								JK JK	JK JK	JK JK	JK JK	JK JK	JK	JK JK	KF KF	KF	KF KF	KF KF	KF	KF	KF
15 pF	150	F G J K M	GK								JK	JK	JK	JK	JK	JK	JK	KF												
16 pF	160	F G J K M		GK	GK	GK	GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
18 pF	180		GK								JK	JK	JK	JK	JK	JK	JK	KF												
20 pF	200		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
22 pF	220	F G J K M	GK								JK	JK	JK	JK	JK	JK	JK	KF												
24 pF	240	F G J K M	GK								JK	JK	JK	JK	JK	JK	JK	KF												
27 pF	270		GK								JK	JK	JK	JK	JK	JK	JK	KF												
30 pF	300		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
33 pF	330		GK								JK	JK	JK	JK	JK	JK	JK	KF												
36 pF	360		GK	GK			GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
39 pF	390		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF	KF	KF	KF	KF KF	KF	KF
43 pF	430 470		GK	GK	GK	GK	GK GK	GK GK	GK GK								JK JK	JK	JK	JK	JK JK	JK JK	JK JK	KF	KF KF	KF	KF KF	KF	KF KF	KF KF
47 pF 51 pF	510	F G J K M	GK GK	GK GK	GK GK	GK GK	GK	GK	GK								JK	JK JK	JK JK	JK JK	JK	JK	JK	KF KF	KF	KF KF	KF	KF	KF	KF
56 pF	560		GK								JK	JK	JK	JK	JK	JK	JK	KF												
62 pF	620	F G J K M		GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
68 pF	680		GK								JK	JK	JK	JK	JK	JK	JK	KF												
75 pF	750		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
82 pF	820		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
91 pF	910	F G J K M	GK								JK	JK	JK	JK	JK	JK	JK	KF												
100 pF	101	F G J K M	GK								JK	JK	JK	JK	JK	JK	JK	KF												
110 pF	111		GK								JK	JK	JK	JK	JK	JK	JK	KF												
120 pF	121		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
130 pF	131		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
150 pF	151		GK								JK	JK	JK	JK	JK	JK	JK	KF												
160 pF	161		GK		_						JK	JK	JK	JK	JK	JK	JK	KF												
180 pF	181		GK	GK	GK		GK	GK	GK								JK	JK	JK	JK	JK	JK	JK	KF						
200 pF	201 221	F G J K M F G J K M	GH GH	GH GH	GH GH		GH GH	GK GK	GM GM								JK JK	JK	JK	JK	JK JK	JK JK	JK JK	KF	KF KF	KF	KF KF	KF KF	KF KF	KF KF
220 pF 240 pF	221		GH	GH	GH		GH	GK	GM								JK	JK JK	JK JK	JK JK	JK	JK	JK	KF KE	KE	KF KE	KE	KE	KE	KF
270 pF	271		GH	GH	GH		GH		GM								JK	JK	JK	JK	JK	JK	JK	KE	KE	KE	KE	KE	KE	KF
300 pF	301		GH	GH	GH		GH	GK	GM								JK	JK	JK	JK	JK	JK	JK	KE	KE	KE	KE	KE	KE	KF
330 pF	331		GH	GH	GH		GH	GK	GO								JE	JE	JE	JE	JE	JK	JK	KE	KE	KE	KE	KE	KE	KF
360 pF	361		GK	GK	GK		GH	GK	GO								JE	JE	JE	JE	JE	JK	JK	KE	KE	KE	KE	KE	KE	KF
390 pF	391		GK	GK	GK		GK	GK	GO								JE	JE	JE	JE	JE	JK	JK	KE	KE	KE	KE	KE	KE	KF
430 pF	431	F G J K M		GK				GK		HJ	HJ	HJ	HJ			HJ	JE	JE	JE	JE	JE	JK	JE	KE	KE	KE	KE	KE	KE	KF
470 pF	471	F G J K M								HJ			HJ			HJ		JE	JE	JE	JE	JK		KF	KF	KF	KF		KE	KF
510 pF	511					GK				HJ	HJ	HJ	HJ	HJ	HJ	HJ	JK	JK	JK	JK	JK	JK	JK	KF	KF	KF	KF	KE	KE	
560 pF	561		GH			GK				HJ	HJ	HJ	HJ	HJ	HJ	HJ	JK	JK	JK	JK	JK	JK	JL	KF	KF	KF	KF	KE	KE	KF
620 pF	621	F G J K M								HK								JK	JK	JK	JK	JK	JL	KF	KF	KF	KF	KE	KF	KH
680 pF	681	F G J K M F G J K M						GO		ΗK	ΗK	HK	ΗK	ΗK	ΗK	HK		JE	JE	JK	JK	JK	JL	KF	KF	KF	KF	KE	KF	КН
750 pF 820 pF	751 821	F G J K M				GK GK	GK										JE JE	JE JE	JE JE	JK JK	JK JK	JK JK	JL JN	KE KE	KE KE	KE KE	KF KF	KE KE	KF KF	KH KJ
о20 рн 910 рF	911	F G J K M				GR											JE	JE	JK	JK	JK	JK			KE	KE	KF	KE	KF	KJ
1,000 pF	102	F G J K M				GH											JE	JK	JK	JK	JK	JK		KE	KE	KE	KF	KE	KF	KJ
1,100 pF	112	F G J K M			GK	GH				HJ	HJ	HJ	HJ	HJ	HJ		JE	JK	JK	JK	JK	JK		KE	KE	KE	KF	KF	KF	1.0
F		Rated Voltage (VDC)	500		1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000		630	1000	1500	2000	2500	3000		630	1000	1500	2000	2500	3000
Сар	Cap Code	Voltage Code	С		D	F	G	z	H	С	в	D	F	G	z	H	с	в	D	F	G	Z	H						Z	H
	0000	Case Size/Series			C	1812	X					C	1825	5X					C	222	0X					C	222	5X		

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 1B – Capacitance Range/Selection Waterfall (1812 – 2225 Case Sizes) cont'd

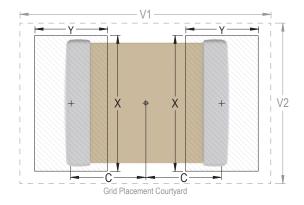
		Case Size/Series			C	812	2X					C 1	82	5X					C	222	0X					C	222	5X		
	Сар	Voltage Code	С	в	D	F	G	z	н	С	в	D	F	G	z	н	с	в	D	F	G	z	н	с	в	D	F	G	z	н
Сар	Code	Rated Voltage (VDC)	500	630	1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000	500	630	1000	1500	2000	2500	3000
		Capacitance		_		÷			,	Pro	odu	ct A	vai	labi	lity	and	d Ch	ip 1	Thic	kne	ss	Cod	les		_	-	-			
1,200 pF	122	Tolerance FGJKM		GK	CK	011	0			د HJ	HJ	HJ	HJ	HJ	HJ	рі	JE	JK	SS L	JK	ens JK	JL	S	KE	KE	KE	KF	KF	KF	
1,200 pF 1,300 pF	122	F G J K M F G J K M		GK	GK	GH	GO			нJ НЕ	нJ НЕ	HE	HE	HE	нJ HJ		JE	JK	JK	JK	JE	JL		KE	KE	KE	KF	KF	KH	
1,500 pF 1,500 pF	152			GK			GO			HE	HE	HE		HE	HK		JE	JK			JE	JL		KE	KE			KF	KH	
					GK	GK	GO						HE		HK				JK	JK	JE	JL				KE	KF			
1,600 pF	162		GK	GK	GK	GK				HG	HG	HG	HG	HG	HK		JE	JK	JK	JK		JN		KE	KE	KE	KF	KE	KH	
1,800 pF	182	F G J K M	GK	GK		GM							HG	HG			JE	JK	JK	JK	JE	JN		KE	KE	KE	KF	KE	KH	
2,000 pF	202	F G J K M F G J K M		GK	GK	GM				HE	HE	HE	HE	HJ			JE	JK	JK	JE	JK			KE	KE	KE	KF	KE	KJ	
2,200 pF	222			GK	GK	GO				HE	HE	HE	HE	HJ			JE	JK	JK	JE	JK			KE	KE	KE	KF	KF	KJ	
2,400 pF	242	F G J K M		GH	GK	GO						HE	HE	HJ			JK	JK	JK	JE	JL			KE	KE	KE	KE	KH		
2,700 pF	272	F G J K M		GH	GK	GO				HE	HE	HE	HE	HK			JK	JK	JK	JE	JL			KE	KE	KE	KE	KH		
3,000 pF	302	F G J K M	GK	GH	GK			_		HE	HE	HE	HE	HK			JK	JK	JK	JE	JL			KE	KE	KE	KE	KH		
3,300 pF	332	FGJKM	GK		GK					-			HG				JK	JK	JK	JK	JN			KE	KE	KE	KE	KJ		
3,600 pF	362	F G J K M	GK		GM					HG	HG	HG	HG				JK	JK	JK	JK	JN			KE	KF	KF	KF	KJ		
3,900 pF	392	F G J K M	GK		GM					HJ	HJ	HJ	HJ				JK	JK	JK	JK	JN			KE	KF	KF	KF	KJ		
4,300 pF	432	F G J K M			GO					HJ	HJ	HJ	HJ				JK	JK	JK	JK				KE	KF	KF	KF			
4,700 pF	472		GH		GO					HJ	HJ	HJ	HJ				JK	JK	JK	JL				KE	KF	KF	KH			
5,100 pF	512	F G J K M		GK						HE	HE	HG	ΗK				JK	JK	JK	JL				KE	KF	KF	KH			
5,600 pF	562	F G J K M			GO					HE	HE	HG	ΗK				JK	JK	JK	JN				KE	KF	KF	KH			
6,200 pF	622	F G J K M		GK						HE	HE	HG					JK	JE	JE	JN				KE	KF	KF	KJ			
6,800 pF	682	F G J K M		GM						HE	HE	HJ					JK	JE	JK	JN				KE	KF	KF	KJ			
7,500 pF	752		GH	GM						HE	ΗE	HJ					JK	JE	JK					KF	KE	KF				
8,200 pF	822	F G J K M	GK	GO						HE	HE	HJ					JK	JE	JL					KF	KE	KF				
9,100 pF	912	F G J K M	GM	GO						HE	HG	ΗK					JE	JE	JL					KF	KE	KH				
10,000 pF	103	F G J K M	GM	GO						HE	HG	ΗK					JE	JE	JL					KF	KE	KH				
12,000 pF	123	F G J K M	GO							HE	HG						JE	JK	JN					KE	KE	KH				
15,000 pF	153	F G J K M	GO							HE	HJ						JE	JL						KE	KF	KJ				
18,000 pF	183	F G J K M								HG	ΗK						JE	JL						KE	KH					
22,000 pF	223	F G J K M								HJ							JK	JN						KF	KJ					
27,000 pF	273	F G J K M								HJ							JL	JN						KF	KJ					
33,000 pF	333	F G J K M								ΗК							JN							КН						
39,000 pF	393	F G J K M	I																					KJ						
		1	500	630	8	1500	2000	2500	3000	500	630	8	8	2000	2500	3000	500	630	8	1500	2000	8	8	500	630	8	1500	2000	8	8
	0	Rated Voltage (VDC)	50	63	1000	15	20	25	30	50	63	1000	1500	20(25(30	50	63	1000	15(20(2500	3000	50	63	1000	15(20(2500	3000
Сар	Cap Code	Voltage Code	С	в	D	F	G	z	Η	С	В	D	F	G	z	Н						С	В	D	F	G	z	н		
		Case Size/Series			C	1812	2X					C	182	5X			C2220X									C	222	5X		

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 2 – Chip Thickness/Tape & Reel Packaging Quantities

Thickness	Case	Thickness ±	Paper G	Quantity	Plastic (Quantity
Code	Size	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel
DG	805	1.25 ± 0.15	0	0	2,500	10,000
EQ	1206	0.78 ± 0.20	4000	10000	4,000	10,000
EF	1206	1.20 ± 0.15	0	0	2,500	10,000
EU	1206	1.60 ± 0.25	0	0	2,000	8,000
ER	1206	0.90 ± 0.20	0	0	4,000	10,000
ES	1206	1.00 ± 0.20	0	0	2,500	10,000
FE	1210	1.00 ± 0.10	0	0	2,500	10,000
FZ	1210	1.25 ± 0.20	0	0	2,500	10,000
FL	1210	1.40 ± 0.15	0	0	2,000	8,000
FM	1210	1.70 ± 0.20	0	0	2,000	8,000
FY	1210	2.00 ± 0.20	0	0	2,000	8,000
FK	1210	2.10 ± 0.20	0	0	2,000	8,000
FS	1210	2.50 ± 0.30	0	0	1,000	4,000
LA	1808	1.40 ± 0.15	0	0	1,000	4,000
LB	1808	1.60 ± 0.15	0	0	1,000	4,000
LC	1808	2.00 ± 0.15	0	0	1,000	4,000
GH	1812	1.40 ± 0.15	0	0	1,000	4,000
GK	1812	1.60 ± 0.20	0	0	1,000	4,000
GM	1812	2.00 ± 0.20	0	0	500	2,000
GO	1812	2.50 ± 0.20	0	0	500	2,000
HE	1825	1.40 ± 0.15	0	0	1,000	4,000
HG	1825	1.60 ± 0.20	0	0	1,000	4,000
HJ	1825	2.00 ± 0.20	0	0	500	2,000
HK JE	1825 2220	2.50 ± 0.20 1.40 ± 0.15	0	0	500 1,000	2,000 4,000
JK	2220	1.40 ± 0.15 1.60 ± 0.20	0	0	1,000	4,000 4,000
JL	2220	1.60 ± 0.20 2.00 ± 0.20	0	0	500	4,000 2,000
JN	2220	2.50 ± 0.20 2.50 ± 0.20	0	0	500	2,000
KE	2220	2.30 ± 0.20 1.40 ± 0.15	0	0	1,000	4,000
KF	2225	1.40 ± 0.13 1.60 ± 0.20	0	0	1,000	4,000
KH	2225	2.00 ± 0.20	0	0	500	2,000
KJ	2225	2.50 ± 0.20 2.50 ± 0.20	0	0	500	2,000
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel
Code	Size	Range (mm)	Paper C	Quantity	Plastic (Quantity

Package quantity based on finished chip thickness specifications.


Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC–7351

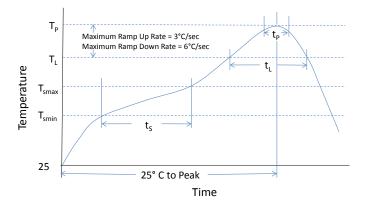
EIA Size Code	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)				Density Level B: Median (Nominal) Land Protrusion (mm)				Density Level C: Minimum (Least) Land Protrusion (mm)						
Code	Code	С	Y	X	V1	V2	С	Y	X	V1	V2	С	Y	Х	V1	V2
0805	2012	0.99	1.44	1.66	4.47	2.71	0.89	1.24	1.56	3.57	2.11	0.79	1.04	1.46	2.42	1.81
1206	3216	1.59	1.62	2.06	5.85	3.06	1.49	1.42	1.96	4.95	2.46	1.39	1.22	1.86	4.25	2.16
1210	3225	1.59	1.62	3.01	5.90	4.01	1.49	1.42	2.91	4.95	3.41	1.39	1.22	2.81	4.25	3.11
1808	4520	2.30	1.75	2.30	7.40	3.30	2.20	1.55	2.20	6.50	2.70	2.10	1.35	2.10	5.80	2.40
1812	4532	2.10	1.80	3.60	7.00	4.60	2.00	1.60	3.50	6.10	4.00	1.90	1.40	3.40	5.40	3.70
1825	4564	2.15	1.80	6.90	7.10	7.90	2.05	1.60	6.80	6.20	7.30	1.95	1.40	6.70	5.50	7.00
2220	5650	2.85	2.10	5.50	8.80	6.50	2.75	1.90	5.40	7.90	5.90	2.65	1.70	5.30	7.20	5.60
2225	5664	2.85	2.10	6.90	8.80	7.90	2.75	1.90	6.80	7.90	7.30	2.65	1.70	6.70	7.20	7.00

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).

Image below based on Density Level B for an EIA 1210 case size.

Soldering Process

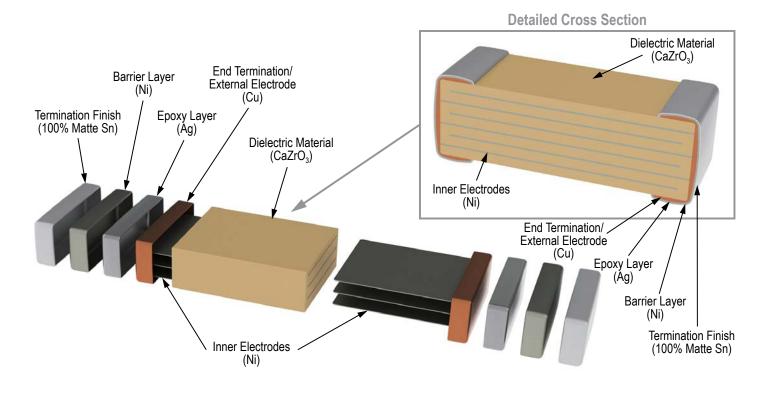

Recommended Soldering Technique:

- · Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

Recommended Reflow Soldering Profile:

KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

Profile Feature	Termination Finish			
FIOINE Feature	SnPb	100% Matte Sn		
Preheat/Soak				
Temperature Minimum (T _{Smin})	100°C	150°C		
Temperature Maximum (T _{Smax})	150°C	200°C		
Time (t _s) from T_{Smin} to T_{Smax}	60 – 120 seconds	60 – 120 seconds		
Ramp-Up Rate $(T_L \text{ to } T_P)$	3°C/second maximum	3°C/second maximum		
Liquidous Temperature (T_L)	183°C	217°C		
Time Above Liquidous (t_L)	60 – 150 seconds	60 – 150 seconds		
Peak Temperature (T _P)	235°C	260°C		
Time Within 5°C of Maximum Peak Temperature (t _P)	20 seconds maximum	30 seconds maximum		
Ramp-Down Rate $(T_P \text{ to } T_L)$	6°C/second maximum	6°C/second maximum		
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum		


Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.

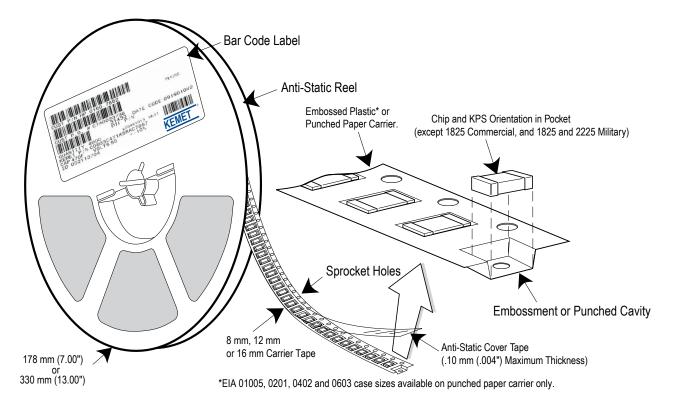
Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature– reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction

Capacitor Marking (Optional):

Laser marking option is not available on:


- C0G, Ultra Stable X8R and Y5V dielectric devices
- · EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.
- · KPS Commercial and Automotive grade stacked devices.

These capacitors are supplied unmarked only.

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

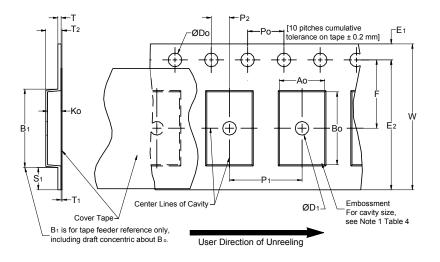
	Таре	Embosse	ed Plastic	Punched Paper		
EIA Case Size	Size	7" Reel	13" Reel	7" Reel	13" Reel	
	(W)*	Pitch (P ₁)*		Pitch (P ₁)*		
01005 – 0402	8			2	2	
0603	8			2/4	2/4	
0805	8	4	4	4	4	
1206 – 1210	8	4	4	4	4	
1805 – 1808	12	4	4			
≥ 1812	12	8	8			
KPS 1210	12	8	8			
KPS 1812 & 2220	16	12	12			
Array 0508 & 0612	8	4	4			

*Refer to Figures 1 & 2 for W and P, carrier tape reference locations. *Refer to Tables 6 & 7 for tolerance specifications.

New 2 mm Pitch Reel Options*

Packaging Ordering Code (C-Spec)	Packaging Type/Options
C-3190	Automotive grade 7" reel unmarked
C-3191	Automotive grade 13" reel unmarked
C-7081	Commercial grade 7" reel unmarked
C-7082	Commercial grade 13" reel unmarked

* 2 mm pitch reel only available for 0603 EIA case size.


2 mm pitch reel for 0805 EIA case size under development.

Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- Lower placement costs
- Double the parts on each reel results in fewer reel changes and increased efficiency
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T₁ Maximum	
8 mm		1.0 (0.039)				25.0 (0.984)				
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30 (1.181)	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)	
16 mm		(0.059)								
			Variable Dime	ensions — Mil	limeters (Inch	es)				
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀	
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)			
12 mm	Single (4 mm) & Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Not	ie 5	
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)			

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6).

3. If S₁ < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).

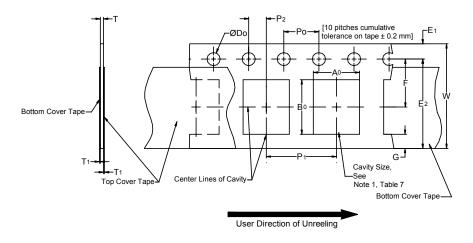
4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by A_{ρ} , B_{ρ} and K_{ρ} shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).


(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).

(e) for KPS Series product, A_0 and B_0 are measured on a plane 0.3 mm above the bottom of the pocket.

(f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 – Punched (Paper) Carrier Tape Dimensions

Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)								
Tape Size	D ₀	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2		
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) Maximum	0.75 (0.030)	25 (0.984)		
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A_0B_0		
8 mm	Half (2 mm)	6.25	3.5 ±0.05	2.0 ±0.05 (0.079 ±0.002)	1.1	8.3 (0.327)	Note 1		
8 mm	Single (4 mm)	(0.246)	(0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	(0.098)	8.3 (0.327)	NOLE I		

1. The cavity defined by A_{α} , B_{α} and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

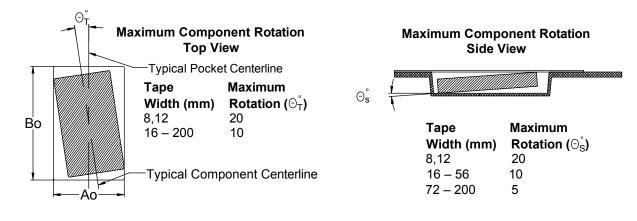
b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

c) rotation of the component is limited to 20° maximum (see Figure 3).

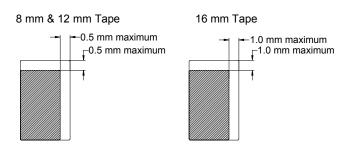
d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).

e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.

2. The tape with or without components shall pass around R without damage (see Figure 6).


Packaging Information Performance Notes

- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:


Tape Width	Peel Strength
8 mm	0.1 to 1.0 Newton (10 to 100 gf)
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute. **3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards* 556 *and* 624.

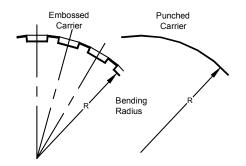

Figure 3 – Maximum Component Rotation

Figure 4 – Maximum Lateral Movement

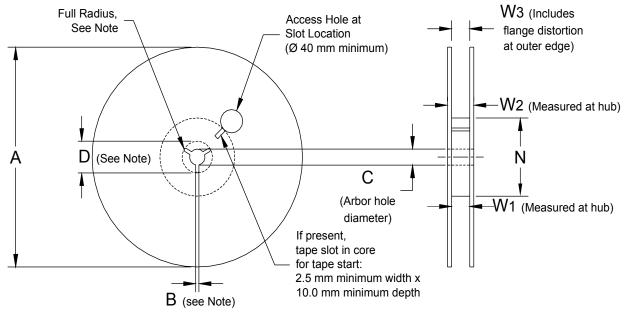
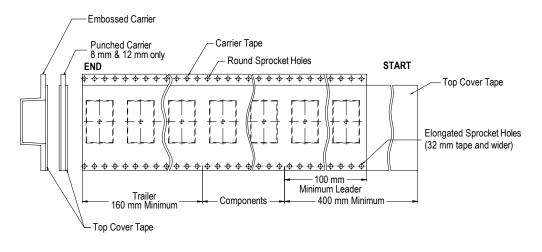


Figure 5 – Bending Radius

Figure 6 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 8 – Reel Dimensions

Metric will govern

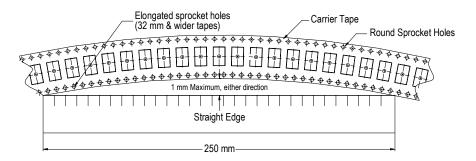

	Constant Dimensions — Millimeters (Inches)									
Tape Size	А	B Minimum	С	D Minimum						
8 mm	178 ±0.20									
12 mm	(7.008 ±0.008) or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)						
16 mm	330 ±0.20 (13.000 ±0.008)		()	()						
	Variable Dimensions — Millimeters (Inches)									
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃						
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)							
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference						
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)							

Figure 7 – Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs) High Voltage with Flexible Termination System (HV FT-CAP), C0G Dielectric, 500 – 3,000 VDC (Automotive Grade)

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices Fort Lauderdale, FL Tel: 954-766-2800

North America

Northeast Wilmington, MA Tel: 978-658-1663

Southeast Lake Mary, FL Tel: 407-855-8886

Central Novi, MI Tel: 248-994-1030

Irving, TX Tel: 972-915-6041

West Milpitas, CA Tel: 408-433-9950

Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe Sasso Marconi, Italy Tel: 39-051-939111

Skopje, Macedonia Tel: 389-2-55-14-623

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe Wyboston, United Kingdom Tel: 44-1480-273082

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5877-1075

Shanghai, China Tel: 86-21-6447-0707

Seoul, South Korea Tel: 82-2-6294-0550

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia Singapore Tel: 65-6701-8033

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com C1081_C0G_HV_FT_AUTO_SMD • 2/29/2016 20

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.