DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V / 3.3V LVPECL TRANSLATOR ### GENERAL DESCRIPTION The ICS85322 is a Dual LVCMOS / LVTTL-to-Differential 2.5V / 3.3V LVPECL translator and a member of the HiPerClocks™ family of High Performance Clocks Solutions from ICS. The ICS85322 has selectable single ended clock in- puts. The single ended clock input accepts LVCMOS or LVTTL input levels and translate them to $2.5 \mbox{V}\,/\,3.3 \mbox{V}\,$ LVPECL levels. The small outline 8-pin SOIC package makes this device ideal for applications where space, high performance and low power are important. ### **F**EATURES - 2 differential 2.5V/3.3V LVPECL outputs - Selectable CLK0, CLK1 LVCMOS clock inputs - CLK0 and CLK1 can accepts the following input levels: LVCMOS or LVTTL - · Maximum output frequency up to 267MHz - Part-to-part skew: 150ps (maximum) - 3.3V operating supply voltage (operating range 3.135V to 3.465V) - 2.5V operating supply voltage (operating range 2.375V to 2.625V) - 0°C to 70°C ambient operating temperature - · Industrial temperature information available upon request ### **BLOCK DIAGRAM** ### PIN ASSIGNMENT ### ICS85322 **8-Lead SOIC** 3.90mm x 4.92mm x 1.37mm body package **M Package** Top View ### TABLE 1. PIN DESCRIPTIONS | Number | Name | Туре | | Description | |--------|-----------------|--------|--------|--| | 1, 2 | Q0, nQ0 | Output | | Differential output pair. LVPECL interface levels. | | 3, 4 | Q1, nQ1 | Output | | Differential output pair. LVPECL interface levels. | | 5 | $V_{\sf EE}$ | Power | | Negative supply pin. Connect to ground. | | 6 | CLK1 | Input | Pullup | LVCMOS / LVTTL clock input. | | 7 | CLK0 | Input | Pullup | LVCMOS / LVTTL clock input. | | 8 | V _{cc} | Power | | Positive supply pin. Connect to 3.3V or 2.5V | NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values. ### Table 2. Pin Characteristics | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-----------------------|------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | CLK0, CLK1 | | | | 4 | pF | | R _{PULLUP} | Input Pullup Resistor | | | | 51 | | ΚΩ | | R _{PULLDOWN} | Input Pulldown Resi | stor | | | 51 | | ΚΩ | ## DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V / 3.3V LVPECL TRANSLATOR #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{cc} 4.6V $\begin{array}{ll} \text{Inputs, V}_{\text{I}} & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \\ \text{Outputs, V}_{\text{O}} & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 112.7^{\circ} \text{C/W (Olfpm)} \end{array}$ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 3A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-------------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Positive Supply Voltage | | 3.135 | 3.3 | 3.465 | ٧ | | I _{EE} | Power Supply Current | | | | 25 | mA | Table 3B. LVCMOS / LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $TA = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|--------------------|------------|----------------------------|---------|---------|---------|-------| | V _{IH} | Input High Voltage | CLK0, CLK1 | | 2 | | 3.765 | V | | V _{IL} | Input Low Voltage | CLK0, CLK1 | | -0.3 | | 1.3 | V | | I _{IH} | Input High Current | CLK0, CLK1 | $V_{CC} = V_{IN} = 3.465V$ | | | 5 | μA | | I | Input Low Current | CLK0, CLK1 | $V_{CC} = V_{IN} = 3.465V$ | -150 | | | μA | Table 3C. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|----------------------------|-----------------------|---------|-----------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | $V_{CC} = V_{IN} = 3.465V$ | V _{cc} - 1.4 | | V _{cc} - 1.0 | V | | V _{OL} | Output Low Voltage; NOTE 1 | $V_{CC} = V_{IN} = 3.465V$ | V _{cc} - 2.0 | | V _{cc} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.65 | | 0.9 | V | NOTE 1: Outputs terminated with 50 $\!\Omega$ to ${\rm V_{cc}}$ - 2V. Table 4A. AC Characteristics, $V_{\rm CC} = 3.3 V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------|--------------------|---------|---------|---------|-------| | f _{MAX} | Maximum Output Frequency | | | | 267 | MHz | | t _{PD} | Propagation Delay; NOTE 1 | f ≤ 267MHz | 0.6 | | 1.8 | ns | | tsk(pp) | Part-to-Part Skew; NOTE 2, 3 | | | | 150 | ps | | t _R | Output Rise Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | t _F | Output Fall Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | odc | Output Duty Cycle | | 40 | | 60 | % | All parameters measured at 133MHz unless noted otherwise. NOTE 1: Measured from the 50% point of the input to the differential output crossing point. NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. Table 3D. Power Supply DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-------------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Positive Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | I _{EE} | Power Supply Current | | | | 25 | mA | ### Table 3E. LVCMOS / LVTTL DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $TA = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|--------------------|------------|---------------------------|---------|---------|---------|-------| | V _{IH} | Input High Voltage | CLK0, CLK1 | | 1.6 | | 2.925 | V | | V _{IL} | Input Low Voltage | CLK0, CLK1 | | -0.3 | | 0.9 | V | | I _{IH} | Input High Current | CLK0, CLK1 | $V_{CC} = V_{IN} = 2.625$ | | | 5 | μA | | I | Input Low Current | CLK0, CLK1 | $V_{CC} = V_{IN} = 2.625$ | -150 | | | μA | ### Table 3F. LVPECL DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|-----------------------|---------|-----------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{cc} - 1.4 | | V _{cc} - 1.0 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{cc} - 2.0 | | V _{cc} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.65 | | 0.9 | V | NOTE 1: Outputs terminated with 50Ω to V_{CC} - 2V. Table 4B. AC Characteristics, $V_{CC} = 2.5V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------|--------------------|---------|---------|---------|-------| | f _{MAX} | Maximum Output Frequency | | | | 215 | MHz | | t _{PD} | Propagation Delay; NOTE 1 | f ≤ 215MHz | 0.8 | | 2 | ns | | tsk(pp) | Part-to-Part Skew; NOTE 2, 3 | | | | 150 | ps | | t _R | Output Rise Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | t _F | Output Fall Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | odc | Output Duty Cycle | | 40 | | 60 | % | All parameters measured at 133MHz unless noted otherwise. NOTE 1: Measured from the 50% point of the input to the differential output crossing point. NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65... ### PARAMETER MEASUREMENT INFORMATION ### Power Considerations This section provides information on power dissipation and junction temperature for the ICS85322. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS85322 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 25mA = 86.6mW - Power (outputs)_{MAX} = 30.2mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW Total Power $_{MAX}$ (3.465V, with all outputs switching) = 86.6mW + 60.4mW = 147mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS TM devices is 125°C. The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_{total} + T_{A}$ Tj = Junction Temperature θ_{JA} = junction-to-ambient thermal resistance Pd_total = Total device power dissipation (example calculation is in section 1 above) $T_A = Ambient Temperature$ In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 0.147\text{W} * 103.3^{\circ}\text{C/W} = 85.2^{\circ}\text{C}$. This is well below the limit of 125°C This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). Table 5. Thermal Resistance θ_{JA} for 8-pin SOIC, Forced Convection ### $\boldsymbol{\theta}_{JA}$ by Velocity (Linear Feet per Minute) 0200500Single-Layer PCB, JEDEC Standard Test Boards153.3°C/W128.5°C/W115.5°C/WMulti-Layer PCB, JEDEC Standard Test Boards112.7°C/W103.3°C/W97.1°C/W **NOTE:** Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 6. To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} - 2V. Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX})$$ $$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_{L}] * (V_{CC_MAX} - V_{OL_MAX})$$ • For logic high, $$V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 1.0V$$ Using $V_{CC_MAX} = 3.465$, this results in $V_{OH_MAX} = 2.465V$ • For logic low, $$V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.7V$$ Using $V_{CC_MAX} = 3.465$, this results in $V_{OL_MAX} = 1.765V$ Pd_H = $$[(2.465V - (3.465V - 2V))/50\Omega] * (3.465V - 2.465V) = 20mW Pd_L = $[(1.765V - (3.465V - 2V))/50\Omega] * (3.465V - 1.765V) = 10.2mW$$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW ### RELIABILITY INFORMATION ### Table 6. $\theta_{_{\mathrm{JA}}}$ vs. Air Flow Table ### $\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute) 0200500Single-Layer PCB, JEDEC Standard Test Boards153.3°C/W128.5°C/W115.5°C/WMulti-Layer PCB, JEDEC Standard Test Boards112.7°C/W103.3°C/W97.1°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS85322 is: 269 ### PACKAGE OUTLINE - M SUFFIX TABLE 7. PACKAGE DIMENSIONS | CVMDOL | Millin | neters | |--------|---------|---------| | SYMBOL | MINIMUN | MAXIMUM | | N | 1 | 3 | | А | 1.35 | 1.75 | | A1 | 0.10 | 0.25 | | В | 0.33 | 0.51 | | С | 0.19 | 0.25 | | D | 4.80 | 5.00 | | E | 3.80 | 4.00 | | е | 1.27 [| BASIC | | Н | 5.80 | 6.20 | | h | 0.25 | 0.50 | | L | 0.40 | 1.27 | | α | 0° | 8° | Reference Document: JEDEC Publication 95, MS-012 ### ICS85322 # Dual LVCMOS / LVTTL-to-Differential 2.5V / 3.3V LVPECL Translator #### TABLE 8. ORDERING INFORMATION | Part/Order Number | Marking | Package | Count | Temperature | |-------------------|-------------|------------------------------|-------------|-------------| | ICS85322AM | ICS85322AM | 8 lead SOIC | 96 per tube | 0°C to 70°C | | ICS85322AM-T | ICS853322AM | 8 lead SOIC on Tape and Reel | 2500 | 0°C to 70°C | While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.