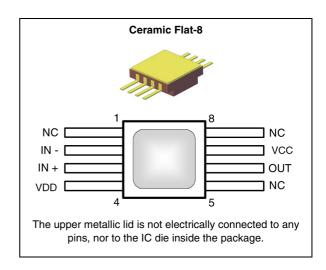


Rad-hard, precision, bipolar, single-operational amplifier


Datasheet - production data

Features

- High radiation immunity: 300 kRad TID at high/low dose rate (ELDRS-free), tested immunity of SEL /SEU at 125° C under 120 MeV/mg/cm² LET ions, 14 V supply
- Rail-to-rail output
- 8 MHz gain bandwidth at 16 V
- Low input offset voltage: 100 µV typ
- Supply current: 2.2 mA typOperating from 3 to 16 V
- Input bias current: 30 nA typ
- ESD internal protection ≥ 2 kV
- Latch-up immunity: 200 mA
- QMLV qualified, ELDRS-free

Applications

- Space probes and satellites
- Defense systems
- Scientific instrumentation
- Nuclear systems

Description

The RHF43B is a precision, bipolar operational amplifier available in a ceramic 8-pin flat package and in die form. In addition to its low offset voltage, rail-to-rail feature and wide supply voltage, the RHF43B is designed for increased tolerance to radiation. Its intrinsic ELDRS-free rad-hard design allows this product to be used in space applications and in applications operating in harsh environments.

Table 1. Device summary

Reference	SMD pin	Quality level	Package	Lead finish	Mass	EPPL ⁽¹⁾	Temp. range
RHF43BK1	-	Engineering model	Flat-8	Gold	0.50g	-	-55 °C to
RHF43BK-01V	5962F062371VXC	QML-V model	rial-o	Gold	0.50g	Yes	125 °C

^{1.} EPPL = ESA preferred part list

Note: Contact your ST sales office for information on the specific conditions for products in die form.

Contents RHF43B

Contents

6	Revision history
5	Ordering information15
	4.1 Ceramic Flat-8 package information
4	Package information
3	Achieving good stability at low gains
2	Electrical characteristics4
1	Absolute maximum ratings and operating conditions 3

1 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	18	V
V _{id}	Differential input voltage (2)	±1.2	V
V _{in}	Input voltage range ⁽³⁾	V _{DD} -0.3 to 16	V
I _{IN}	Input current	45	mA
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾⁽⁵⁾	125	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾⁽⁵⁾	40	°C/W
Tj	Maximum junction temperature	150	°C
ESD	HBM: human body model ⁽⁶⁾	2	kV
	Latch-up immunity	200	mA
	Lead temperature (soldering, 10 sec)	260	°C
Radiation r	elated parameters		
Dose	Low dose rate of 0.01 rad.sec ⁻¹ (up to Vcc = 16 V)	300	kRad
Dose	High dose rate of 50-300 rad.sec ⁻¹ (up to Vcc = 16 V)	300	kRad
НІ	Heavy ion latch-up (SEL) immune with heavy ions (up to Vcc = 14 V)	s 120 MeV.cm ²	

- 1. The supply voltage is defined as the difference between the voltages applied on the V_{CC} and V_{DD} pins.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of input and output terminal must never exceed V_{CC} + 0.3 V.
- 4. Short-circuits can cause excessive heating and destructive dissipation.
- 5. R_{th} are typical values.
- 6. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 16	V
V _{icm}	Common mode input voltage range	V _{DD} to V _{CC}	V
T _{oper}	Operating free air temperature range	-55 to +125	°C

2 Electrical characteristics

Table 4. 16 V supply: $V_{CC} = +16 \text{ V}$, $V_{DD} = 0 \text{ V}$, load to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Test conditions	Ambient temp.	Min.	Тур.	Max.	Unit
DC perfor	mance						
			+125°C			2.9	
I _{CC}	Supply current	No load	+25°C		2.5	2.9	mA
			-55°C			2.9	
			+125°C	-500		500	
V_{io}	Offset voltage	$V_{icm} = V_{CC}/2$	+25°C	-300	100	300	μV
			-55°C	-500		500	
DV _{io}	Input offset voltage drift		-		1		μV/°C
			+125°C	-100		100	
I _{ib} I	Input bias current	$V_{icm} = V_{CC}/2$	+25°C	-60	30	60	nA
			-55°C	-100		100	
DI _{ib}	Input offset current temperature drift	V _{icm} = V _{CC} /2	-		100		pA/°C
	Input offset current	V _{icm} = V _{CC} /2	+125°C	-35		35	nA
l _{io}			+25°C	-15	1	15	
			-55°C	-35		35	
В	Differential input resistance between in+ and in-		+25°C		0.16		MΩ
R _{in}	Input resistance between in+ (or in-) and GND		+25°C		2000		IVISZ
	Differential input capacitance between in+ and in-		+25°C		8		5 F
C _{in}	Input capacitance between in+ (or in-) and GND		+25°C		2		pF
			+125°C	72			
CMR	Common mode rejection ratio	0 < V _{icm} < 16 V	+25°C	72	110		dB
			-55°C	72			
		0.1/ 1/ 10.1/	+125°C	80			
SVR	Supply rejection ratio	$3 \text{ V} < \text{V}_{CC} < 16 \text{ V}$ $\text{V}_{icm} = \text{V}_{CC}/2$	+25°C	90	120		dB
		ioni oo –	-55°C	80			
		V _{out} = 0.5 V to 15.5 V	+125°C	60			dB
A $_{ m VD}$	Large signal voltage gain	$R_L = 1 k\Omega$	+25°C	74	85		
		0 < V _{icm} < 16 V	-55°C	60			

Table 4. 16 V supply: $V_{CC} = +16 \text{ V}$, $V_{DD} = 0 \text{ V}$, load to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Test conditions	Ambient temp.	Min.	Тур.	Max.	Unit
			+125°C	15.6			
		$R_L = 1 k\Omega$	+25°C	15.7	15.8		
			-55°C	15.6			.,,
V _{OH}	High level output voltage		+125°C	15.8			V
		$R_L = 10 \text{ k}\Omega$	+25°C	15.9	15.96		
			-55°C	15.8			
			+125°C			0.3	
		$R_L = 1 \text{ k}\Omega$	+25°C		0.1	0.2	
\ /	Laurelaurelaurelaure		-55°C			0.3	\ /
V _{OL}	Low level output voltage		+125°C			0.1	V
		$R_L = 10 \text{ k}\Omega$	+25°C		0.04	0.06	
			-55°C			0.1	
	Output sink current	$V_{out} = V_{CC}$	+125°C	15			mA
			+25°C	20	30		
			-55°C	15			
l _{out}	Output source current	$V_{out} = V_{CC}$	+125°C	10			
			+25°C	15	25		
			-55°C	10			
AC perfor	mance				·		
			+125°C	3.5			
GBP	Gain bandwidth product	F = 100 kHz $R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	+25°C	6	8		MHz
			-55°C	3.5			
F _u	Unity gain frequency	R_L = 1 kΩ, C_L = 100 pF	+25°C		5		MHz
φm	Phase margin	Gain = +5 R_L = 1 k Ω , C_L = 100 pF	+25°C		50		Degrees
			+125°C	1.7			
SR	Slew rate	R_L = 1 kΩ, C_L = 100 pF	+25°C	2	3		V/μs
			-55°C	1.7			-
e _n	Equivalent input noise voltage	F = 1 kHz	+25°C		7.5		<u>nV</u> √Hz
i _n	Equivalent input noise current	F = 1 kHz	+25°C		1		<u>pA</u> √Hz
THD+e _n	Total harmonic distortion	$\begin{aligned} V_{out} &= (V_{CC}\text{-}1 \text{ V})/5\\ Gain &= -5.1\\ V_{icm} &= V_{CC}/2 \end{aligned}$	+25°C		0.01		%

Table 5. 3 V supply: $V_{CC} = + 3 V$, $V_{DD} = 0$, load to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Test conditions	Ambient temp.	Min.	Тур.	Max.	Unit
DC perfor	mance						
			+125°C			2.6	
I_{CC}	Supply current	No load	+25°C		2.2	2.6	mA
			-55°C			2.6	
			+125°C	-500		500	
V_{io}	Offset voltage		+25°C	-300	100	300	μV
			-55°C	-500		500	
DV_io	Input offset voltage drift		1		1		μV/°C
			+125°C	-100		100	
I_{ib}	Input bias current	$V_{CC} = +4 V$ $V_{icm} = V_{CC}/2$	+25°C	-60	30	60	nA
		- iciii - CO-	-55°C	-100		100	
DI _{ib}	Input offset current temperature drift	$V_{CC} = +4 V$ $V_{icm} = V_{CC}/2$	-		100		pA/°C
	Input offset current	$V_{CC} = +4 V$ $V_{icm} = V_{CC}/2$	+125°C	-35		35	nA
l _{io}			+25°C	-15	1	15	
		- iciii - CO-	-55°C	-35		35	
Ь	Differential input resistance between in+ and in-		+25°C		0.16		MΩ
R _{in}	Input resistance between in+ (or in-) and GND		+25°C		2000		IVISZ
C	Differential input capacitance between in+ and in-		+25°C		8		pF
C _{in}	Input capacitance between in+ (or in-) and GND		+25°C		2		рг
			+125°C	72			
CMR	Common mode rejection ratio	0 < V _{icm} < 3 V	+25°C	72	90		dB
			-55°C	72			
		V _{out} = 0.5 V to 2.5 V	+125°C	60			dB
A $_{ m VD}$	Large signal voltage gain	$R_L = 1 k\Omega$	+25°C	74	85		
		0 < V _{icm} < 3 V	-55°C	60			

Table 5. 3 V supply: $V_{CC} = + 3 \text{ V}$, $V_{DD} = 0$, load to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter Parameter	Test conditions	Ambient temp.	Min.	Тур.	Max.	Unit
			+125°C	2.8			
		$R_L = 1 k\Omega$	+25°C	2.9	2.95		
.,			-55°C	2.8			.,
V _{OH}	High level output voltage		+125°C	2.9			V
		$R_L = 10 \text{ k}\Omega$	+25°C	2.94	2.98		
			-55°C	2.9			
			+125°C			0.2	
		$R_L = 1 \text{ k}\Omega$	+25°C		0.05	0.1	
V	Low lovel output voltage		-55°C			0.2	V
V_{OL}	Low level output voltage		+125°C			0.1	V
		$R_L = 10 \text{ k}\Omega$	+25°C		0.02	0.06	
			-55°C			0.1	
	Output sink current		+125°C	15			mA
		$V_{out} = V_{CC}$	+25°C	20	30		
			-55°C	15			
I _{out}	Output source current	V _{out} = V _{CC}	+125°C	10			
			+25°C	15	25		
			-55°C	10			
AC perfor	mance						
		E 400 111	+125°C	3.5			
GBP	Gain bandwidth product	F = 100 kHz $R_I = 1 \text{ k}Ω$, $C_I = 100 \text{ pF}$	+25°C	6	7.5		MHz
			-55°C	3.5			
F _u	Unity gain frequency	R_L = 1 kΩ, C_L = 100 pF	+25°C		5		MHz
φm	Phase margin	Gain = +5 R_L = 1 k Ω C_L = 100 pF	+25°C		50		Degrees
			+125°C	1.7			
SR	Slew rate	R_L = 1 kΩ, C_L = 100 pF	+25°C	2	2.7		V/μs
			-55°C	1.7			
e _n	Equivalent input noise voltage	F = 1 kHz	+25°C		7		<u>nV</u> √Hz
i _n	Equivalent input noise current	F = 1 kHz	+25°C		0.8		<u>pA</u> √Hz
THD+e _n	Total harmonic distortion	$\begin{aligned} V_{out} &= (V_{CC}\text{-}1 \text{ V})/5\\ \text{Gain} &= \text{-}5.1\\ V_{icm} &= V_{CC}/2 \end{aligned}$	+25°C		0.01		%

Figure 1. Input offset voltage distribution

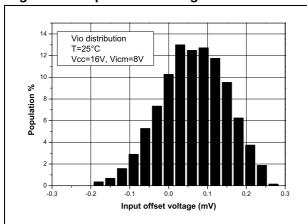


Figure 2. Input bias current vs. supply voltage

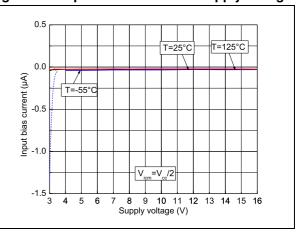


Figure 3. Input bias current vs. Vicm at $V_{CC} = 3 \text{ V}$

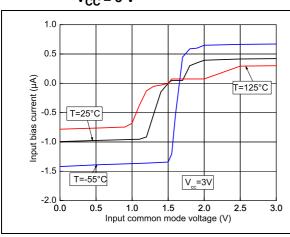


Figure 4. Input bias current vs. Vicm at $V_{CC} = 4 \text{ V}$

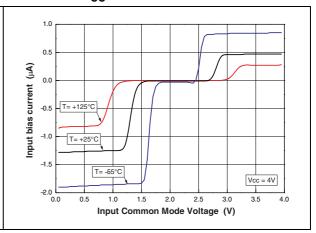


Figure 5. Input bias current vs. Vicm at $V_{CC} = 16 \text{ V}$

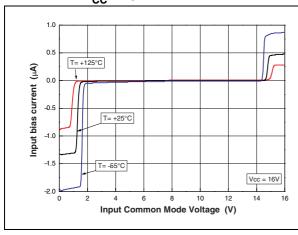
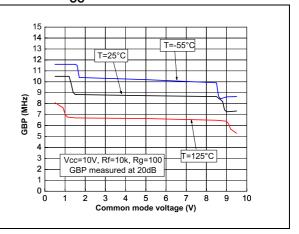



Figure 6. Gain bandwidth product vs. Vicm at $V_{CC} = 10 \text{ V}$

8/17 Doc ID 13477 Rev 9

configuration at V_{CC} = 16 V configuration at V_{CC} = 3 V 4.5 4.5 4.0 4.0 3.5 3.5 Contract (mA) 2.5 2.0 Supply Current (mA) 2.0 1.5 1.0 T=25°C T=25°C Supply T=-55°C T=125°C T=-55°C T=125°C 1.0 1.0 Follower configuration Follower configuration Vcc=16V Vcc=3V 0.5 0.5 0.0 L 1 2 Input Common Mode Voltage (V) 0.0 L 10 Input Common Mode Voltage (V)

Figure 7. Supply current vs. Vicm in follower Figure 8. Supply current vs. Vicm in follower configuration at $V_{CC} = 3 \text{ V}$ Supply current vs. Vicm in follower configuration at $V_{CC} = 16 \text{ V}$

Figure 9. Supply current vs. supply voltage Figure 10. Output current vs. supply voltage at at $V_{icm} = V_{CC}/2$

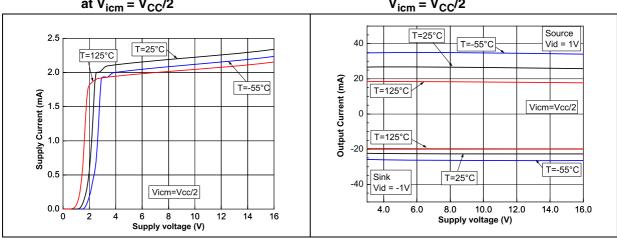


Figure 11. Output current vs. output voltage at Figure 12. Output current vs. output voltage at V_{CC} = 3 V V_{CC} = 16 V

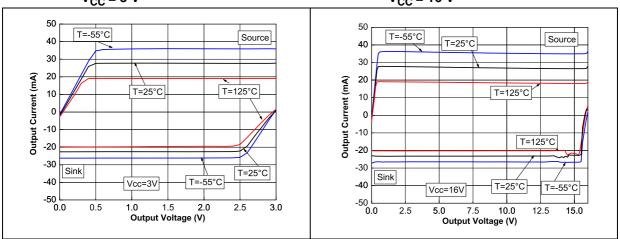


Figure 13. Differential input voltage vs. output Figure 14. Differential input voltage vs. output voltage at $V_{CC} = 3 \text{ V}$ Differential input voltage vs. output voltage at $V_{CC} = 16 \text{ V}$

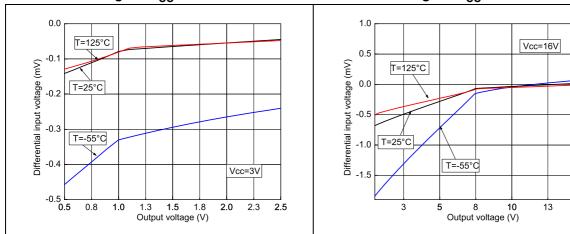
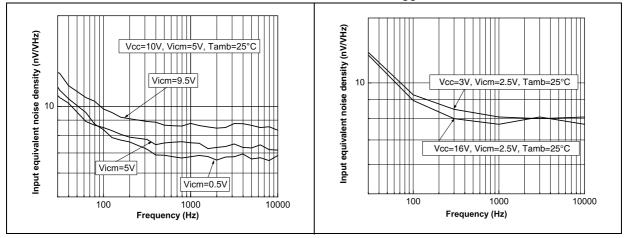



Figure 15. Noise vs. Vicm at V_{CC}= 10 V

Figure 16. Noise vs. frequency at V_{CC} = 3 V and V_{CC} = 16 V

15

150

120

90

60

30

0

-30

-60

-90

-120

-150

-180

107

Phase

Figure 17. Voltage gain and phase vs. frequency at V_{icm} = 1.5 V and V_{cc} = 3 V

Vcc=3V, Vicm=1.5V, G= -100

10⁵

RI=1kOhms, CI=100pF, VrI=Vcc/2 Tamb=25°C

10⁶

Frequency (Hz)

50

40

30

20

10

0

-10

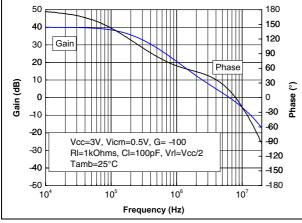
-20

-30

-40

10⁴

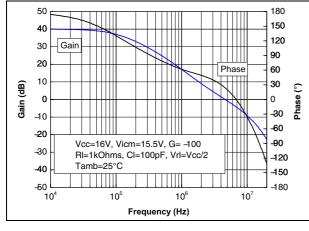
Gain


Gain

 $V_{cc} = 3 V$ 50 150 40 120 Gain 30 90 20 60 Phase 10 30 Gain (dB) Phase (°) Phase (°) 0 0 -30 **-1**0 -60 -20 Vcc=3V, Vicm=2.5V, G= -100 -90 -30 RI=1kOhms, CI=100pF, VrI=Vcc/2 -120 Tamb=25°C -150 -180 10⁴ 10⁵ 10⁶ 10⁷ Frequency (Hz)

Figure 18. Voltage gain and phase vs. frequency at $V_{icm} = 2.5 \text{ V}$ and $V_{cc} = 3 \text{ V}$

Figure 19. Voltage gain and phase vs. frequency at V_{icm} = 0.5 V and V_{cc} = 3 V


Figure 20. Voltage gain and phase vs. frequency at V_{icm} = 8 V and V_{cc} = 16 V

180 150 40 120 Gain 30 90 20 Phase 60 10 30 **a**B 0 Gain -30 -10 -60 -20 Vcc=16V, Vicm=0.5V, G= -100 -90 -30 RI=1kOhms, CI=100pF, VrI=Vcc/2 -120 Tamb=25°C -40 -150 -180 -50 10⁴ 10⁷ Frequency (Hz)

Figure 21. Voltage gain and phase vs. frequency at V_{icm} = 15.5 V and V_{cc} = 16 V

Figure 22. Voltage gain and phase vs. frequency at V_{icm} = 0.5 V and V_{cc} = 16 V

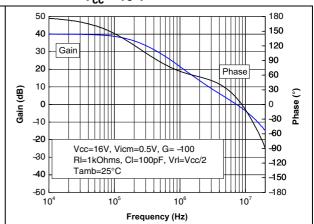
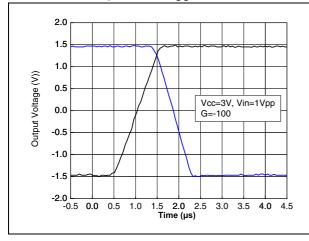
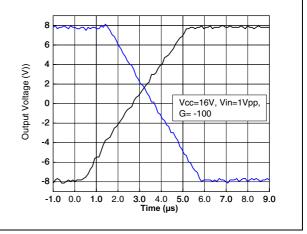
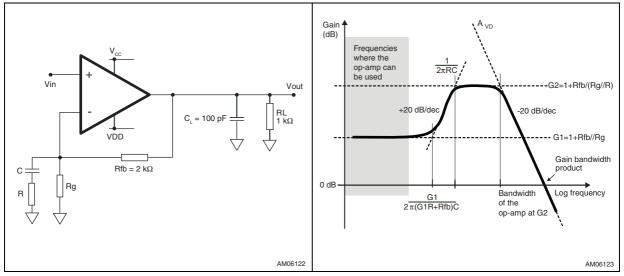




Figure 23. Inverting large signal pulse response at $V_{CC} = 3 \text{ V}$, +25°C

Figure 24. Inverting large signal pulse response at $V_{CC} = 16 \text{ V}$, +25°C



3 Achieving good stability at low gains

At low frequencies, the RHF43B can be used in a low gain configuration as shown in *Figure 25*. At lower frequencies, the stability is not affected by the value of the gain, which can be set close to 1 V/V (0 dB), and is reduced to its simplest expression G1 = 1+Rfb/Rg. Therefore, an R-C cell is added in the gain network so that the gain is increased (up to 5) at higher frequencies (where the stability of the amplifier could be affected). At higher frequencies, the gain becomes G2=1+Rfb/(Rg//R).

Figure 25. Low gain configuration

Figure 26. Closed-loop gain

Rg becomes a complex impedance. The closed-loop gain features a variation in frequency and can be expressed as:

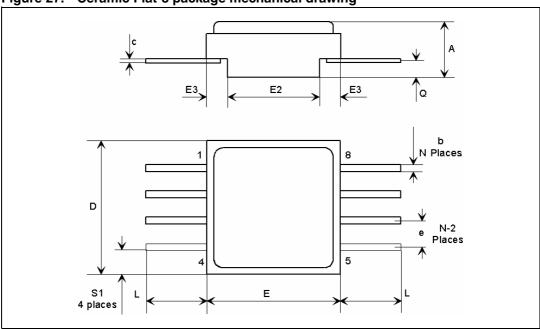
$$Gain = G1 \frac{1 + jC\omega \times \left(\frac{G1R + Rfb}{G1}\right)}{1 + jCR\omega}$$

where a pole appears at $1/2\pi RC$ and a zero at $G1/2\pi (G1R+Rfb)C$. The frequency can be plotted as shown in *Figure 26*.

Table 6. External components versus low-frequency gain

G1 (V/V)	R (Ω)	C (nF)	Rg (Ω)	Rfb (Ω)
1.1	510	1	20k	2k
2	510	1	2k	2k
3	510	1	1k	2k
4	510	1	750	2.4k
5	Not connected	Not connected	820	3.3k

RHF43B Package information


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Package information RHF43B

4.1 Ceramic Flat-8 package information

Figure 27. Ceramic Flat-8 package mechanical drawing

Note:

The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting unused pins or metal lid to ground or to the power supply will not affect the electrical characteristics.

Table 7. Ceramic Flat-8 package mechanical data

Table 1.	Ceramic Flat-6 package mechanical data								
	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	2.24	2.44	2.64	0.088	0.096	0.104			
b	0.38	0.43	0.48	0.015	0.017	0.019			
С	0.10	0.13	0.16	0.004	0.005	0.006			
D	6.35	6.48	6.61	0.250	0.255	0.260			
Е	6.35	6.48	6.61	0.250	0.255	0.260			
E2	4.32	4.45	4.58	0.170	0.175	0.180			
E3	0.88	1.01	1.14	0.035	0.040	0.045			
е		1.27			0.050				
L	6.51		7.38	0.256		0.291			
Q	0.66	0.79	0.92	0.026	0.031	0.092			
S1	0.92	1.12	1.32	0.036	0.044	0.052			
N		08			08				

5 Ordering information

Table 8. Order codes

Order code	Description	Temp. range	Package	Marking	Packing
RHF43BK1	Engineering model			RHF43BK1	Conductive
RHF43BK-01V	QML-V model	-55 °C to 125 °C	Flat-8	5962F06237 01VXC	strip pack

Note:

Contact your ST sales office for information regarding the specific conditions for products in die form and QML-Q versions.

Revision history RHF43B

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
21-May-2007	1	First public release.
10-Dec-2007	2	Changed name of pins on pinout diagram on cover page. Modified supply current values over temperature range in electrical characteristics. Power dissipation removed from AMR table.
29-Jan-2008	3	Added ELRS-free rad-hard design in description on cover page. Modified description of heavy ion latch-up (SEL) immunity parameter in <i>Table 2 on page 3</i> .
11-May-2009	4	Updated radiation immunity in <i>Features on page 1</i> and in <i>Table 2 on page 3</i> . Updated smb reference in <i>Features on page 1</i> .
15-Oct-2009	5	Updated test conditions for Avd vs. Vicm in <i>Table 4 on page 4</i> and <i>Table 5 on page 6</i> . Updated input current and voltage noise in <i>Table 4</i> . Updated order codes in <i>Table 8 on page 15</i> .
30-Mar-2010	6	Added <i>Figure 4</i> and <i>Figure 5</i> . Added information for ambient temperature in <i>Table 4</i> and <i>Table 5</i> . Added <i>Chapter 3</i> .
20-Aug-2010	7	Corrected "L" dimension in <i>Table 7</i> .
27-Jul-2011	8	Added <i>Note: on page 14</i> and in the "Pin connections" diagram on the coverpage.
08-Nov-2012	9	Features: added silhouette Added Table 1: Device summary Table 2: removed ±9 from "Supply voltage"; updated footnote 1. Added Figure 6 and Figure 15 Figure 17 through to Figure 22: modified titles Table 8: Order codes: updated table and removed order code RHF43BK-01V.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

