

64 K × 16 Static RAM

Features

- 3.3 V operation (3.0 V-3.6 V)
- High speed
 □ t_{AA} = 15 ns
- CMOS for optimum speed/power
- Low Active Power

 □ 576 mW (max)
- Low CMOS Standby Power
 □ 1.80 mW (max)
- Automatic power-down when deselected
- Independent control of upper and lower bits
- Available in 44-pin TSOP II and 400-mil SOJ
- Available in a 48-ball Mini BGA package

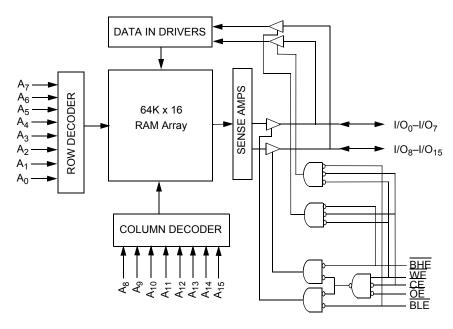
Functional Description

The CY7C1021BNV33^[1] is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O_7), is written into the location specified on the address pins $(A_0$ through A_{15}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through I/O_{15}) is written into the location specified on the address pins $(A_0$ through A_{15}).

Reading from the device is accomplished by taking Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).


The CY7C1021BNV33 is available in 400-mil-wide SOJ, standard 44-pin TSOP Type II, and 48-ball mini BGA packages.

Note

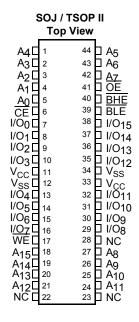
^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

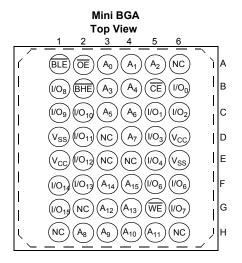
Logic Block Diagram

Selection Guide

	-15
Maximum Access Time (ns)	15
Maximum Operating Current (mA)	160
Maximum CMOS Standby Current (mA)	0.5

CY7C1021BNV33


Contents


Pin Configurations	4
Maximum Ratings	5
Operating Range	
Electrical Characteristics	
Capacitance	
AC Test Loads and Waveforms	
Switching Characteristics	
Data Retention Characteristics	
Data Retention Waveform	
Switching Waveforms	
Truth Table	

Ordering Information	12
Ordering Code Definitions	
Package Diagrams	
Acronyms	15
Document Conventions	
Units of Measure	15
Document History Page	16
Sales, Solutions, and Legal Information	17
Worldwide Sales and Design Support	
Products	17
PSoC Solutions	17

Pin Configurations

Maximum Ratings

DC Input Voltage ^[2]	–0.5 V to V _{CC} + 0.5 V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001 V
Latch-Up Current	> 200 mA

Operating Range

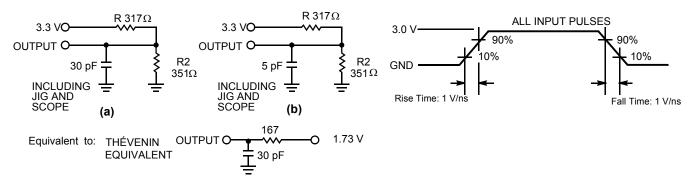
Range	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	3.3 V ± 10%

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		Unit	
rarameter	Description	rest conditions	Min	Max	Oilit
V _{OH}	Output HIGH Voltage	V_{CC} = Min, I_{OH} = -4.0 mA	2.4	_	V
V_{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8.0 mA	-	0.4	V
V _{IH}	Input HIGH Voltage		2.2	$V_{CC} + 0.3 V$	V
V _{IL}	Input LOW Voltage [2]		-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disabled	– 1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	V_{CC} = Max, I_{OUT} = 0 mA, $f = f_{MAX}$ = 1/ t_{RC}	_	160	mA
I _{SB1}	Automatic CE Power Down Current —TTL Inputs	$Max V_{CC}$, $\overline{CE} \ge V_{IH}$, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	-	40	mA
I _{SB2}	Automatic CE Power Down Current —CMOS Inputs	$\begin{array}{l} \text{Max V}_{CC}, \overline{\text{CE}} \geq \text{V}_{CC} - 0.3 \text{ V}, \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3 \text{ V} \text{ or} \\ \text{V}_{\text{IN}} \leq 0.3 \text{ V}, \text{f} = 0 \end{array}$	ı	500	μА

Capacitance


Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	T _A = 25 °C, f = 1 MHz	6	pF
C _{OUT}	Output Capacitance		8	pF

Notes

- 2. Minimum voltage is -2.0 V for pulse durations of less than 20 ns.
- 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics

Over the Operating Range

5 [4]	Description		-15		
Parameter [4]			Max	Unit	
READ CYCLE		<u> </u>			
t _{RC}	Read Cycle Time	15	_	ns	
t _{AA}	Address to Data Valid	-	15	ns	
t _{OHA}	Data Hold from Address Change	3	_	ns	
t _{ACE}	CE LOW to Data Valid	_	15	ns	
t _{DOE}	OE LOW to Data Valid	_	7	ns	
t _{LZOE}	OE LOW to Low Z	0	_	ns	
t _{HZOE}	OE HIGH to High Z ^[5, 6]	_	7	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	3	_	ns	
t _{HZCE}	CE HIGH to High Z ^[5, 6]	_	7	ns	
t _{PU}	CE LOW to Power-Up	0	_	ns	
t _{PD}	CE HIGH to Power-Down	_	15	ns	
t _{DBE}	Byte Enable to Data Valid	_	7	ns	
t _{LZBE}	Byte Enable to Low Z	0	_	ns	
t _{HZBE}	Byte Disable to High Z	_	7	ns	
WRITE CYCLE ^[7]		-	· ·		
t _{WC}	Write Cycle Time	15	_	ns	
t _{SCE}	CE LOW to Write End	10	_	ns	
t _{AW}	Address Set-Up to Write End	10	_	ns	
t _{HA}	Address Hold from Write End	0	_	ns	
t _{SA}	Address Set-Up to Write Start	0	_	ns	
t _{PWE}	WE Pulse Width	10	_	ns	
t _{SD}	Data Set-Up to Write End	8	_	ns	
t _{HD}	Data Hold from Write End	0	_	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	3	_	ns	
t _{HZWE}	WE LOW to High Z ^[5, 6]	_	7	ns	
t _{BW}	Byte Enable to End of Write	9	_	ns	

Notes

Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified loL/loH and 30-pF load capacitance.

tHZOE, tHZEE, tHZCE, and tHZWE are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads and Waveforms on page 6. Transition is measured ±500 mV from steady-state voltage.

At any given temperature and voltage condition, t_{HZCE} is less than t_{I ZCE}, t_{HZCE} is less than t_{I ZCE}, and t_{HZWE} is less than t_{I ZCE}, and t_{HZWE} for any given device. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics

Over the Operating Range (L version only)

Parameter	Description	Conditions ^[8]	Min	Max	Unit
V_{DR}	V _{CC} for Data Retention		2.0	-	V
ICCDR	Data Retention Current	$V_{CC} = V_{DR} = 2.0 \text{ V},$ $CE \ge V_{CC} - 0.3 \text{ V},$ $V_{IN} \ge V_{CC} - 0.3 \text{ V or } V_{IN} \le 0.3 \text{ V}$	_	100	μΑ
t _{CDR} ^[9]	Chip Deselect to Data Retention Time		0	-	ns
t _R ^[10]	Operation Recovery Time		15	_	ns

Data Retention Waveform

^{8.} No input may exceed V_{CC} + 0.5 V.
9. Tested initially and after any design or process changes that may affect these parameters. 10. $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 and slower speeds.

Switching Waveforms

Figure 1. Read Cycle No. 1 [11, 12]

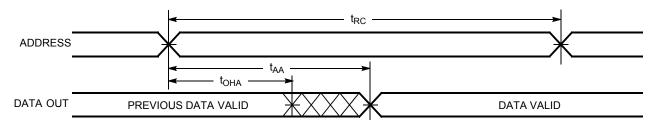
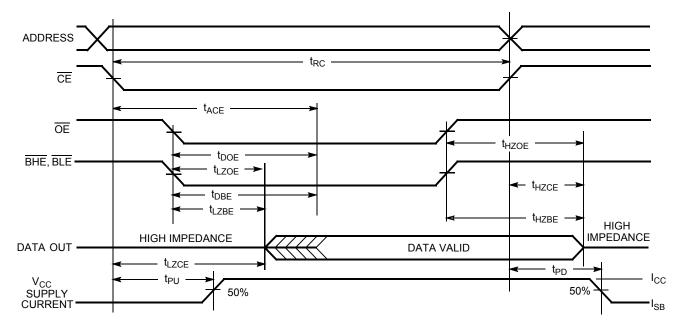



Figure 2. Read Cycle No. 2 ($\overline{\text{OE}}$ Controlled) [12, 13]

^{11. &}lt;u>De</u>vice is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u> and/or <u>BHE</u> = V_{IL}.

12. <u>WE</u> is HIGH for read cycle.

13. Address valid prior to or coincident with <u>CE</u> transition LOW.

Switching Waveforms(continued)

Figure 3. Write Cycle No. 1 (CE Controlled) [14, 15]

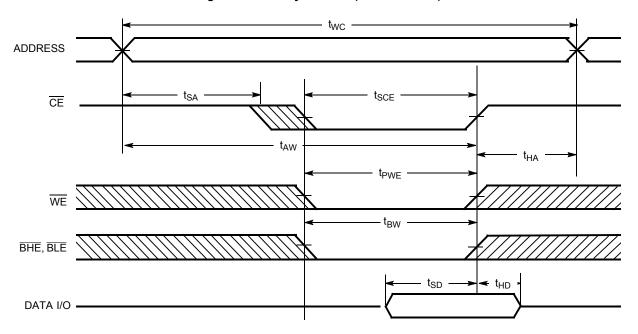
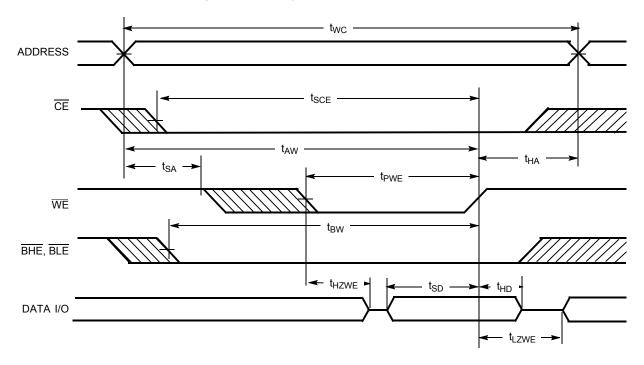



Figure 4. Write Cycle No. 2 (BLE or BHE Controlled)


^{14.} Data I/O is high impedance if OE or BHE and/or BLE = V_{IH}.

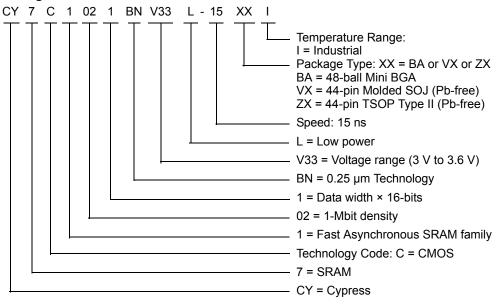
15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms(continued)

Figure 5. Write Cycle No. 2 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read - All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read - Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write - All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write - Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available. For a complete listing of all options, visit the Cypress website at http://www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (ns)	Ordering Code Package Diagram		Package Type	Operating Range
15	CY7C1021BNV33L-15BAI	51-85096	48-ball Mini BGA (7 mm × 7 mm)	Industrial
	CY7C1021BNV33L-15ZXI	51-85087	44-pin TSOP Type II (Pb-free)	

Ordering Code Definitions

Please contact local sales representative regarding availability of these parts.

Package Diagrams

Figure 6. 48-ball FBGA (7 mm × 7 mm × 1.2 mm) BA48 Package Outline, 51-85096

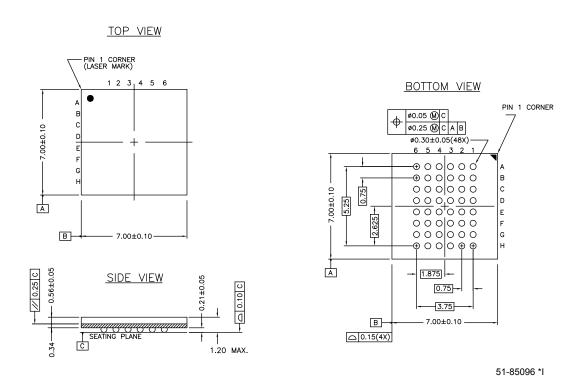
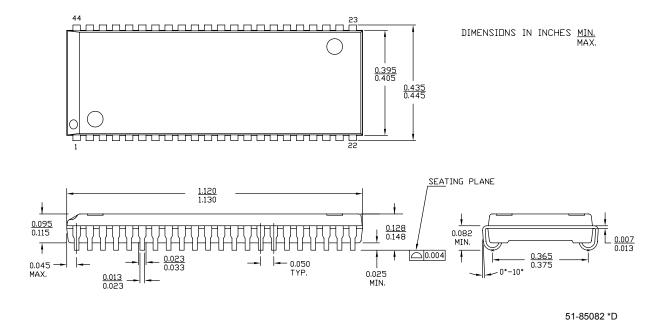
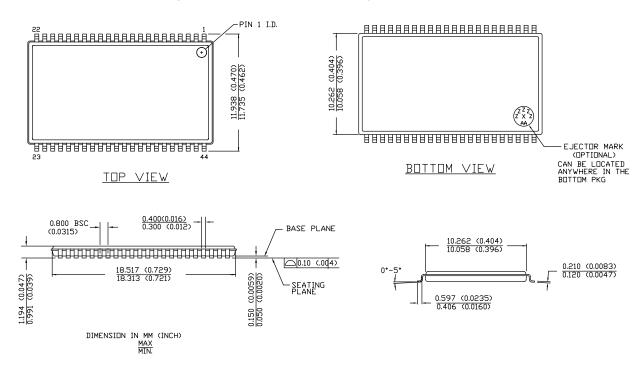



Figure 7. 44-pin SOJ (400 Mils) V44.4 Package Outline, 51-85082



Document #: 001-06433 Rev. *D

Package Diagrams(continued)

Figure 8. 44-pin TSOP Z44-II Package Outline, 51-85087

51-85087 *D

Acronyms

Acronym	Description
BGA	ball grid array
CE	chip enable
CMOS	complementary metal oxide semiconductor
FBGA	fine-pitch ball grid array
I/O	input/output
OE	output enable
SOJ	small outline J-lead
SRAM	static random access memory
TSOP	thin small-outline package
TTL	transistor-transistor logic
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μs	microsecond			
mA	milliampere			
mm	millimeter			
mW	milliwatt			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY7C1021BNV33, 64 K × 16 Static RAM Document Number: 001-06433					
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change	
**	423847	See ECN	NXR	New Data Sheet	
*A	2897061	03/22/10	AJU	Removed obsolete parts from ordering information table Updated package diagrams	
*B	3109897	12/14/2010	AJU	Added Ordering Code Definitions	
*C	3103073	03/08/2011	PRAS	Updated Package Diagrams. Added Acronyms and Units of Measure. Updated in new template.	
*D	3403051	10/12/2011	AJU	Updated Ordering Information (Removed prune part number CY7C1021BNV33L-15VXI). Updated Package Diagrams.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/plc

Memory cypress.com/go/memory

Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2006-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-06433 Rev. *D

Revised October 12, 2011

Page 17 of 17