2-channel analog multiplexer/demultiplexer Rev. 1 — 29 January 2013

Product data sheet

#### **General description** 1.

The 74LVC1G53-Q100 is a low-power, low-voltage, high-speed, Si-gate CMOS device.

The 74LVC1G53-Q100 provides one analog multiplexer/demultiplexer with a digital select input (S), two independent inputs/outputs (Y0 and Y1), a common input/output (Z) and an active LOW enable input (E). When pin E is HIGH, the switch is turned off.

Schmitt-trigger action at the select and enable inputs makes the circuit tolerant to slower input rise and fall times across the entire  $V_{CC}$  range from 1.65 V to 5.5 V.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

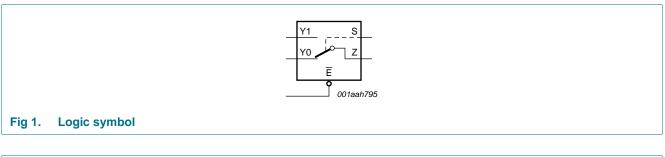
#### 2. **Features and benefits**

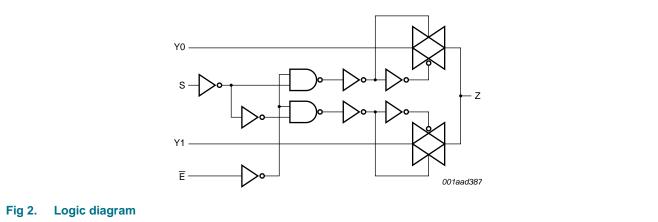
- Automotive product qualification in accordance with AEC-Q100 (Grade 1) Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
  - 7.5 Ω (typical) at V<sub>CC</sub> = 2.7 V
  - 6.5 Ω (typical) at V<sub>CC</sub> = 3.3 V
  - 6  $\Omega$  (typical) at V<sub>CC</sub> = 5 V
- Switch current capability of 32 mA
- High noise immunity
- CMOS low power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD 78 Class I
- Multiple package options
- ESD protection:
  - MIL-STD-883, method 3015 exceeds 2000 V
  - HBM JESD22-A114F exceeds 2000 V
  - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)



2-channel analog multiplexer/demultiplexer

#### **Ordering information** 3.

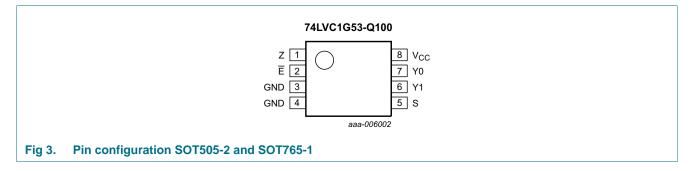

| Table 1. Ordering i | nformation        |        |                                                                                            |          |  |  |  |  |  |
|---------------------|-------------------|--------|--------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
| Type number         | Package           |        |                                                                                            |          |  |  |  |  |  |
|                     | Temperature range | Name   | Description                                                                                | Version  |  |  |  |  |  |
| 74LVC1G53DP-Q100    | –40 °C to +125 °C | TSSOP8 | plastic thin shrink small outline package; 8 leads;<br>body width 3 mm; lead length 0.5 mm | SOT505-2 |  |  |  |  |  |
| 74LVC1G53DC-Q100    | –40 °C to +125 °C | VSSOP8 | plastic very thin shrink small outline package; 8 leads; body width 2.3 mm                 | SOT765-1 |  |  |  |  |  |


#### Marking 4.

| Table 2.   Marking codes |                             |
|--------------------------|-----------------------------|
| Type number              | Marking code <sup>[1]</sup> |
| 74LVC1G53DC-Q100         | V53                         |
| 74LVC1G53DP-Q100         | V53                         |

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

#### **Functional diagram** 5.






2-channel analog multiplexer/demultiplexer

# 6. Pinning information

## 6.1 Pinning



# 6.2 Pin description

| Table 3.        | Pin description |                             |
|-----------------|-----------------|-----------------------------|
| Symbol          | Pin             | Description                 |
| Z               | 1               | common output or input      |
| Ē               | 2               | enable input (active LOW)   |
| GND             | 3               | ground (0 V)                |
| GND             | 4               | ground (0 V)                |
| S               | 5               | select input                |
| Y1              | 6               | independent input or output |
| Y0              | 7               | independent input or output |
| V <sub>CC</sub> | 8               | supply voltage              |
|                 |                 |                             |

# 7. Functional description

### Table 4.Function table

| Input |   | Channel on         |
|-------|---|--------------------|
| S     | Ē |                    |
| L     | L | Y0 to Z or Z to Y0 |
| Н     | L | Y1 to Z or Z to Y1 |
| X     | Н | Z (switch off)     |

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

2-channel analog multiplexer/demultiplexer

# 8. Limiting values

#### Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

|                  |                         |                                                            |                 |                | -    |
|------------------|-------------------------|------------------------------------------------------------|-----------------|----------------|------|
| Symbol           | Parameter               | Conditions                                                 | Min             | Max            | Unit |
| V <sub>CC</sub>  | supply voltage          |                                                            | -0.5            | +6.5           | V    |
| VI               | input voltage           |                                                            | <u>[1]</u> –0.5 | +6.5           | V    |
| I <sub>IK</sub>  | input clamping current  | $V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V | -50             | -              | mA   |
| I <sub>SK</sub>  | switch clamping current | $V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V | -               | ±50            | mA   |
| V <sub>SW</sub>  | switch voltage          | enable and disable mode                                    | 2 –0.5          | $V_{CC} + 0.5$ | V    |
| I <sub>SW</sub>  | switch current          | $V_{SW}$ > –0.5 V or $V_{SW}$ < V_{CC} + 0.5 V             | -               | ±50            | mA   |
| I <sub>CC</sub>  | supply current          |                                                            | -               | 100            | mA   |
| I <sub>GND</sub> | ground current          |                                                            | -100            | -              | mA   |
| T <sub>stg</sub> | storage temperature     |                                                            | -65             | +150           | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$            | <u>[3]</u>      | 250            | mW   |
|                  |                         |                                                            |                 |                |      |

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.

[3] For TSSOP8 packages: above 55 °C the value of Ptot derates linearly with 2.5 mW/K.

For VSSOP8 packages: above 110 °C the value of Ptot derates linearly with 8.0 mW/K.

## 9. Recommended operating conditions

#### Table 6.Operating conditions

| Symbol                | Parameter                           | Conditions                 | Min          | Мах             | Unit |
|-----------------------|-------------------------------------|----------------------------|--------------|-----------------|------|
| V <sub>CC</sub>       | supply voltage                      |                            | 1.65         | 5.5             | V    |
| VI                    | input voltage                       |                            | 0            | 5.5             | V    |
| V <sub>SW</sub>       | switch voltage                      | enable and disable mode    | <u>[1]</u> 0 | V <sub>CC</sub> | V    |
| T <sub>amb</sub>      | ambient temperature                 |                            | -40          | +125            | °C   |
| $\Delta t / \Delta V$ | input transition rise and fall rate | $V_{CC}$ = 1.65 V to 2.7 V | [2] _        | 20              | ns/V |
|                       |                                     | $V_{CC}$ = 2.7 V to 5.5 V  | [2] _        | 10              | ns/V |

[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current flows from terminal Yn. In this case, there is no limit for the voltage drop across the switch.

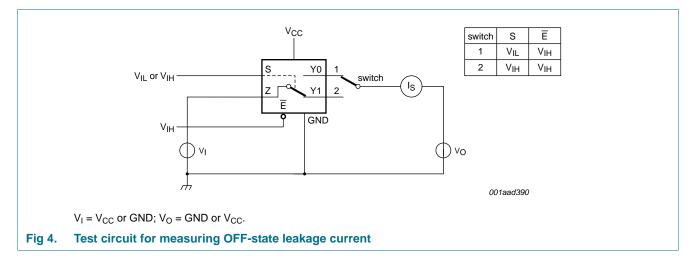
[2] Applies to control signal levels.

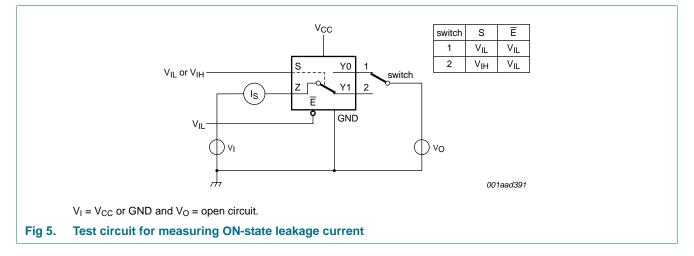
2-channel analog multiplexer/demultiplexer

# **10. Static characteristics**

### Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).


| $V_{IH} \qquad \begin{array}{c} F \\ i \\ V_{IL} \\ i \\ I \\ I_{I} \\ I_{I}$ | Parameter                       | Conditions                                                                                                                                           |     | T <sub>amb</sub> = - | 40 °C to             | o +85 °C            | $T_{amb} = -40$ °   | C to +125 °C         | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|----------------------|---------------------|---------------------|----------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                      |     | Min                  | Typ <mark>[1]</mark> | Max                 | Min                 | Max                  |      |
| V <sub>IH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HIGH-level                      | $V_{CC}$ = 1.65 V to 1.95 V                                                                                                                          |     | $0.65 \times V_{CC}$ | -                    | -                   | $0.65 	imes V_{CC}$ | -                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | input voltage                   | $V_{CC}$ = 2.3 V to 2.7 V                                                                                                                            |     | 1.7                  | -                    | -                   | 1.7                 | -                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $V_{CC}$ = 3 V to 3.6 V                                                                                                                              |     | 2.0                  | -                    | -                   | 2.0                 | -                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $V_{CC}$ = 4.5 V to 5.5 V                                                                                                                            |     | $0.7\times V_{CC}$   | -                    | -                   | $0.7\times V_{CC}$  | -                    | V    |
| V <sub>IL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOW-level                       | $V_{CC}$ = 1.65 V to 1.95 V                                                                                                                          |     | -                    | -                    | $0.35\times V_{CC}$ | -                   | $0.35 \times V_{CC}$ | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | input voltage                   | $V_{CC}$ = 2.3 V to 2.7 V                                                                                                                            |     | -                    | -                    | 0.7                 | -                   | 0.7                  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $V_{CC}$ = 3 V to 3.6 V                                                                                                                              |     | -                    | -                    | 0.8                 | -                   | 0.8                  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $V_{CC}$ = 4.5 V to 5.5 V                                                                                                                            |     | -                    | -                    | $0.3\times V_{CC}$  | -                   | $0.3\times V_{CC}$   | V    |
| II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | input leakage<br>current        | pin S and pin $\overline{E}$ ;<br>V <sub>I</sub> = 5.5 V or GND;<br>V <sub>CC</sub> = 0 V to 5.5 V                                                   | [2] | -                    | ±0.1                 | ±2                  | -                   | ±10                  | μΑ   |
| I <sub>S(OFF)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OFF-state<br>leakage<br>current | V <sub>CC</sub> = 5.5 V;<br>see <u>Figure 4</u>                                                                                                      | [2] | -                    | ±0.1                 | ±5                  | -                   | ±20                  | μΑ   |
| I <sub>S(ON)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ON-state<br>leakage<br>current  | V <sub>CC</sub> = 5.5 V;<br>see <u>Figure 5</u>                                                                                                      | [2] | -                    | ±0.1                 | ±5                  | -                   | ±20                  | μΑ   |
| I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | supply current                  | $\label{eq:VI} \begin{array}{l} V_{I=5.5~V~or~GND;}\\ V_{SW=GND~or~V_{CC};}\\ V_{CC=1.65~V~to~5.5~V} \end{array}$                                    | [2] | -                    | 0.1                  | 10                  | -                   | 40                   | μΑ   |
| Δl <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | additional supply current       | pin S and pin $\overline{E}$ ;<br>V <sub>I</sub> = V <sub>CC</sub> - 0.6 V;<br>V <sub>SW</sub> = GND or V <sub>CC</sub> ;<br>V <sub>CC</sub> = 5.5 V | [2] | -                    | 5                    | 500                 | -                   | 5000                 | μA   |
| Cı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | input<br>capacitance            |                                                                                                                                                      |     | -                    | 2.5                  | -                   | -                   | -                    | pF   |
| $C_{S(OFF)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OFF-state capacitance           |                                                                                                                                                      |     | -                    | 6.0                  | -                   | -                   | -                    | pF   |
| C <sub>S(ON)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ON-state capacitance            |                                                                                                                                                      |     | -                    | 18                   | -                   | -                   | -                    | pF   |


[1] Typical values are measured at  $T_{amb} = 25 \ ^{\circ}C$ .

[2] These typical values are measured at  $V_{CC}$  = 3.3 V.

2-channel analog multiplexer/demultiplexer

## 10.1 Test circuits





### 10.2 ON resistance

#### Table 8. ON resistance

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 7 to Figure 12.

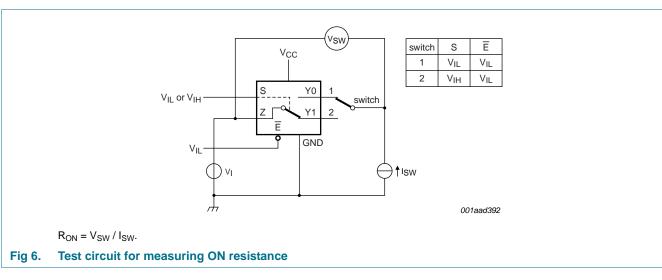
| Symbol                | Parameter            | Conditions                                                    | -40 | °C to +8             | S ℃ | –40 °C to | –40 °C to +125 °C |   |
|-----------------------|----------------------|---------------------------------------------------------------|-----|----------------------|-----|-----------|-------------------|---|
|                       |                      |                                                               | Min | Typ <mark>[1]</mark> | Max | Min       | Max               |   |
| R <sub>ON(peak)</sub> | ON resistance (peak) | $V_{I} = GND$ to $V_{CC}$ ; see <u>Figure 6</u>               |     |                      |     |           |                   |   |
|                       |                      | I <sub>SW</sub> = 4 mA;<br>V <sub>CC</sub> = 1.65 V to 1.95 V | -   | 34.0                 | 130 | -         | 195               | Ω |
|                       |                      | $I_{SW}$ = 8 mA; $V_{CC}$ = 2.3 V to 2.7 V                    | -   | 12.0                 | 30  | -         | 45                | Ω |
|                       |                      | $I_{SW}$ = 12 mA; $V_{CC}$ = 2.7 V                            | -   | 10.4                 | 25  | -         | 38                | Ω |
|                       |                      | $I_{SW}$ = 24 mA; $V_{CC}$ = 3 V to 3.6 V                     | -   | 7.8                  | 20  | -         | 30                | Ω |
|                       |                      | $I_{SW}$ = 32 mA; $V_{CC}$ = 4.5 V to 5.5 V                   | -   | 6.2                  | 15  | -         | 23                | Ω |

74LVC1G53\_Q100 Product data sheet

### **NXP Semiconductors**

# 74LVC1G53-Q100

### 2-channel analog multiplexer/demultiplexer

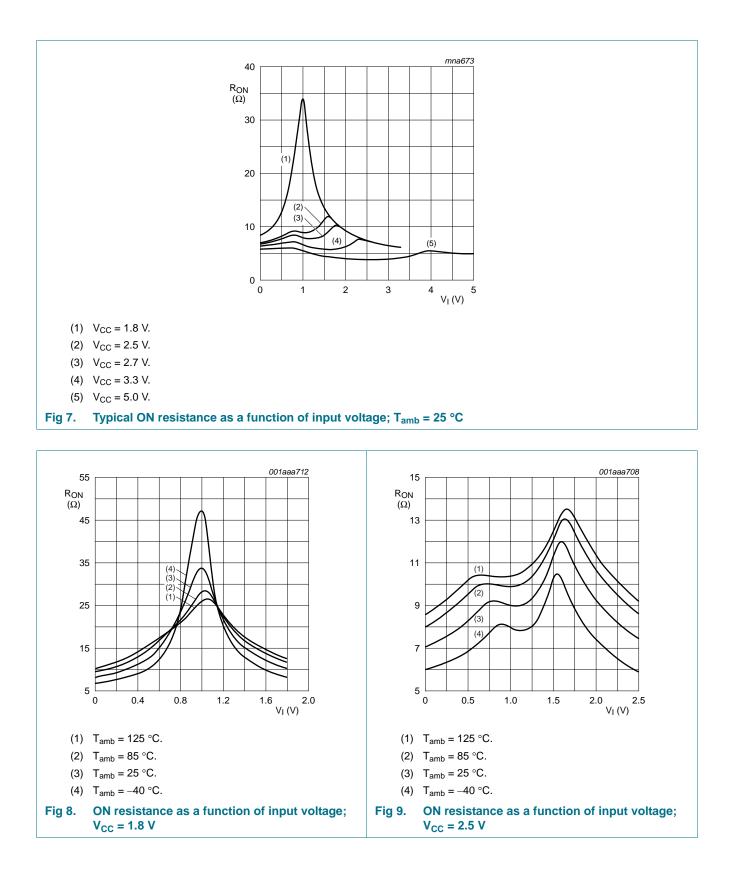

| Symbol                | Parameter                            | Conditions                                                    | -40 | ) °C to +8 | 85 °C | –40 °C to | o +125 °C | Unit |
|-----------------------|--------------------------------------|---------------------------------------------------------------|-----|------------|-------|-----------|-----------|------|
|                       |                                      |                                                               | Min | Typ[1]     | Max   | Min       | Max       |      |
| R <sub>ON(rail)</sub> | ON resistance (rail)                 | V <sub>I</sub> = GND; see <u>Figure 6</u>                     |     |            |       |           |           |      |
|                       |                                      | I <sub>SW</sub> = 4 mA;<br>V <sub>CC</sub> = 1.65 V to 1.95 V | -   | 8.2        | 18    | -         | 27        | Ω    |
|                       |                                      | $I_{SW}$ = 8 mA; $V_{CC}$ = 2.3 V to 2.7 V                    | -   | 7.1        | 16    | -         | 24        | Ω    |
|                       |                                      | $I_{SW}$ = 12 mA; $V_{CC}$ = 2.7 V                            | -   | 6.9        | 14    | -         | 21        | Ω    |
|                       |                                      | $I_{SW}$ = 24 mA; $V_{CC}$ = 3 V to 3.6 V                     | -   | 6.5        | 12    | -         | 18        | Ω    |
|                       |                                      | $I_{SW}$ = 32 mA; $V_{CC}$ = 4.5 V to 5.5 V                   | -   | 5.8        | 10    | -         | 15        | Ω    |
|                       | $V_I = V_{CC}$ ; see <u>Figure 6</u> |                                                               |     |            |       |           |           |      |
|                       |                                      | I <sub>SW</sub> = 4 mA;<br>V <sub>CC</sub> = 1.65 V to 1.95 V | -   | 10.4       | 30    | -         | 45        | Ω    |
|                       |                                      | $I_{SW}$ = 8 mA; $V_{CC}$ = 2.3 V to 2.7 V                    | -   | 7.6        | 20    | -         | 30        | Ω    |
|                       |                                      | $I_{SW}$ = 12 mA; $V_{CC}$ = 2.7 V                            | -   | 7.0        | 18    | -         | 27        | Ω    |
|                       |                                      | $I_{SW}$ = 24 mA; $V_{CC}$ = 3 V to 3.6 V                     | -   | 6.1        | 15    | -         | 23        | Ω    |
|                       |                                      | $I_{SW}$ = 32 mA; $V_{CC}$ = 4.5 V to 5.5 V                   | -   | 4.9        | 10    | -         | 15        | Ω    |
| R <sub>ON(flat)</sub> | ON resistance                        | $V_1 = GND$ to $V_{CC}$                                       | [2] |            |       |           |           |      |
|                       | (flatness)                           | I <sub>SW</sub> = 4 mA;<br>V <sub>CC</sub> = 1.65 V to 1.95 V | -   | 26.0       | -     | -         | -         | Ω    |
|                       |                                      | $I_{SW}$ = 8 mA; $V_{CC}$ = 2.3 V to 2.7 V                    | -   | 5.0        | -     | -         | -         | Ω    |
|                       |                                      | $I_{SW}$ = 12 mA; $V_{CC}$ = 2.7 V                            | -   | 3.5        | -     | -         | -         | Ω    |
|                       |                                      | $I_{SW}$ = 24 mA; $V_{CC}$ = 3 V to 3.6 V                     | -   | 2.0        | -     | -         | -         | Ω    |
|                       |                                      | $I_{SW}$ = 32 mA; $V_{CC}$ = 4.5 V to 5.5 V                   | -   | 1.5        | -     | -         | -         | Ω    |

#### Table 8. **ON resistance** ... continued

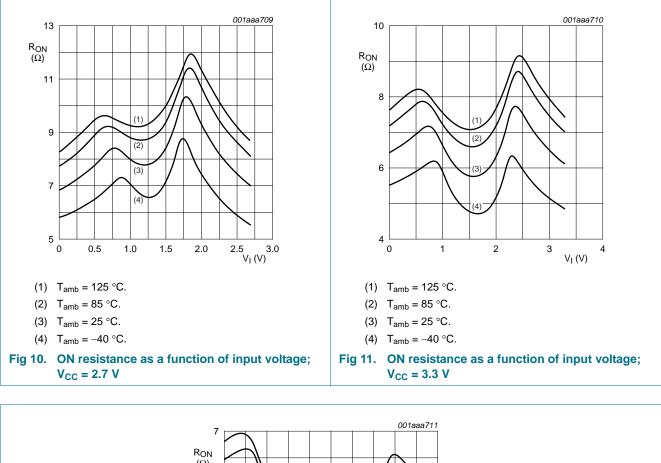
es are referenced to GND (around 0 V); for aranhs see Figure 7 to Figure 12 . .

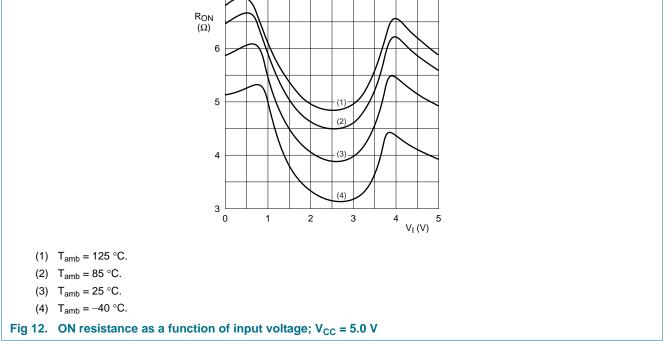
[1] Typical values are measured at  $T_{amb}$  = 25 °C and nominal V<sub>CC</sub>.

[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V<sub>CC</sub> and temperature.




## 10.3 ON resistance test circuit and graphs


### **NXP Semiconductors**


# 74LVC1G53-Q100

### 2-channel analog multiplexer/demultiplexer



### 2-channel analog multiplexer/demultiplexer





2-channel analog multiplexer/demultiplexer

# **11. Dynamic characteristics**

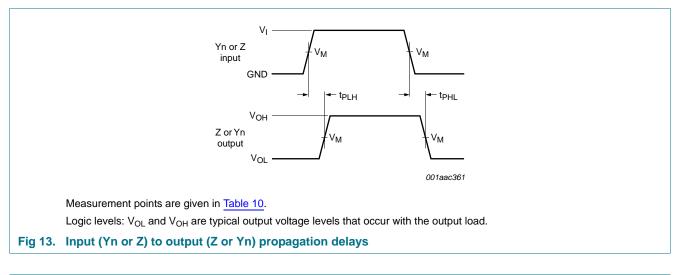
### Table 9. Dynamic characteristics

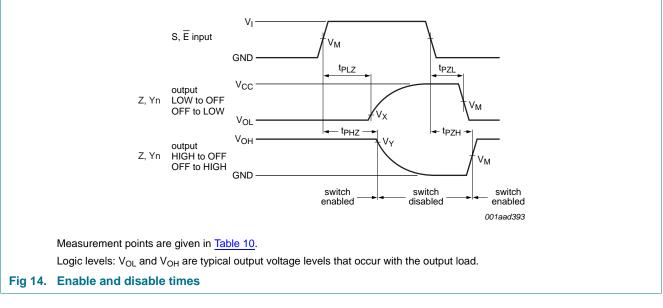
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 15.

| Symbol           | Parameter                                            | Conditions                                           |            | -40 | ) °C to +8           | 5 °C | –40 °C to | –40 °C to +125 °C |    |  |
|------------------|------------------------------------------------------|------------------------------------------------------|------------|-----|----------------------|------|-----------|-------------------|----|--|
|                  |                                                      |                                                      |            | Min | Typ <mark>[1]</mark> | Max  | Min       | Max               |    |  |
| t <sub>pd</sub>  | propagation delay                                    | Z to Yn or Yn to Z; see Figure 13                    | [2][3]     |     |                      |      |           |                   |    |  |
|                  |                                                      | $V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$ |            | -   | -                    | 2    | -         | 2.5               | ns |  |
|                  |                                                      | $V_{CC}$ = 2.3 V to 2.7 V                            |            | -   | -                    | 1.2  | -         | 1.5               | ns |  |
|                  |                                                      | $V_{CC} = 2.7 V$                                     |            | -   | -                    | 1.0  | -         | 1.25              | ns |  |
|                  |                                                      | $V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$   |            | -   | -                    | 0.8  | -         | 1.0               | ns |  |
|                  |                                                      | $V_{CC}$ = 4.5 V to 5.5 V                            |            | -   | -                    | 0.6  | -         | 0.8               | ns |  |
| t <sub>en</sub>  | enable time                                          | S to Z or Yn; see Figure 14                          | <u>[4]</u> |     |                      |      |           |                   |    |  |
|                  | $V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$ |                                                      | 2.6        | 6.7 | 10.3                 | 2.6  | 12.9      | ns                |    |  |
|                  |                                                      | $V_{CC}$ = 2.3 V to 2.7 V                            |            | 1.9 | 4.1                  | 6.4  | 1.9       | 8.0               | ns |  |
|                  |                                                      | $V_{CC} = 2.7 V$                                     |            | 1.9 | 4.0                  | 5.5  | 1.8       | 7.0               | ns |  |
|                  |                                                      | $V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$   |            | 1.8 | 3.4                  | 5.0  | 1.8       | 6.3               | ns |  |
|                  |                                                      | $V_{CC}$ = 4.5 V to 5.5 V                            |            | 1.3 | 2.6                  | 3.8  | 1.3       | 4.8               | ns |  |
|                  |                                                      | E to Z or Yn; see Figure 14                          | <u>[4]</u> |     |                      |      |           |                   |    |  |
|                  |                                                      | $V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$ |            | 1.9 | 4.0                  | 7.3  | 1.9       | 9.2               | ns |  |
|                  |                                                      | $V_{CC}$ = 2.3 V to 2.7 V                            |            | 1.4 | 2.5                  | 4.4  | 1.4       | 5.5               | ns |  |
|                  |                                                      | $V_{CC} = 2.7 V$                                     |            | 1.1 | 2.6                  | 3.9  | 1.1       | 4.9               | ns |  |
|                  |                                                      | $V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$   |            | 1.2 | 2.2                  | 3.8  | 1.2       | 4.8               | ns |  |
|                  |                                                      | $V_{CC}$ = 4.5 V to 5.5 V                            |            | 1.0 | 1.7                  | 2.6  | 1.0       | 3.3               | ns |  |
| t <sub>dis</sub> | disable time                                         | S to Z or Yn; see Figure 14                          | <u>[5]</u> |     |                      |      |           |                   |    |  |
|                  |                                                      | $V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$ |            | 2.1 | 6.8                  | 10.0 | 2.1       | 12.5              | ns |  |
|                  |                                                      | $V_{CC}$ = 2.3 V to 2.7 V                            |            | 1.4 | 3.7                  | 6.1  | 1.4       | 7.7               | ns |  |
|                  |                                                      | $V_{CC} = 2.7 V$                                     |            | 1.4 | 4.9                  | 6.2  | 1.4       | 7.8               | ns |  |
|                  |                                                      | $V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$   |            | 1.1 | 4.0                  | 5.4  | 1.1       | 6.8               | ns |  |
|                  |                                                      | $V_{CC}$ = 4.5 V to 5.5 V                            |            | 1.0 | 2.9                  | 3.8  | 1.0       | 4.8               | ns |  |
|                  |                                                      | E to Z or Yn; see Figure 14                          | [5]        |     |                      |      |           |                   |    |  |
|                  |                                                      | $V_{CC}$ = 1.65 V to 1.95 V                          |            | 2.3 | 5.6                  | 8.6  | 2.3       | 11.0              | ns |  |
|                  |                                                      | $V_{CC}$ = 2.3 V to 2.7 V                            |            | 1.2 | 3.2                  | 4.8  | 1.2       | 6.0               | ns |  |
|                  |                                                      | $V_{CC} = 2.7 V$                                     |            | 1.4 | 4.0                  | 5.2  | 1.4       | 6.5               | ns |  |
|                  |                                                      | $V_{CC}$ = 3.0 V to 3.6 V                            |            | 2.0 | 3.7                  | 5.0  | 2.0       | 6.3               | ns |  |
|                  |                                                      | $V_{CC} = 4.5 V \text{ to } 5.5 V$                   |            | 1.3 | 2.9                  | 3.8  | 1.3       | 4.8               | ns |  |

[1] Typical values are measured at  $T_{amb} = 25 \text{ °C}$  and nominal  $V_{CC}$ .

[2]  $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .

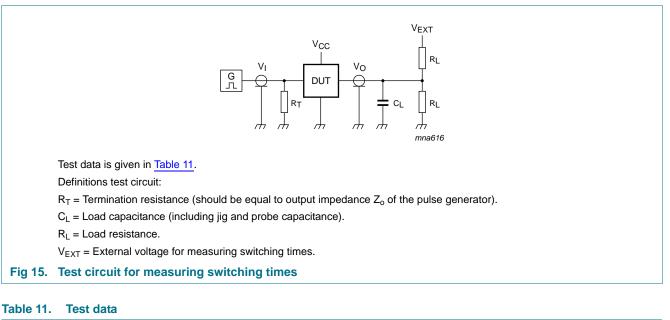

[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).


 $\label{eq:tensor} [4] \quad t_{en} \text{ is the same as } t_{PZH} \text{ and } t_{PZL}.$ 

[5]  $t_{dis}$  is the same as  $t_{PLZ}$  and  $t_{PHZ}$ .

2-channel analog multiplexer/demultiplexer

## 11.1 Waveforms and test circuits






#### Table 10. Measurement points

| Supply voltage  | Input               | Output             | Output                   |                          |  |  |  |  |
|-----------------|---------------------|--------------------|--------------------------|--------------------------|--|--|--|--|
| V <sub>cc</sub> | V <sub>M</sub>      | V <sub>M</sub>     | V <sub>X</sub>           | V <sub>Y</sub>           |  |  |  |  |
| 1.65 V to 2.7 V | $0.5 	imes V_{CC}$  | $0.5 	imes V_{CC}$ | V <sub>OL</sub> + 0.15 V | V <sub>OH</sub> – 0.15 V |  |  |  |  |
| 2.7 V to 5.5 V  | $0.5 \times V_{CC}$ | $0.5\times V_{CC}$ | V <sub>OL</sub> + 0.3 V  | V <sub>OH</sub> – 0.3 V  |  |  |  |  |

### 2-channel analog multiplexer/demultiplexer



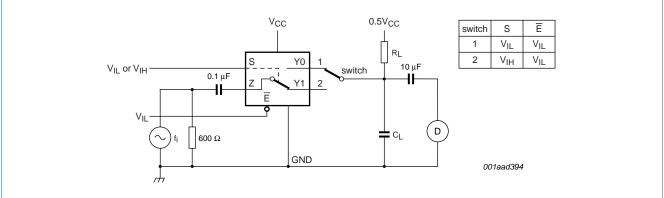
| Supply voltage   | Input           |                                 | Load  | _oad  |                                     | V <sub>EXT</sub>                    |                                     |  |  |
|------------------|-----------------|---------------------------------|-------|-------|-------------------------------------|-------------------------------------|-------------------------------------|--|--|
| V <sub>cc</sub>  | VI              | t <sub>r</sub> , t <sub>f</sub> | CL    | RL    | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |  |  |
| 1.65 V to 1.95 V | V <sub>CC</sub> | $\leq$ 2.0 ns                   | 30 pF | 1 kΩ  | open                                | GND                                 | $2\times V_{CC}$                    |  |  |
| 2.3 V to 2.7 V   | V <sub>CC</sub> | $\leq$ 2.0 ns                   | 30 pF | 500 Ω | open                                | GND                                 | $2\times V_{CC}$                    |  |  |
| 2.7 V            | V <sub>CC</sub> | $\leq$ 2.5 ns                   | 50 pF | 500 Ω | open                                | GND                                 | $2\times V_{CC}$                    |  |  |
| 3 V to 3.6 V     | V <sub>CC</sub> | $\leq$ 2.5 ns                   | 50 pF | 500 Ω | open                                | GND                                 | $2\times V_{CC}$                    |  |  |
| 4.5 V to 5.5 V   | V <sub>CC</sub> | $\leq$ 2.5 ns                   | 50 pF | 500 Ω | open                                | GND                                 | $2\times V_{CC}$                    |  |  |

### 11.2 Additional dynamic characteristics

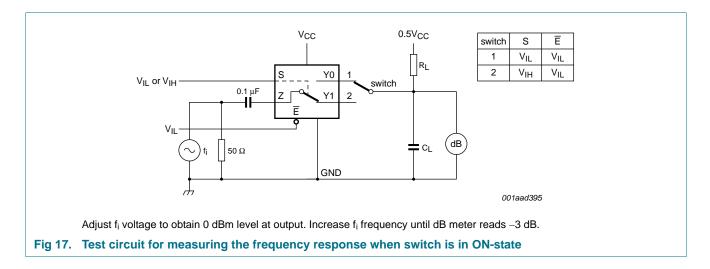
#### Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V);  $T_{amb} = 25 \degree C$ .

| Symbol              | Parameter                 | Conditions                                                                                                                                                                                                         | Min | Тур   | Max | Unit |
|---------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| THD                 | total harmonic distortion | $ \begin{array}{l} f_i = 600 \text{ Hz to } 20 \text{ kHz}; \text{ R}_L = 600 \ \Omega; \\ C_L = 50 \text{ pF}; \text{ V}_I = 0.5 \text{ V} \text{ (p-p)}; \text{ see } \underline{\text{Figure 16}} \end{array} $ |     |       |     |      |
|                     |                           | V <sub>CC</sub> = 1.65 V                                                                                                                                                                                           | -   | 0.260 | -   | %    |
|                     |                           | V <sub>CC</sub> = 2.3 V                                                                                                                                                                                            | -   | 0.078 | -   | %    |
|                     |                           | V <sub>CC</sub> = 3.0 V                                                                                                                                                                                            | -   | 0.078 | -   | %    |
|                     |                           | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                            | -   | 0.078 | -   | %    |
| f <sub>(-3dB)</sub> | –3 dB frequency response  | $R_L = 50 \Omega$ ; $C_L = 5 pF$ ; see <u>Figure 17</u>                                                                                                                                                            |     |       |     |      |
|                     |                           | V <sub>CC</sub> = 1.65 V                                                                                                                                                                                           | -   | 200   | -   | MHz  |
|                     |                           | V <sub>CC</sub> = 2.3 V                                                                                                                                                                                            | -   | 300   | -   | MHz  |
|                     |                           | V <sub>CC</sub> = 3.0 V                                                                                                                                                                                            | -   | 300   | -   | MHz  |
|                     |                           | $V_{CC} = 4.5 V$                                                                                                                                                                                                   | -   | 300   | -   | MHz  |


### 2-channel analog multiplexer/demultiplexer

#### Table 12. Additional dynamic characteristics ...continued

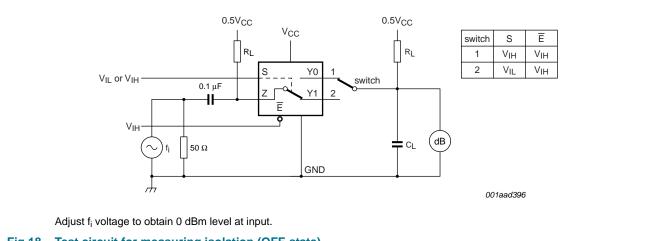

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T<sub>amb</sub> = 25 °C.

| Symbol           | Parameter             | Conditions                                                                                                                                                        | Min | Тур | Max | Unit |
|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| $\alpha_{iso}$   | isolation (OFF-state) | R <sub>L</sub> = 50 Ω; C <sub>L</sub> = 5 pF; $f_i$ = 10 MHz;<br>see <u>Figure 18</u>                                                                             |     |     |     |      |
|                  |                       | V <sub>CC</sub> = 1.65 V                                                                                                                                          | -   | -42 | -   | dB   |
|                  |                       | $V_{CC} = 2.3 V$                                                                                                                                                  | -   | -42 | -   | dB   |
|                  |                       | $V_{CC} = 3.0 V$                                                                                                                                                  | -   | -40 | -   | dB   |
|                  |                       | $V_{CC} = 4.5 V$                                                                                                                                                  | -   | -40 | -   | dB   |
| Q <sub>inj</sub> | charge injection      | $C_L = 0.1 \text{ nF}; V_{gen} = 0 \text{ V}; R_{gen} = 0 \Omega;$<br>$f_i = 1 \text{ MHz}; R_L = 1 \text{ M}\Omega; \text{ see } \frac{\text{Figure } 19}{1000}$ |     |     |     |      |
|                  |                       | V <sub>CC</sub> = 1.8 V                                                                                                                                           | -   | 3.3 | -   | рС   |
|                  |                       | $V_{CC} = 2.5 V$                                                                                                                                                  | -   | 4.1 | -   | рС   |
|                  |                       | $V_{CC} = 3.3 V$                                                                                                                                                  | -   | 5.0 | -   | рС   |
|                  |                       | $V_{CC} = 4.5 V$                                                                                                                                                  | -   | 6.4 | -   | рС   |
|                  |                       | $V_{CC} = 5.5 V$                                                                                                                                                  | -   | 7.5 | -   | рС   |

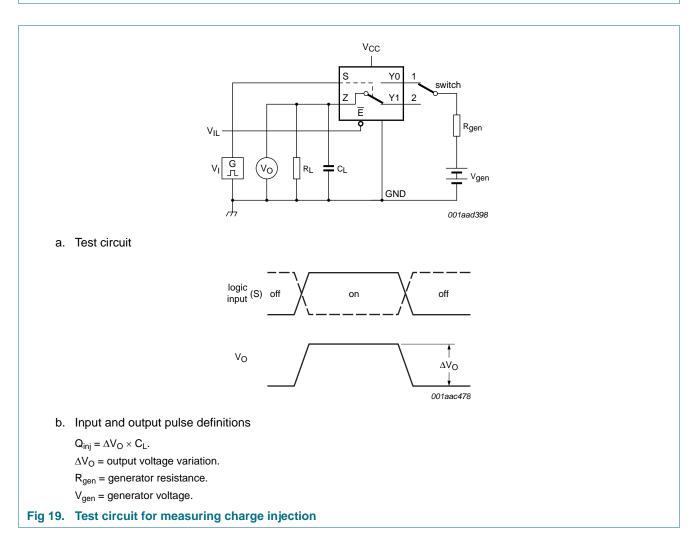
### 11.3 Test circuits



### Fig 16. Test circuit for measuring total harmonic distortion

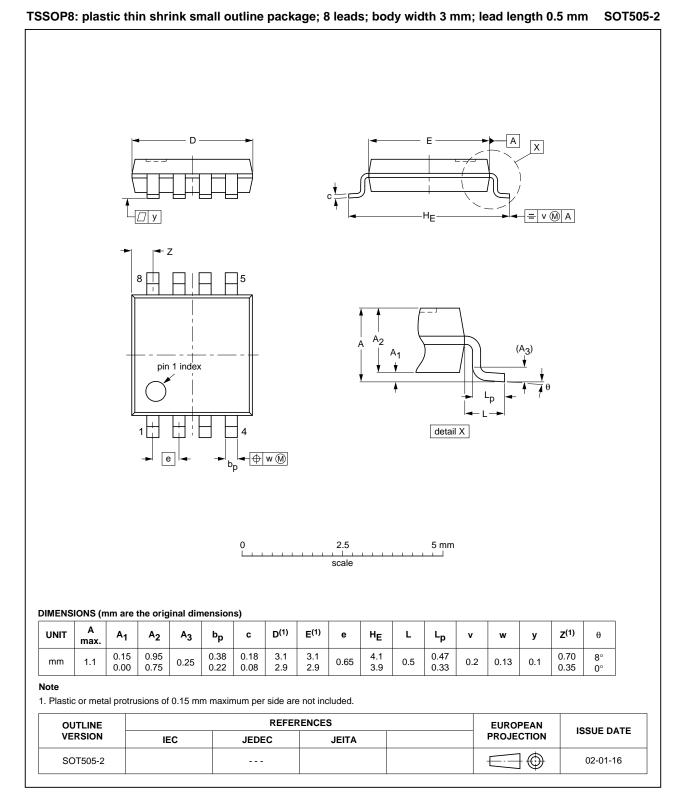



All information provided in this document is subject to legal disclaimers.


### **NXP Semiconductors**

# 74LVC1G53-Q100

2-channel analog multiplexer/demultiplexer








2-channel analog multiplexer/demultiplexer

## 12. Package outline



#### Fig 20. Package outline SOT505-2 (TSSOP8)

All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

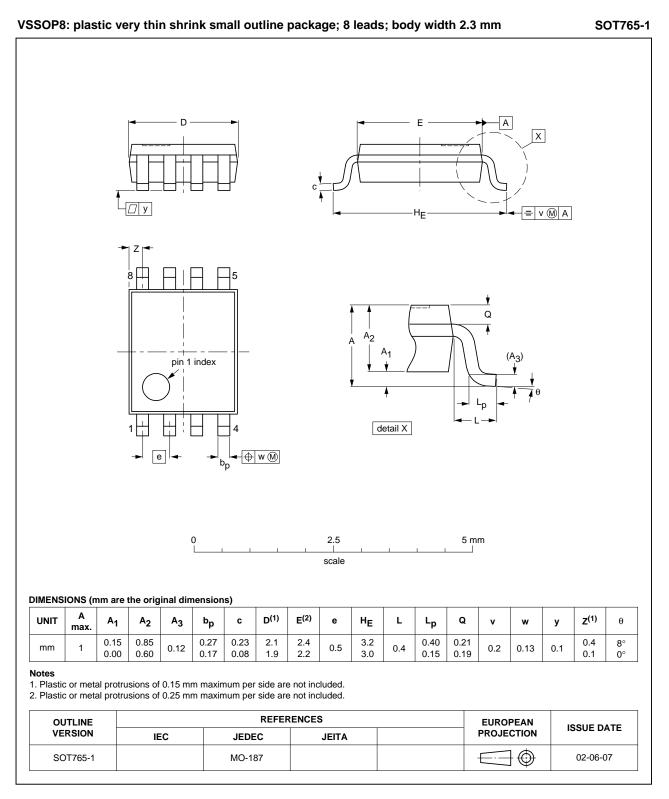



Fig 21. Package outline SOT765-1 (VSSOP8)

All information provided in this document is subject to legal disclaimers.

2-channel analog multiplexer/demultiplexer

# **13. Abbreviations**

| Table 13. Abbreviations |                                         |  |  |
|-------------------------|-----------------------------------------|--|--|
| Acronym                 | Description                             |  |  |
| CMOS                    | Complementary Metal-Oxide Semiconductor |  |  |
| TTL                     | Transistor-Transistor Logic             |  |  |
| HBM                     | Human Body Model                        |  |  |
| ESD                     | ElectroStatic Discharge                 |  |  |
| MM                      | Machine Model                           |  |  |
| CDM                     | Charged Device Model                    |  |  |
| DUT                     | Device Under Test                       |  |  |
| MIL                     | Military                                |  |  |
|                         |                                         |  |  |

# 14. Revision history

| Table 14. Revision history |              |                    |               |            |  |
|----------------------------|--------------|--------------------|---------------|------------|--|
| Document ID                | Release date | Data sheet status  | Change notice | Supersedes |  |
| 74LVC1G53_Q100 v.1         | 20130129     | Product data sheet | -             | -          |  |

2-channel analog multiplexer/demultiplexer

# 15. Legal information

### 15.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

### 15.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

#### Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

### 2-channel analog multiplexer/demultiplexer

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

### 15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

# 16. Contact information

For more information, please visit: <a href="http://www.nxp.com">http://www.nxp.com</a>

For sales office addresses, please send an email to: salesaddresses@nxp.com

### 2-channel analog multiplexer/demultiplexer

## **17. Contents**

| 1    | General description 1                   |
|------|-----------------------------------------|
| 2    | Features and benefits 1                 |
| 3    | Ordering information 2                  |
| 4    | Marking 2                               |
| 5    | Functional diagram 2                    |
| 6    | Pinning information 3                   |
| 6.1  | Pinning                                 |
| 6.2  | Pin description 3                       |
| 7    | Functional description 3                |
| 8    | Limiting values 4                       |
| 9    | Recommended operating conditions 4      |
| 10   | Static characteristics 5                |
| 10.1 | Test circuits 6                         |
| 10.2 | ON resistance 6                         |
| 10.3 | ON resistance test circuit and graphs 7 |
| 11   | Dynamic characteristics 10              |
| 11.1 | Waveforms and test circuits 11          |
| 11.2 | Additional dynamic characteristics 12   |
| 11.3 | Test circuits 13                        |
| 12   | Package outline 15                      |
| 13   | Abbreviations 17                        |
| 14   | Revision history 17                     |
| 15   | Legal information 18                    |
| 15.1 | Data sheet status 18                    |
| 15.2 | Definitions                             |
| 15.3 | Disclaimers                             |
| 15.4 | Trademarks 19                           |
| 16   | Contact information 19                  |
| 17   | Contents 20                             |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 January 2013 Document identifier: 74LVC1G53\_Q100