

Bt8960
Software Users Guide

100251B
September 2000

100251B Conexant
Preliminary Information/Conexant Proprietary and Confidential

© 1996, 2000, Conexant Systems, Inc.
All Rights Reserved.

Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are
provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no
responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at
any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING
TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE
ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE
OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages
resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in Communications
Technologies”™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of
third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com, which is
incorporated by reference.

Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and
suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications
engineer.

http://www.conexant.com
mailto:tech.pubs@conexant.com

Table of Contents

List of Figures . ix

List of Tables . xi

1.0 Introduction . 1-1

1.1 How to Use this Manual . 1-3

1.2 Contents of this Manual . 1-4

2.0 Overview . 2-1

2.1 Software Structure and Operation . 2-1

2.2 Portability . 2-2

2.3 Integration with Application-Specific Software . 2-2

2.4 Software Interfacing with the Bt8960. 2-3

3.0 Software Application. 3-1

3.1 System Configuration . 3-1

3.2 Setting Bit-Pump Parameters . 3-2

3.3 Activation . 3-3

3.4 Test Modes . 3-5

3.5 Internal BER Meter Operation . 3-7
3.5.1 Calculating Avg BER and Elapsed Time . 3-7

4.0 Software Structure. 4-1

4.1 Software Block Diagram . 4-1

4.2 User-Called Routines . 4-3

4.3 Memory Requirements . 4-4

5.0 Compiling the Source Code. 5-1

5.1 Directory Structure . 5-1

5.2 File Names and Dependencies . 5-2
5.2.1 Compilation Directives . 5-3
5.2.2 Code Modifications . 5-5
100251B Conexant iii
Preliminary Information/Conexant Proprietary and Confidential

 Bt8960

 Software User’s Guide

6.0 User Interface . 6-1

6.1 Command Structure . 6-3

6.2 Serial Communication Interface . 6-5
6.2.1 Communication Protocol . 6-5
6.2.2 Message Transfer Protocol . 6-5
6.2.3 Message Structure . 6-6
6.2.4 Checksum Function . 6-7

6.3 Code Level Interface (API) . 6-8
6.3.1 _BtControl(). 6-8
6.3.2 _BtStatus() . 6-9
6.3.3 User Defined API Commands - Channel Unit & Framer . 6-9

6.4 Opcodes and Parameters . 6-11

Appendix A Command Set Reference. A-1

A.1 Control Commands . A-1
A.1.1 Terminal Type. A-1
A.1.2 Analog AGC Configuration . A-2
A.1.3 Start-up Sequence Source . A-3
A.1.4 Transmit Scrambler . A-4
A.1.5 Receive Descrambler . A-5
A.1.6 Data Transfer Format . A-6
A.1.7 Other Side Bt8960 . A-7
A.1.8 LOST Time Period . A-7
A.1.9 Bit-pump ON/OFF . A-8
A.1.10 Transmit External Data . A-8
A.1.11 Activate . A-9
A.1.12 Deactivate . A-9
A.1.13 Test Mode . A-10
A.1.14 Symbol Rate . A-12
A.1.15 Reset. A-12
A.1.16 Operate Non-Linear EC . A-13
A.1.17 Write Transmitter Gain . A-13
A.1.18 Tip/Ring Reversal . A-14
A.1.19 BER Meter Start . A-14
A.1.20 BER Meter Stop . A-15
iv Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960

Software User’s Guide

A.2 Status Request Commands . A-16
A.2.1 Input Signal Level . A-16
A.2.2 Input DC Offset . A-16
A.2.3 Far-End Signal Attenuation . A-17
A.2.4 Noise Margin . A-18
A.2.5 Timing Recovery Control . A-18
A.2.6 Bit-Pump Status. A-19
A.2.7 Read Linear Echo Canceler Coefficient . A-20
A.2.8 Read Non-Linear Echo Canceler Coefficient . A-21
A.2.9 Read EQ Coefficient . A-21
A.2.10 Read DFE Coefficient . A-22
A.2.11 Software/Chip Version . A-23
A.2.12 Bit-pump Present . A-24
A.2.13 Self Test. A-24
A.2.14 Read Bt8960 Register. A-25
A.2.15 Bit-pump Configuration . A-25
A.2.16 Stage Number . A-26
A.2.17 AAGC Value . A-27
A.2.18 Read Tx Gain . A-27
A.2.19 BER Meter Status . A-28

A.3 Special Messages . A-29
A.3.1 Acknowledge . A-29

Appendix B Calibrating Noise Margin Table . B-1

B.1 Introduction . B-1
B.1.1 Setup. B-1
B.1.2 Noise Margin Table Calibration . B-1

Appendix C ERLE Diagnostic Code . C-1

C.1 Introduction . C-1

C.2 What is ERLE? . C-1

C.3 ERLE Files . C-2
C.3.1 _ERLE() . C-2
C.3.2 _MeasureAagc(). C-2

C.4 Invoking the Tests . C-3
C.4.1 Background Test . C-3
C.4.2 ERLE and Analog ERLE Test . C-3
C.4.3 AAGC Check. C-3

C.5 Compiling the ERLE Code . C-3
C.5.1 TDEBUG Compiler Flag. C-3
100251B Conexant v
Preliminary Information/Conexant Proprietary and Confidential

 Bt8960

 Software User’s Guide

Appendix D Release Notes . D-1

D.1 Memory Requirements . D-1
D.1.1 Bug Fixes. D-2
D.1.2 Support new Bt8960 Rev C. D-2
D.1.3 Improved Performance. D-3
D.1.4 New / Modified Features . D-3
D.1.5 New API Commands . D-4
D.1.6 Internal BER Meter Operation . D-6
D.1.7 BER Meter Bit-pump Code Implementation . D-8

D.2 Bt8960 Bit-pump Version 1.1, Release Notes—September 2, 1996 . D-9
D.2.1 PLL Modes CLK_FREQ Bits were Incorrect . D-9
D.2.2 Added ERLE Support . D-9
D.2.3 Bt8960EVM Single Board Support . D-9

Appendix E Version 1.1 Release Notes . E-1

E.1 PLL Modes CLK_FREQ Bits were Incorrect . E-1

E.2 Added ERLE Support . E-2

E.3 Bt8960EVM Single Board Support . E-2
E.3.1 USER.C - Different Bit-pump Address Mapping . E-2
E.3.2 SCRIPT.BLD - XDATA Mapping . E-2
E.3.3 Application Code . E-2
vi Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960

Software User’s Guide

100251B Conexant vii
Preliminary Information/Conexant Proprietary and Confidential

 Bt8960

 Software User’s Guide

viii Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 List of Figures

Software User’s Guide

List of Figures

Figure 3-1. Example. 3-8
Figure 4-1. Bt8960 Software Modules . 4-1
Figure 5-1. User-Modifiable Code Section Format . 5-5
Figure 6-1. Two Microprocessors Implementation . 6-1
Figure 6-2. Single Microprocessor Implementation. 6-2
Figure 6-3. Command Structure . 6-3
Figure 6-4. Host Processor to 8032 Message Structure . 6-6
Figure 6-5. 8032 to Host Processor Message Structure . 6-7
Figure D-1. Example. D-7
100251B Conexant ix
Preliminary Information/Conexant Proprietary and Confidential

 List of Figures Bt8960

 Software User’s Guide

x Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 List of Tables

Software User’s Guide

List of Tables

Table 3-1. User Configurable Parameters and their Default Values . 3-2
Table 3-2. Start-up Status Parameters. 3-4
Table 3-3. Additional Status Parameters . 3-4
Table 3-4. Bt8960 Test Modes . 3-5
Table 3-5. Analog Loopback vs. Version Relationships. 3-6
Table 4-1. Bt8960 Software Routines . 4-3
Table 4-2. Memory Requirements . 4-4
Table 5-1. Source File Names and Dependencies. 5-2
Table 6-1. Destination Field Specification . 6-3
Table 6-2. Destination Field Values . 6-10
Table 6-3. User Interface Command Summary . 6-11
Table A-1. Bt8960 AGAIN Settings . A-3
Table A-2. Exiting Test Modes . A-10
Table A-3. Status Bits. A-20
Table A-4. Low Application Setup Byte. A-26
Table A-5. High Application Setup Byte . A-26
Table D-1. RAM and ROM Requirements . D-1
Table D-2. Version Relationships . D-3
100251B Conexant xi
Preliminary Information/Conexant Proprietary and Confidential

 List of Tables Bt8960

 Software User’s Guide

xii Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
Pre
1

1.0 Introduction

The Bt8960 Single Chip 2B1Q Transceiver (also referred to as bit-pump) chip is
designed to be controlled by an external microprocessor. The microprocessor sets
and controls all Bt8960 internal operation modes during activation, monitors the
bit-pump’s performance during normal operation, and implements steady-state
activities such as micro-interruptions recovery.

A single processor may control up to six bit-pump chips. The Bt8960 software
implements all the necessary bit-pump control and monitoring operations,
including activation process, performance monitoring, and test modes. This
software package is an integral part of the Bt8960 bit-pump, and must be used
without any significant changes in order to guarantee correct operation and
optimal bit-pump performance.

The software is supplied in both C source code format and Intel 8032 object
code format. The object code software may be used in a system employing Intel’s
8032 controller to control the Bt8960 chip, or in a specific hardware configuration
which employs a second “host” processor that runs the user code and
communicates with the 8032 through the serial communication channel (similar to
Brooktree’s HDSL EVM system). Such a design will require no user code
modifications.

If a non-8032 processor is used, or if an 8032-based system implements
different hardware design, the C source code version should be compiled together
with necessary modifications for the target processor of choice.

A major design goal for the Bt8960 software is portability and ease of
conversion for different hardware and compiler environments. However, this
cannot completely eliminate the need to “tune” the software for specific
implementations because of the hardware-dependent nature of the code. This
manual includes detailed instructions to allow for modification of this code.

All application interactions with the Bt8960 are done via a user interface
protocol, which is implemented either at the code level (for applications
integrating the software in a “single processor” configuration) or by using a serial
communication channel (for systems employing an 8032 controller and an
additional host processor in a “dual processor” configuration).

The Bt8960 software is conceptually broken up into two sections of code:
Application Code and Bit-pump Code.

The application code section is inevitably the responsibility of the end user.
Brooktree offers a complete evaluation system (EVM) which implements an
example of this application code. To obtain the evaluation system, contact your
local sales representative.
Conexant 1-1
liminary Information/Conexant Proprietary and Confidential

1.0 Introduction Bt8960

 Software User’s Guide

The Bt8960 bit-pump software handles the complete activation process without any need for
application intervention. All bit-pumps may go through activation in parallel, with practically no
degradation of activation time.

The user interface allows access to all parameter status required to implement an HDSL system,
including noise margin, pulse attenuation, loss of signal (LOS), etc.

Although no DSP tasks are performed by the control software, some sections of the code
involve real-time operations, especially during activation. Applications that integrate the Bt8960
software should take this into account and follow the software integration instructions.
1-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 1.0 Introduction

Software User’s Guide 1.1 How to Use this Manual

1.1 How to Use this Manual

This manual contains all the necessary information required to successfully modify, compile, and
use the Bt8960 software. It is highly recommended that this manual is read prior to writing
application code for the Bt8960.

The chapters “Software Structure” through “Software Integration” are particularly important
for those using the source code version of the software to integrate the code with their own software.
Use the “Compiling the Source Code” chapter when modifying and compiling the source code.
Refer to the “Software Integration” chapter when integrating the application software with the
Bt8960 code.

The Bt8960 is controlled using the software user interface. Use the detailed information given
in the “User Interface” chapter when writing the Bt8960 application software. Appendix A serves as
a reference to the control and status command set.

The “Software Application” chapter contains information on how to use the Bt8960 software
and User Interface command set in a transceiver application. It outlines the required initialization
and parameter setting sequence, accompanied by examples of a typical application.
100251B Conexant 1-3
Preliminary Information/Conexant Proprietary and Confidential

1.0 Introduction Bt8960

1.2 Contents of this Manual Software User’s Guide

1.2 Contents of this Manual

Chapter Contents

Overview Overview of the software design principles, portability considerations, hardware-related issues,
application interface principles, and application code integration constraints.

Software Structure Description of the code structure, main routines, file names, and reserved names.

Software Operation Software operation principles, including the application interface and activation code sections.

Compiling the Source
Code

Explains how to modify and compile the C source code to match the application hardware/software
environment.

Software Integration Explains how to integrate the application software with the Bt8960 software.

User Interface Details of the User Interface operation, command structure, and status responses.

Software Application How to use the Bt8960 software and user interface in an HDSL transceiver application.

Command Set
Reference

Lists control and status request commands, including opcodes, parameter values, etc.
1-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
2

2.0 Overview

2.1 Software Structure and Operation

The Bt8960 software is responsible for handling and monitoring the activation and normal
operation activities of up to six Bt8960 HDSL bit-pumps.

The Bt8960 software includes the following five major functional blocks:

1. Application—Contains the application specific code to initialize the system and to control
any system level tasks.

2. BtMain—Activates the bit-pump control process for each of the Bt8960 chips present in the
system. It also calls routines that handle messages received on the serial communication
channel.

3. Bt8960 Control—The principal bit-pump control routine. The Control routine goes through
a series of states that implement the various activation and normal operation activities.
Every call to the Control routine executes the operations relating to a specific state, and the
state variable is advanced to the next state. The same routine is used for all active bit-pump
chips, only the state variable being bit-pump specific.

4. User Interface—Receives and executes user commands, and sending back status
information. The interface is implemented either at the code level, called the
Application-Program Interface (API) (when an application is integrated with the Bt8960
software) or via a serial communication protocol. In both control options, the interface is
based on a set of commands issued and parameter status returned.

5. Interrupt Handler—This routine is entered every time one of the Bt8960 chips initiates an
interrupt. Most interrupts are handled by setting appropriate software flags.
Conexant 2-1
Preliminary Information/Conexant Proprietary and Confidential

2.0 Overview Bt8960

2.2 Portability Software User’s Guide

2.2 Portability

The Bt8960 software is designed with code portability as a major goal. This approach creates a C
code that can be easily modified to match different hardware and software environments.

The code itself has hardware-related parameters which must be defined. For example, the
absolute address space allocated to each of the Bt8960 chips depends on the specific hardware
design and address decoding details.

Another example of a hardware/software-dependent code section is the definition of the Bt8960
interrupt handling routine. The routine itself is part of the supplied software (and should not be
modified) but the routine header definition and notation is both processor and compiler dependent.
These examples demonstrate the kind of modifications required in the source code in order to
successfully compile and run the Bt8960 software.

The “Compiling the Source Code” chapter describes all of the required modifications. In
addition, these modifications are clearly marked and commented in the source files.

2.3 Integration with Application-Specific Software

The Bt8960 software controls and sequences all the activation operations which include real time
operations. In a system where the Bt8960 software shares processing resources with the user’s
application software, care must be taken to not impair bit-pump performance. Guidelines to handle
real-time operations within applications are described and explained in detail in the “Software
Integration” chapter of this manual.
2-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 2.0 Overview

Software User’s Guide 2.4 Software Interfacing with the Bt8960

2.4 Software Interfacing with the Bt8960

Since all bit-pump operations (activation, performance monitoring, etc.) are handled by the Bt8960
software, all user interaction with the bit-pumps is done through the Bt8960 software and not by
directly accessing the Bt8960 chip. In some cases, performing a read/write operation can impair the
proper operation of the control software.

The Bt8960 software contains a User Interface (UI) module that allows full control over the
operation of the bit-pumps and performance monitoring. The UI is based on a set of issued
commands, and the Bt8960 software responds by performing the required action or supplying the
required status. When used in the single processor configuration, it is highly recommended that the
API and UI be used to ensure easy integration with code updates.

There are two configurations for transferring commands and parameter status between an
application and the Bt8960 software. In a single processor design, the interface is done using two
API (Application-Program Interface) routines that are part of the Bt8960 software. The application
issues commands and receives status by calling these routines.

In a dual processor design, the Bt8960 bit-pumps are controlled by an 8032 processor and the
application interfaces to the bit-pumps through the serial communication (UART) channel. In this
configuration, the commands and status are sent as messages over the serial channel.

Both configurations use exactly the same set of commands. This command set is designed for
maximum flexibility in operating the bit-pumps, and supplies all the necessary performance and
status monitoring information. Each bit-pump can be controlled and monitored individually via the
UI.

The “User Interface” chapter describes the structure of the commands and the communication
protocol for both UI configurations in detail. Appendix A is a reference guide to the set of
commands and status bits, with details on command use, syntax, and operation.
100251B Conexant 2-3
Preliminary Information/Conexant Proprietary and Confidential

2.0 Overview Bt8960

2.4 Software Interfacing with the Bt8960 Software User’s Guide

2-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
3

3.0 Software Application

Interaction with the Bt8960 bit-pumps is done by using the set of control and status request
commands. This chapter addresses the issue of applying these commands in a complete HDSL
transceiver system.

3.1 System Configuration

Before any other command or status request may be issued to a bit-pump, the system configuration
needs to be defined, using the Bit-pump ON/OFF command. This informs the Bt8960 software
which bit-pump is ON. Following power up, all bit-pumps are declared to be OFF. All commands
(other than system configuration) sent to a bit-pump that is turned OFF are ignored by the Bt8960
software.

Turning ON a bit-pump means that the corresponding Bt8960 is installed in the system and is
intended to be used. Not all Bt8960s that are installed in the system must be turned ON. A bit-pump
may be turned ON or OFF at any time, and any combination of bit-pumps turned ON or OFF is
allowed. Turning a bit-pump ON (even if it is turned ON already) resets the corresponding Bt8960,
and all configured parameters must be reprogrammed.
Conexant 3-1
Preliminary Information/Conexant Proprietary and Confidential

3.0 Software Application Bt8960

3.2 Setting Bit-Pump Parameters Software User’s Guide

3.2 Setting Bit-Pump Parameters

For proper operation of the bit-pumps, all configuration and operation parameters must be set to
their correct values (depending on the specific application) prior to activating the bit-pumps. These
parameters include design-specific information (such as analog AGC configuration, data transfer
format, activation sequence source, etc.) and application specific parameters (such as symbol rate,
terminal type, etc.).

All parameters and configuration options have default values (see Appendix A). Only those
parameters that have values different than the default need to be programmed. Table 3-1 lists all the
user-programmable parameters together with their default values. See the “User Interface” chapter
and Appendix A for details regarding the use and syntax of the specific commands used to set these
parameters.

NOTE: The _SYM_RATE command must be immediately issued after the
_SYSTEM_CONFIG ON command.

Table 3-1. User Configurable Parameters and their Default Values

Parameter Default

Bit-pump On/Off Off

Terminal Type HTU-C

Other Side Bt8960 Non-Bt8960

Analog AGC Configuration No AGC

Symbol Rate 144 K Symbol/Sec

LOST Time Period 1sec

Data Transfer Format Serial

Start-up Sequence Source External

Transmitter Scrambler On / Bypass Bypass

Receiver Descrambler On / Bypass Bypass

Operate Non Linear EC Off

Transmitter Gain Calibration Value
3-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 3.0 Software Application

Software User’s Guide 3.3 Activation

3.3 Activation

Upon power-up, the bit-pumps move to an IDLE state where no activities take place. No signal is
transmitted and the bit-pumps will not respond in any way to input signal detection. To initiate a
activation procedure, an Activate command should be issued at the HTU-C and HTU-R terminals.
This results in the transmission of a 2-level activation sequence, and begins the sequence of
activation activities on the HTU-C.

Under normal operating conditions, the HTU-R should detect the incoming signal and respond
according to the standard activation protocol. The HTU-R bit-pump will respond in this way only if
an Activate command was issued on the HTU-R terminal. Note that the Activate command on the
HTU-R does not initiate a response, but enables such a response once a signal is detected.

The order in which the Activate commands are issued at the HTU-C and HTU-R terminals is of
no importance, but the complete activation procedure will take place only when both terminals are
activated. When the HTU-C is activated first, it starts a 2-level transmission, but will get no
response from the HTU-R until the HTU-R has been activated. It will therefore wait until an HTU-R
signal is detected, and then proceed with the activation. When the HTU-R is activated first, it will
wait for the detection of an HTU-C signal. Once the HTU-C has been activated it starts transmitting,
and the HTU-R, upon detecting this transmission, will proceed with the activation.

Once both terminals are activated, the complete sequence of activation activities is carried out
on both terminals according to the standard protocol. No user intervention is required during this
process.
100251B Conexant 3-3
Preliminary Information/Conexant Proprietary and Confidential

3.0 Software Application Bt8960

3.3 Activation Software User’s Guide

It is the responsibility of the application software to monitor the appropriate status responses, in
addition to Channel Unit frame sync status, during activation, and decide whether or not the
activation has been successfully completed. The important status parameters for activation
monitoring include noise margin, loss of signal (LOS, LOST), transmit 4-Level indicator, and
activation timers expiration. Table 3-2 describes these together with the specific status request
commands that are used to access each status parameter. Table 3-3 shows additional bit-pump
responses that do not relate directly to the activation procedure. Further information may be found
in the “User Interface” chapter and in Appendix A.

Table 3-2. Start-up Status Parameters

Indication Description Command
Name

Noise Margin An estimate of the noise margin (in dB), indicating the tolerable increase in noise level
while still maintaining a BER<1E–7.

Noise Margin

Noise Margin OK 1 indicates noise margin higher than –5 dB. Bit-pump Status

LOS 0 Indicates the presence of an incoming signal, 1 indicates no input signal present.
Status is based on average far-end signal power measurement. This status is valid at all
times.

Bit-Pump Status

LOST 1 indicates the presence of a LOS condition for more than the LOST time period
(programmable). The LOST response is valid only after a Deactivate command is issued.

Bit-Pump Status

Activation Timer 1 indicates expiration of the activation interval. Bit-Pump Status

Transmit 4-Level 1 indicates the bitpump is transmitting a 4-Level signal. Bit-Pump Status

Normal Operation 1 indicates the bitpump has completed the stages of the activation process. Bit-Pump Status

Table 3-3. Additional Status Parameters

Indication Description Command Name

Total Input Signal Level Average absolute level of signal at the input to the A/D. This
signal is composed of both the far-end and echo signals.

Input Signal Level

Input DC Offset Average DC offset at the input to the A/D. A high value may
cause performance degradation.

Input DC Offset

Cable Attenuation Total signal attenuation (in dB). Far-end Signal Attenuation

Frequency Deviation Value of the (digital) VCXO control signal. VCXO Control Voltage
3-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 3.0 Software Application

Software User’s Guide 3.4 Test Modes

3.4 Test Modes

The Bt8960 may be operated in special test modes, used during development and field operation,
for maintenance and fault identification. All test modes are activated using the Test Mode
command, with the command parameter value selecting the specific mode.

To exit a test mode, issue the Test Mode command with the _EXIT_TEST_MODE (0x00 value)
parameter. The action taken when exiting a test mode condition depends on the specific test mode
selected. Activating most test modes while the bit-pump is synchronized will cause the bit-pump to
lose sync. Exiting the test mode and going back to normal data transfer condition will require full
restart. In these cases, the bit-pump goes to the IDLE state when exiting the test mode.

Other test modes do not create a sync loss condition, and normal operation may continue when
exiting the test condition. When exiting one of these test modes, the bit-pump goes back to the state
that was active when the Test Mode command was issued.

Table 3-4 describes the available test modes, and shows for each mode the ability to go back to
normal operation. Further information may be found in the User Interface section and in
Appendix A.

Table 3-4. Bt8960 Test Modes (1 of 2)

Test Mode Description Sync
Loss

External Analog loopback Transmits the externally supplied TX symbols, use the echo signal as a
“received” signal, and detect the symbols using the standard equalizer.

√

Digital “near” loopback TX symbols supplied to the bit-pump (by the framer) are looped back as the
RX symbols going from the bit-pump to the framer. Useful for testing the
framer and the framer-bit-pump connection.

Digital “far” loopback Detected (RX) symbols are transmitted back on the loop. Useful for testing full
2-way transmission over a loop.

Note: the operation of a digital “far” loopback requires activating the
Bt8960 internal TX scrambler and RX descrambler.

Transmit isolated +3 pulse Transmits (repeatedly) an isolated +3 level pulse. Useful for testing the
transmitted pulse shape.

√

Transmit isolated +1 pulse Transmits (repeatedly) an isolated +1 level pulse. √

Transmit isolated –1 pulse Transmits (repeatedly) an isolated –1 level pulse. √

Transmit isolated –3 pulse Transmits (repeatedly) an isolated –3 level pulse. √

Continuous 4-level transmission Continuous transmission of a 4-level scrambled 1's sequence (internally
generated). Useful for measuring transmitted power and spectral shape.

√

Continuous 2-level
transmission

Continuous transmission of a 2-level scrambled 1’s sequence (internally
generated).

√

Set minimum VCXO
frequency

Sets VCXO control word to its minimum value. √

Set nominal VCXO frequency Sets VCXO control word to its nominal value. Useful for measuring VCXO
center frequency.

√

100251B Conexant 3-5
Preliminary Information/Conexant Proprietary and Confidential

3.0 Software Application Bt8960

3.4 Test Modes Software User’s Guide

Table 3-5 shows the relationship between the Chip Revision, Software Version, and Analog Loopbacks
supported.

Set maximum VCXO
frequency

Sets VCXO control word to its maximum value. √

Internal Analog loopback Transmits the externally supplied Tx symbols out the TXP and TXN pins and
detects the symbols on the hybrid inputs (RXBP, RXBN), the receive inputs
(RXP and RXN) are bypassed.

√

Isolated Analog loopback The externally supplied Tx symbols are internally looped back in the Bt8960.
The transmitter (TXP and TXN) is turned off (silent).

√

Table 3-4. Bt8960 Test Modes (2 of 2)

Test Mode Description Sync
Loss

Table 3-5. Analog Loopback vs. Version Relationships

Version External Internal Isolated

V 1.x None None None

V 2.0+ Rev. B and C Rev C only Rev C only
3-6 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 3.0 Software Application

Software User’s Guide 3.5 Internal BER Meter Operation

3.5 Internal BER Meter Operation

This section describes how to use the Bt8960’s Internal BER Meter. The BER meter code is only
accessible when the BER_METER compiler flag is declared. The BER Meter can be used to verify
the integrity of the line, and as a diagnostic tool during production/field testing or
hardware/software development.

The BER Meter uses its internal scrambled ones generator and de-scrambler to detect
bit-errors. For the BER Meter to function properly, both the HTU-C and HTU-R must issue the
_BER_METER_START API command. Since the BER Meter uses its own internal scrambled ones
generator, it cannot be used when transporting real payload data. The BER Meter is only
operational after the bit-pump has successfully completed startup. All access to the BER meter is
done through the API, see Appendix A.

The interrupt handler reads the Bit Error Rate Meter Register (Address 0x4C, 0x4D) and
updates the Number of Bit-Errors and Number of Meter Intervals counter after every meter interval.
This causes the interrupt handler to be slightly longer, ~55uS per bit-pump on an 11.0592MHz
Intel 8032.

3.5.1 Calculating Avg BER and Elapsed Time

The following formulas are used to calculate the Avg BER and Elapsed Time.

AvgBER
ofBitError s

ofMeterInt ervals MeterInter valLength
=

#

* *2

ElapsedTim e
ofMeterInt ervals MeterInter valLength

DataRate
=

* *2

Variable How Derived

of Bit-Errors Read the # of Bit-Errors Low & High Byte API commands and build a 16-bit unsigned integer.

of Meter Intervals Read the # of Meter Intervals Low & High Byte API commands and build a 16-bit unsigned integer.

Meter Interval Length Read the Bt8960 Meter Interval Register (Address 0x18, 0x19) and build a 16-bit unsigned integer.
During normal operation, these registers should always read 0x8000 (32768).

Data Rate Data Rate of the system, i.e. 288000 or 416000.

2 The ‘* 2’ is necessary because there are 2 bits per symbol and the meter interval length is based on the
number of symbols.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)
100251B Conexant 3-7
Preliminary Information/Conexant Proprietary and Confidential

3.0 Software Application Bt8960

3.5 Internal BER Meter Operation Software User’s Guide

Figure 3-1. Example

/*
 * Assuming 288kbps Data Rate, Normal Operation, and BER Meter Active
 * Also assumes using compiler/linker that supports floating point.
 */
void get_ber_meter_status (unsigned char no)
{
 unsigned char temp, temp1;
 unsigned int errors, intervals;
 float avg_ber, elapsed_time;

 _BtStatus(no, _BER_METER_STATUS, _BER_BIT_ERRORS_LOW, &temp);
 _BtStatus(no, _BER_METER_STATUS, _BER_BIT_ERRORS_HIGH, &temp1);
 errors = (unsigned)BYTE2WORD(temp1, temp);

 _BtStatus(no, _BER_METER_STATUS, _BER_METER_INTERVALS_LOW, &temp);
 _BtStatus(no, _BER_METER_STATUS, _BER_METER_INTERVALS_HIGH, &temp1)
 intervals = (unsigned)BYTE2WORD(temp1, temp);

 avg_ber = (errors) / (intervals * 0x8000 * 2) /* equations don’t show necessary type casting */
 elapsed_time = (intervals * 0x8000 * 2) / (288000)

#if TDEBUG
 printf("# Bit Errors = %u\n", errors);
 printf("# Meter Intervals = %u\n", intervals);
 printf("Avg Ber = %.2e\n", avg_ber);
 printf("Elapsed Time = %.1f seconds\n", elapsed_time);
#endif

 return;
}

3-8 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
4

4.0 Software Structure

This chapter describes the structure of the Bt8960 control software. The information is useful for
understanding the Bt8960 operation and the proper integration of Bt8960 code with the application
software.

4.1 Software Block Diagram

This section describes the major Bt8960 software logical blocks and briefly outlines their function.
Figure 4-1 shows the major software modules and their relation with application specific software.

Figure 4-1. Bt8960 Software Modules

User Set
Parameters

API

Indications

HTU-R
Activation

Serial
Comm.BtMain HTU-C

Activation

Util ity
Routines

Test
Modes

Bt8960
Control

Interrupt
Handler

User Interface

Application-Specific Software

100251_001
Conexant 4-1
Preliminary Information/Conexant Proprietary and Confidential

4.0 Software Structure Bt8960

4.1 Software Block Diagram Software User’s Guide

The Application block contains the application’s high level system tasks, i.e. activation state
diagram, diagnostics, controlling other devices, etc. The _BtMain() module is called by the
application’s main program, and it is important to ensure a periodic execution of this module within
specified real-time constraints (see the “Software Integration” chapter for details).

The _BtMain() module is responsible for executing all the specific Bt8960 tasks, including the
bit-pump control operations, and the received/transmitted message handling. This is the highest
level block in the Bt8960 software hierarchy, and should be executed repeatedly and indefinitely to
ensure proper operation of the bit-pumps.

The Bt8960 Control block contains the bit-pump activation control routines (for the central
office and remote terminals) and special test mode routines. The activation control routine is
executed periodically for every active Bt8960 chip. It goes through the complete activation
procedure and handles normal operation monitoring activities. The test modes module is
responsible for operating the bit-pump in a specified test mode, such as loopback, isolated pulse
transmission, etc.

The User Interface block implements all the tasks related to communication with an
application. This communication is either done through a serial communication protocol or by using
code level API routines. The UI block interprets received commands, performs the required
operation, and sends back status reports.

The Interrupt Handler block responds to Bt8960 interrupts, sets the software interrupt flags,
and in special cases, performs bit-pump operations that cannot be delayed.
4-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 4.0 Software Structure

Software User’s Guide 4.2 User-Called Routines

4.2 User-Called Routines

The routines found in Table 4-1 must be called or accessed by the application software. Further
details regarding these specific routines are given in the “User Interface” and the “Software
Application” chapters and Appendix A. Further information and documentation may be found in
the source files.

Table 4-1. Bt8960 Software Routines

Routine / Macro File Name Description

_BtSwPowerUp() btmain.c Bt8960 software initialization. Must be executed prior to any other Bt8960 related
operation.

_MaskBtHomerInt() btmain.c Masks all Bt8960 interrupts for all present Bt8960 chips.

_Init8051() init51.c Used only in 8032 environment. Initializes 8032-specific parameters.

_InitVirtualTimers() intbug.c Used only with the INT_BUG compiler flag. Initializes Virtual Timers.

_BtControl() api.c API routine. Called by the application to issue a control command.

_BtStatus() api.c API routine. Called by the application to issue a status request command and to get
the requested status.

_BtMain() btmain.c Main Bt8960 control routine. Calls all Bt8960 tasks. Should be executed repeatedly
and indefinitely.
100251B Conexant 4-3
Preliminary Information/Conexant Proprietary and Confidential

4.0 Software Structure Bt8960

4.3 Memory Requirements Software User’s Guide

4.3 Memory Requirements

The code ROM requirements depend on the compiler, processor in use, and compiler flags. The
RAM and ROM requirements for four common build options with their associated compiler flags
are shown in Table 4-2.

4.3.0.1 BT8960CR w/o BER_METER

C51,ADD_DELAY,PDATA_MODE,SER_COM,HTUC,HTUR,SINGLE_LOOP,CHAN_UNIT

4.3.0.2 BT8960CR w/ BER_METER

C51,ADD_DELAY,PDATA_MODE,SER_COM,HTUC,HTUR,SINGLE_LOOP,BER_METER,
CHAN_UNIT

4.3.0.3 BT8960C w/ BER_METER

C51,ADD_DELAY,PDATA_MODE,SER_COM,HTUC,SINGLE_LOOP,BER_METER,
CHAN_UNIT

4.3.0.4 BT8960R w/ BER_METER

C51,ADD_DELAY,PDATA_MODE,SER_COM,HTUR,SINGLE_LOOP,BER_METER,CHAN_
UNIT

The RAM requirements do not include the stack size, an additional 24 bytes is required for the run-time
stack. These requirements include the Activation State Diagram application example code.

Table 4-2. Memory Requirements

Build Option RAM ROM

BT8960CR w/o BER_METER 111 24.0 k

BT8960CR w/ BER_METER 117 24.4 k

BT8960C w/ BER_METER 117 20.0 k

BT8960R w/ BER_METER 117 20.6 k
4-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
5

5.0 Compiling the Source Code

This chapter contains detailed information on how to successfully modify and compile the source
code to match the specific application environment. The code modifications are required in order to
match the Bt8960 code to the processor/compiler environment and to the details of the system
hardware implementation.

In addition to the source code modifications, compilation directives must be correctly declared
at compile time.

To get a fully working executable code, perform the following steps:

1. Determine the correct compiler directives definitions suitable for the environment (see the
Compilation Directives section).

2. Modify or write all the application modifiable sections by following the instructions in this
chapter.

3. Compile and link all the source files. Use the file list and dependency information given in
the File Names and Dependencies section.

NOTE: If the C51 flag is declared (indicating an 8032 family processor and Keil & Franklin
C51 compiler), modify or write only specific application sections (see the Code
Modifications section).

5.1 Directory Structure

The directory structure is partitioned into two directories. The main (application specific) directory
as the root and the bit-pump code as a sub-directory labeled BITPUMP. The application examples,
hex files, build script files, etc. are found in the main directory. All of the bit-pump source code and
header files are found in the BITPUMP subdirectory. However, the final implementation of the
directory and file structure is up to the user.
Conexant 5-1
Preliminary Information/Conexant Proprietary and Confidential

5.0 Compiling the Source Code Bt8960

5.2 File Names and Dependencies Software User’s Guide

5.2 File Names and Dependencies

Table 5-1 lists all the files that should be compiled and linked in order to get a complete, executable
Bt8960 control code. The table also shows the dependency between the various files.

Table 5-1. Source File Names and Dependencies

File to be Compiled File Depends on...

api.c bthomer.h

bitpump.c bthomer.h

btint.c bthomer.h

btmain.c bthomer.h

init51.c bthomer.h

intbug.c bthomer.h

mail.c bthomer.h

main.c bthomer.h

serint.c bthomer.h

suc.c bthomer.h

sur.c bthomer.h

suutil.c bthomer.h

testmode.c bthomer.h

user.c bthomer.h

util.c bthomer.h

erle.c bthomer.h

Other Files File Depends on...

bthomer.h btmain.h, mail.h, init51.h,
intbug.h, serint.h, bitpump.h, suc.h,
sur.h, suutil.h, util.h, api.h, testmode.h,
user.h, ptrdef.h, reg51.h, erle.h
5-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 5.0 Compiling the Source Code

Software User’s Guide 5.2 File Names and Dependencies

5.2.1 Compilation Directives

The compilation directives select different code sections for compilation, and are used in code
sections that are either hardware dependent or compiler dependent. Accurate declaration of these
directives is necessary to generate a correctly working executable code.

NOTE: It is extremely important that after declaring these directives, all of the source modules
be recompiled to ensure the changes propagate throughout the entire executable.
Failure to do so will result in unpredictable behavior.

5.2.1.1 #SINGLE_LOOP; #TWO_LOOPS; #THREE_LOOPS; #FOUR_LOOPS; #SIX_LOOPS

These compiler flags allow the developer to specify the maximum number of loops supported in
their system. One and only one of these flags must be defined at a time. The bit-pumps are allocated
in a sequential order starting with _BIT_PUMP0 (1st bit-pump) and ending with _BIT_PUMP5
(6th bit-pump)

Only the bit-pumps that are supported by the specified compiler flag may be accessed during
run-time, otherwise unpredictable behavior will result. For example, if THREE_LOOPS is defined,
then only _BIT_PUMP0, _BIT_PUMP1, and _BIT_PUMP2 may be addressed.

Each subsequent loop adds ~8 bytes of ROM space and ~4 bytes of RAM.

5.2.1.2 #C51

The C51 flag should be declared when the Bt8960 software is executed on an Intel 8032 family
microprocessor and the Keil/Franklin C compiler is used to compile the source code.

If another Intel 8032 family compiler is used, the C51 compiler flag may be defined. The user
must be aware there may be compatibility issues between the compilers.

If any non Intel 8032 family microprocessor and C compiler are used, do not declare the C51
flag.

5.2.1.3 #PDATA_MODE, #XDATA_MODE

The PDATA_MODE and XDATA_MODE flags can only be declared together with the C51 flag.
The PDATA_MODE and XDATA_MODE flags set the addressing mode used to access the Bt8960
chips. One and only one of these flags must be declared in a C51 system.

The PDATA_MODE flag selects page mode addressing which results in reduced ROM
requirements for code space and faster execution. The XDATA_MODE flag selects external
non-paged addressing. This results in greater code size and ROM requirements, and somewhat
slower execution of the control code.

For PDATA_MODE, in each of the bit-pump functions, the P2 port is set to address the
specified bit-pump. In addition, the bit-pump interrupt saves the P2 port value before addressing the
bit-pumps, then restores the previous P2 port value on exit of the interrupt function. Special care
must be taken so that the P2 port value does not get erroneously modified by any other interrupt
handler or another section of code.

NOTE: If the Franklin & Keil Compiler’s Large memory model is defined, the
XDATA_MODE compiler flag should be set since all variables are declared in xdata
space.
100251B Conexant 5-3
Preliminary Information/Conexant Proprietary and Confidential

5.0 Compiling the Source Code Bt8960

5.2 File Names and Dependencies Software User’s Guide

5.2.1.4 #SER_COM

The SER_COM flag enables the serial communication protocol of the user interface. It is used in the
dual processor mode of operation. It should be declared in an 8032-based system that employs the
serial communication configuration for controlling the Bt8960. The SER_COM flag may be
declared only if the C51 flag is declared.

5.2.1.5 #ADD_DELAY

Defining the ADD_DELAY flag causes the addition of a 2-symbol delay before accessing specific
addresses in the Bt8960. This additional delay is required when a read/write operation to the Bt8960
is performed in less than a symbol time period. The delay is added only for very specific Bt8960
addresses where the read/write operations are limited to one access per symbol. The ADD_DELAY
flag should be declared only when the external read/write cycle time of the microprocessor is faster
than the symbol rate.

5.2.1.6 #HTUR; #HTUC

The HTUR and HTUC flags control whether HTU-R or HTU-C code is included in the executable.
For applications where there is no distinction between HTU-R and HTU-C, except at the time of
installation, having a single piece of code that serves as HTU-R and HTU-C is useful. For these
applications both HTUR and HTUC should be declared.

If code space is a constraint, the HTU-R and HTU-C code can be customized for each terminal
type. Since the control process for each terminal type is in separate code, and represents a
substantial portion of the code, it is possible to save ROM space by only declaring HTUR for the
HTU-R terminal code and HTUC for the HTU-C terminal code. In this case the
_TERMINAL_TYPE command would be fixed in code with its parameter set in accordance with
the terminal type for which the code is being compiled.

The HTUC code adds ~4 k of ROM and ~5 bytes of RAM.
The HTUR code adds ~4.6 k of ROM.

5.2.1.7 #CHAN_UNIT

The CHAN_UNIT flag provides hooks into the Serial Communication Interface to allow the user to
access user defined API commands. In the Brooktree EVM Systems, these API access the Channel
Unit EVM boards (Channel Unit, Framer, & LIU). Please refer to the User Interface: Code Level
Interface section for details.

NOTE: The CHAN_UNIT flag may not be used when the #FOUR_LOOPS or #SIX_LOOPS
flags are specified unless the User Defined API Commands section is modified.

5.2.1.8 #BER_METER

The BER_METER flag compiles in the BER Meter code. The BER Meter code adds ~400 bytes of
ROM and 1 byte of RAM plus an additional 5 bytes of RAM for each bit-pump. Note that the
BER_METER flag cannot be declared when the INT_BUG compiler flag is specified. See the
Internal BER Meter section in the Software Application chapter.

5.2.1.9 #ERLE

The ERLE flag enables the ERLE diagnostic code. Please see Appendix C for details.
5-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 5.0 Compiling the Source Code

Software User’s Guide 5.2 File Names and Dependencies

5.2.1.10 #INITIATED_INTERRUPT

The INITIATED_INTERRUPT flag should not be declared. It provides minimal support for some
multi-tasking operating systems. Multi-tasking operating system use with the activation code is not
supported by Brooktree.

5.2.1.11 #TDEBUG

The TDEBUG flag should not be declared. TDEBUG provides printed text statements about the
current status of the bit-pumps during activation. The messages are printed to the 8032’s serial port.
Because of this, TDEBUG cannot be used when SERCOM is declared. This flag can be useful for
identifying problem areas in the activation sequence.

5.2.1.12 #INT_BUG

The INT_BUG flag should not be declared. The INT_BUG flag uses the microprocessor’s timer and
RAM instead of the bit-pump’s internal timers. This was needed in an earlier HDSL bit-pump
product.

5.2.2 Code Modifications

The exact location of code sections to be modified are designated by comments of specific form in
the source files. The format of these comments is shown in Figure 5-1.

These comments contain basic information describing the code section that should be modified
(or written). All the modifications are referenced according to their source file name and the order
in which they appear in the file. This reference (“filename.X”) appears both in source file
comments and in this manual.

Figure 5-1. User-Modifiable Code Section Format

 /*---*/
 /*>>> User Modifiable Section user.1 Begins <<< */
 /*---*/
 /* Modification Description: */
 /* Write the contents of routine EnableUserInterrupts(). */
 /* Calling this routine should enable all user interrupts. */
 /* */
 /* Reference: */
 /* “Bt8960 Software User's Manual”. */
 /*---*/
Insert code here

 /*---*/
/*>>> User Modifiable Section user.1 Ends <<<*/

 /*---*/
100251B Conexant 5-5
Preliminary Information/Conexant Proprietary and Confidential

5.0 Compiling the Source Code Bt8960

5.2 File Names and Dependencies Software User’s Guide

Each of the following sections refers to a single code section which must be modified or
written. All necessary modifications are covered, and no other changes in the source code should be
made.

The bit-pump source files that contain modifiable sections are btint.c, init51.c, serint.c, suc.h
and user.c. No modifications should be made in any other file.

5.2.2.1 Application Code

The EVM Application Code contains templates (examples) for the main() routine of the application
specific code. This main routine should execute both the application tasks and the Bt8960 software
task. Please refer to the Bt8960 Single-Chip 2B1Q Transceiver EVM Software Manual for details.

Extreme care must be taken to ensure that the application code (the body of the infinite loop)
meets the real-time requirements outlined in the “Software Integration” chapter. The concept is that
the time period between successive activations of _BtMain() must be kept lower than a specified
limit. This requirement puts constraints on the maximum execution time of the application code

5.2.2.2 btint.c.1

Code section btint.c.1 should contain the header of the Bt8960 interrupt handling routine. The body
of the interrupt routine is already written, and should not be modified in any way. However, the
routine header syntax is hardware, microprocessor, and compiler specific and must be written for
the specific configuration.

This routine should be invoked every time a Bt8960 interrupt signal is asserted (the Bt8960 INT
pin is an active-low-level triggered signal). This interrupt should be enabled on power-up. It is
necessary to ensure the interrupt vector is initialized within the application.

When using the Borland C compiler, the interrupt routine header is defined as follows:
void interrupt _HandleBtInterrupt(void)

The application specific power-up initialization code should set the _HandleBtInterrupt()
routine to function as the Bt8960 interrupt.

5.2.2.3 init51.c

Module init51.c contains the Intel 8032 microprocessor initialization routines.

5.2.2.4 init51.c.1

Code Section init51.c.1 should contain the baud rate timer initialization value. The initialization
value is dependent on the microprocessor and the crystal frequency.
5-6 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 5.0 Compiling the Source Code

Software User’s Guide 5.2 File Names and Dependencies

5.2.2.5 serint.c.1

Code section serint.c.1 should contain the header of the serial interrupt handling routine. The body
of the interrupt routine is already written. However, the routine header syntax and some variables
are hardware, microprocessor, and compiler specific and must be written for the specific
configuration.

This routine should be invoked every time a serial interrupt signal is asserted. This interrupt
should be enabled on power-up. It is necessary to ensure the interrupt vector is initialized within the
application.

When using the Borland C compiler, the interrupt routine header is defined as follows:
void interrupt _HandleSerialInterrupt(void)

The application specific power-up initialization code should set the _HandleSerialInterrupt()
routine to function as the serial interrupt.

5.2.2.6 suc.h.1

Code Section suc.h.1 should contain the activation interval timer initialization value. The
ACTIVATION_INTERVAL macro determines the time to complete the activation state diagram in
seconds. The initialization value is dependent on the application symbol rate. This value should be
modified so the activation does not prematurely time out during a successful attempt or does not
take excessive time to time out during an unsuccessful attempt.

The activation interval timer uses the SUT4 activation timer (symbol rate / 1024). The
_SYM_RATE API command sets the ‘symbol_rate’ variable to symbol rate / 4096. Therefore, the
value is 4 * desired activation time in seconds * the ‘symbol_rate’ variable.

Example:
For a desired activation interval timer of 50. The ACTIVATION_INTERVAL macro needs to be

programmed to 4 * 50 * symbol_rate, or 4 * (32 + 16 + 2) * symbol_rate. The macro is implemented
as follows:

((((short) symbol_rate << 5) + ((short)symbol_rate << 4) + ((short)symbol_rate)<<1)) << 2)

5.2.2.7 user.c.1

Code section user.c.1 should contain the absolute I/O address definitions of the specified number of
Bt8960 chips as defined by the compiler flags. Any value may be defined for non-existent Bt8960
chips.

The address value depends on the address decoding scheme implemented in the system. The
defined address should reflect the value that accesses byte #0 on the Bt8960.

5.2.2.8 user.c.2

Code section user.c.2 should contain the noise margin calibration table. This table must be modified
by the user to be accurate when using different noise source types. Refer to Appendix B for details.
100251B Conexant 5-7
Preliminary Information/Conexant Proprietary and Confidential

5.0 Compiling the Source Code Bt8960

5.2 File Names and Dependencies Software User’s Guide

5.2.2.9 user.c.3

Code section user.c.3 contains code that initializes the C pointers used to access the Bt8960 chips.
The initialization of a pointer with an absolute external address value is done differently in some C
compilers.

The values of the array should be initialized as follows:

• _bit_pump[_BIT_PUMP0] should be initialized with the external address
BIT_PUMP0_ADD.

• _bit_pump[_BIT_PUMP1] should be initialized with the external address
BIT_PUMP1_ADD.

• _bit_pump[_BIT_PUMP2] should be initialized with the external address
BIT_PUMP2_ADD.

In an environment that allows direct assignment of absolute addresses to pointer variables, the
user.c.3 code section should be written as follows:

_bit_pump[_BIT_PUMP0] = BIT_PUMP0_ADD;
_bit_pump[_BIT_PUMP1] = BIT_PUMP1_ADD;
_bit_pump[_BIT_PUMP2] = BIT_PUMP2_ADD;

When using the Borland C compiler, initializing pointer addresses with an absolute value is
done using a special C macro in the following way:

_bit_pump[_BIT_PUMP0] = MK_FP(BIT_PUMP_SEGMENT,
BIT_PUMP0_ADD);

_bit_pump[_BIT_PUMP1] = MK_FP(BIT_PUMP_SEGMENT,
BIT_PUMP1_ADD);

_bit_pump[_BIT_PUMP2] = MK_FP(BIT_PUMP_SEGMENT,
BIT_PUMP2_ADD);

This assumes all bit-pumps use the same segment, defined by BIT_PUMP_SEGMENT, and the
bit-pump address constants define the address offset of each bit-pump.

5.2.2.10 user.c.4

The contents of _Delay2Symbols() routine are application specific. This routine should implement
a delay of 2 symbol periods.

NOTE: Depending on the microprocessor and compiler, entering and exiting this routine may
generate the required delay with no need for additional operations or NOPs.

5.2.2.11 user.c.5

The code section user.c.5 contains the body of the routine _EnableUserInterrupts(), and is
application specific. This routine, when executed, enables all the non-Bt8960 interrupts that are
disabled by _DisableUserInterrupts() (see user.c.6). The Bt8960 interrupt is never disabled, so there
is no need to enable it. The two routines _DisableUserInterrupts() and _EnableUserInterrupts() are
called by the Bt8960 software in critical activation phases.
5-8 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 5.0 Compiling the Source Code

Software User’s Guide 5.2 File Names and Dependencies

5.2.2.12 user.c.6

The code section user.c.6 contains the body of the routine _DisableUserInterrupts(), and is
application specific. The Activation sequence can tolerate 4 mS out of 6 mS of interrupts before
performance degradation is noticed. This routine, when executed, should disable all the non-Bt8960
interrupts that cause this time criteria to fail. The Bt8960 interrupt is always enabled. The
_DisableUserInterrupts() and _EnableUserInterrupts() routines are called by the Bt8960 software
in critical activation phases.

5.2.2.13 api.c.1

5.2.2.14 api.c.2

5.2.2.15 api.c.3

5.2.2.16 api.h.1

In the API.C and API.H, the Channel Unit API hooks (found within the CHAN_UNIT compiler
flags) can be modified to allow the user to define their own API commands. Please refer to the User
Interface: Code Level Interface section for details.
100251B Conexant 5-9
Preliminary Information/Conexant Proprietary and Confidential

5.0 Compiling the Source Code Bt8960

5.2 File Names and Dependencies Software User’s Guide

5-10 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
6

6.0 User Interface

This chapter describes the User Interface (UI) to the Bt8960 HDSL bit-pump software. This
interface allows the system designer to have full control over all of Bt8960 features, and get status
and performance monitoring information from the bit-pump.

The interaction between the application and the Bt8960 may be achieved in one of two
configurations, depending on whether the application software is implemented on the same
microprocessor as the Bt8960 control software or on a different microprocessor. When only one
microprocessor is used in a system, the application should interface the bit-pumps using a
code-level Application-Program Interface (API). In a design in which the Bt8960 software runs on
an 8032 microprocessor, and a second “host” microprocessor is used for the application software, a
serial communication protocol between the two processors is used to control the bit-pumps.

Figure 6-1 and Figure 6-2 show the two possible control configurations.

Figure 6-1. Two Microprocessors Implementation

Non-modified
Brooktree

Bt8960

External Circuitry

Data

2
Bt8960

External Circuitry

1

P Bus

Software

8032 Controller

UART Application
Implemented

Software

Host Processor

ApplicationBrooktree Chip Set

and
Clock

Data
and

Clock

100251_003
Conexant 6-1
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

 Software User’s Guide

 In both configurations described above, the control and monitoring operations are based on a
set of commands sent by the application to the bit-pump control software and parameter status sent
back to the application. The command set itself is identical in both system configurations.

The Command Structure section describes the structure of commands and status responses,
which applies to both UI configurations. The Serial Communication Interface section describes the
serial interface message structure and communication protocol which applies to a dual processor
system architecture, and the Code Level Interface (API) section describes the API which applies to
a single processor architecture. The Opcodes and Parameters section lists the available commands.
Appendix A (Command Set Reference) supplies a detailed description of the command set
including command syntax, operation, and application hints.

Figure 6-2. Single Microprocessor Implementation

Modified
Brooktree

Bt8960

External Circuitry

2
Bt8960

External Circuitry

1

P Bus

Software

API Application
Software

Host Processor

Brooktree Chip Set

Data
and

Clock

Data
and

Clock

100251_004
6-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 6.0 User Interface

Software User’s Guide 6.1 Command Structure

6.1 Command Structure

The structure of all commands is the same. A command is composed of three 1-byte fields:
Destination, Opcode, and Data. Figure 6-3 shows the structure of a command.

The command fields are interpreted according to the following fields.

• Destination field (bits E3–E0)—This field selects the destination to which the command is
targeted, according to Table 6-1.

• Opcode field (bits O7–O0)—The Opcode field selects the specific command or status
request to be executed. The available commands and their opcodes are described in detail in
Appendix A. The opcodes are also available in C source file api.h, which contains C
constant definitions for all opcodes. The Opcodes and Parameters section contains a list of
these opcode constants.

• Data (Parameter) field (bits D7–D0)—This field is used in some commands where
additional data or parameter selection is required. In commands where there is no need for
additional data, zeros should be placed as the data byte to ensure future compatibility. The
data field options are also available in C source file api.h, which contains C constant
definitions for the available parameters. The “Opcodes and Parameters” section contains a
list of these data field constants.

Figure 6-3. Command Structure

First Byte

11 E3 E2 E1 E011

01234567

Second Byte

O4O7 O3 O2 O1 O0O5O6

01234567

Third Byte

D4D7 D3 D2 D1 D0D5D6

01234567

100251_005

Table 6-1. Destination Field Specification

E3 E2 E1 E0 Destination

0 0 0 0 Bt8960 #0

0 0 0 1 Bt8960 #1

0 0 1 0 Bt8960 #2

0 0 1 1 Bt8960 #3

0 1 0 0 Bt8960 #4

0 1 0 1 Bt8960 #5
100251B Conexant 6-3
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

6.1 Command Structure Software User’s Guide

The set of commands is divided into three logical groups: control commands, status request
commands, and special messages. The first group includes all commands that control the operation
of the bit-pump and set different parameters. The second group includes commands that request
status values or monitoring information from the bit-pump. In response to a status request
command, a 1-byte data word is returned to the application supplying the required information. The
special messages include the Acknowledge message (applies only to serial communication UI).
6-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 6.0 User Interface

Software User’s Guide 6.2 Serial Communication Interface

6.2 Serial Communication Interface

In a dual processor system (see Figure 6-1), the application controls the bit-pumps using a serial
communication message transfer protocol. The protocol is based on the command set described in
Appendix A, and the command structure as described in the Command Structure section, with
additional requirements for this type of interface.

6.2.1 Communication Protocol

The 8032 communicates with the host processor using a standard UART interface. The physical
connection includes two lines: RXD (8032 pin 10) and TXD (8032 pin 11). The data is transferred
in an asynchronous format: 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity.

To select a separate baud rate, refer to the Compiling the Source Code” chapter.

6.2.2 Message Transfer Protocol

The application sends a command to any of the bit-pumps in the system by transmitting a message
over the serial communication channel. Every command that is correctly received and decoded by
the 8032 is acknowledged by sending a special acknowledge message back to the application. In
response to a status request command, the 8032 also sends a status response message that contains
the information requested.

The 8032 is guaranteed to acknowledge a received message within 200 mS, except during
activation where larger delays (up to 2 seconds) may be present. The host processor will usually
retransmit a message that was not acknowledged within this time limit. No new message should be
sent by the host processor before the previous one was acknowledged unless the time limit has been
exceeded.

A status request message requiring information from the bit-pump will first be acknowledged,
and only then will a response message containing the requested information be sent to the host
processor.
100251B Conexant 6-5
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

6.2 Serial Communication Interface Software User’s Guide

6.2.3 Message Structure

All messages are 4 bytes long. Figure 6-4 shows the structure of a message sent by the host
processor to the 8032. The first 3 bytes are the command bytes, as described in the Command
Structure section. The fourth byte (the last transmitted byte) contains checksum information that is
a function of the first 3 bytes (see the Checksum Function subsection for checksum function
details). The checksum considerably reduces the probability of the 8032 misinterpreting an
incoming message.

When the 8032 receives a status request command, it responds (after acknowledging the
command) by sending a status message to the host processor. The structure of a status message is
similar to the structure of a host-to-8032 message, and is shown in Figure 6-5.

The first 2 bytes are identical to the first 2 bytes of the corresponding status request command.
Bits S3–S0 of the first byte are interpreted, according to Table 6-1, as the source bit-pump for the
status response. The second opcode byte (bits O7–O0) contains the opcode of the command that
requested the information.

The third byte (bits D7–D0) contains the requested information. The fourth byte (bits
CS7–CS0) is the checksum value, calculated according to the formula described in the Checksum
Function subsection.

Figure 6-4. Host Processor to 8032 Message Structure

First Byte

11 E3 E2 E1 E011

01234567

Second Byte

O4O7 O3 O2 O1 O0O5O6

01234567

Third Byte

D4D7 D3 D2 D1 D0D5D6

01234567

Fourth Byte

CS4CS7 CS3CS2 CS1CS0CS5CS6

01234567

100251_006
6-6 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 6.0 User Interface

Software User’s Guide 6.2 Serial Communication Interface

6.2.4 Checksum Function

For every command sent by the host processor, a checksum function value is calculated and sent as
the fourth byte of the message. This value is calculated using the following formula:

CS = (Byte #1) | (Byte #2) | (Byte #3) | (0xAA);

where “|” denotes a bit-wise exclusive-OR operation, and 0xAA is the binary byte 10101010.
The same rule is used by the 8032 to calculate the checksum byte of status message sent to the

host processor.

Figure 6-5. 8032 to Host Processor Message Structure

First Byte

11 S3 S2 S1 S011

01234567

Second Byte

O4O7 O3 O2 O1 O0O5O6

01234567

Third Byte

D4D7 D3 D2 D1 D0D5D6

01234567

Fourth Byte

CS4CS7 CS3CS2 CS1CS0CS5CS6

01234567

100251_007
100251B Conexant 6-7
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

6.3 Code Level Interface (API) Software User’s Guide

6.3 Code Level Interface (API)

The code level API is intended for applications integrating the bit-pump control software in a single
microprocessor system (see Figure 6-2). In such a configuration, the application issues a command
and gets information from the bit-pumps by calling a specific routine.

To issue any one of the control commands (see the Control Commands section in Appendix A),
the application should call the _BtControl() function. To issue a status request command (see the
Serial Communication Interface section), the _BtStatus() function should be called.

6.3.1 _BtControl()

The _BtControl() routine is used to issue any one of the control commands specified in the Control
Commands section in Appendix A.

Use unsigned char _BtControl(unsigned char destination, unsigned char opcode, unsigned char parameter);

Description The destination, opcode, and data parameters correspond to the three command bytes as described in the
Command Structure section. The opcode field must contain a value corresponding to one of the control
commands specified in the Control Commands section in Appendix A

Effect The required command is executed on the bit-pump designated by the destination parameter (unless an error
condition occurred).

Return Value _PASS (0x00) indicates a successfully interpreted command. The command is executed.
_FAIL (0x01) indicates an error condition. The command is not executed. An error condition may be caused by
an illegal value in any one of the command fields.

Example To configure bit-pump #2 as a remote terminal (HTU-R), execute the following routine call:
_BtControl(_BIT_PUMP2, _TERMINAL_TYPE, _HTUR);
6-8 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 6.0 User Interface

Software User’s Guide 6.3 Code Level Interface (API)

6.3.2 _BtStatus()

The _BtStatus() routine is used to issue any one of the status request commands specified in the
Status Request Commands section in Appendix A.

6.3.3 User Defined API Commands - Channel Unit & Framer

The code level API structure provides hooks to allow the user to access their own user defined API
commands. In the dual processor mode, this allows the user to use the Serial Communication
Interface message protocol to handle the user defined API commands. The user then only needs to
create (define) their own API commands.

The bit-pump code provides hooks to access the Channel Unit and Framer API commands,
these are to support the Brooktree EVM Systems. However, the user may rename, add, or delete to
these hooks.

_CuControl()
_CuStatus()
_FramerControl()
_FramerStatus()

Use unsigned char _BtStatus(unsigned char destination, unsigned char opcode, unsigned char parameter, char
indication);

Description The destination, opcode, and data parameters correspond to the three command bytes as described in the
Command Structure section. The opcode field must contain a value corresponding to one of the status request
commands specified in the Special Messages section in Appendix A.

Effect The status parameter is set to the required value (unless an error condition occurred).

Return Value _PASS (0x00) indicates a successfully interpreted command. The value of the status parameter is correctly set.

Example _FAIL (0x01) indicates an error condition. The value of the status parameter has no meaning and should be
ignored. An error condition may be caused by an illegal value in any of the command fields.
100251B Conexant 6-9
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

6.3 Code Level Interface (API) Software User’s Guide

These function descriptions are identical to the _BtControl() and _BtStatus() functions. The
Channel Unit EVM has the following Destination field values (see also Table 3):

The channel Unit and Framer destination fields are numbered 3 to 7 to maintain compatibility
with existing Brooktree EVM System and Support Programs. However, these destination fields will
cause a conflict when the #FOUR_LOOPS or #SIX_LOOPS complier flags are specified, since the
#FOUR_LOOPS or #SIX_LLPS flags specify the destination field between (0 and 3) or (0 to 5). If
the user wishes to use the #CHAN_UNIT compiler flag with the #FOUR_LOOPS or #SIX_LOOPS
flags, then the Channel Unit destination fields must be modified.

NOTE: The Brooktree EVMs are typically compiled with the #THREE_LOOPS and
#CHAN_UNIT complier flags

Table 6-2. Destination Field Values

E3 E2 E1 E0 Destination #define

0 0 1 1 Channel Unit Common Sections _CU_COMMON

0 1 0 0 Channel Unit HDSL Loop #1 Specific _CU_CHAN1

0 1 0 1 Channel Unit HDSL Loop #2 Specific _CU_CHAN2

0 1 1 0 Channel Unit HDSL Loop #3 Specific _CU_CHAN3

0 1 1 1 E1/T1 Framer and LIU _FRAMER
6-10 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 6.0 User Interface

Software User’s Guide 6.4 Opcodes and Parameters

6.4 Opcodes and Parameters

The source file api.h contains C constant definitions for the opcodes of all commands, and for the
possible data field values of commands that use this field.

NOTE: These definitions should be employed in application code for the Bt8960 UI.

Table 6-3 lists the available commands, each with its corresponding C constant opcode and
parameter definitions (where applicable). See Appendix A for details on command use, operation,
and parameter setting.

Table 6-3. User Interface Command Summary (1 of 3)

Command Name Opcode C Constants Data Field Options Data Field C Constants

Terminal Type _TERMINAL_TYPE HTU-R
HTU-C

_HTUR
_HTUC

Analog AGC
Configuration

_ANALOG_AGC_CONFIG No AGC
2-Level discrete AGC
4-Level discrete AGC
6-Level discrete AGC

_NO_AGC
_TWO_LEVEL_AGC
_FOUR_LEVEL_AGC
_SIX_LEVEL_AGC

Start-up Sequence
Source

_STARTUP_SEQ_
SOURCE

Internal start-up
sequence
External start-up
sequence

_INTERNAL

_EXTERNAL

Transmit Scrambler _TRANSMIT_SCR Scramble TX symbols
Do not scramble TX
symbols

_ACTIVATE_SCR
_BYPASS

Receive
Descrambler

_RECEIVE_DESCR Descramble RX symbols
Do not descramble RX
symbols

_ACTIVATE_DESCR
_BYPASS

Data Transfer
Format

_FRAMER_FORMAT Parallel data, clock
outputs
Parallel data, clock inputs
Serial data
Serial data, sign &
magnitude swapped

_PARALLEL_MASTER

_PARALLEL_SLAVE

_SERIAL
_SERIAL_SWAP

Other Side Bt8960 _BT_OTHER_SIDE Bt8960 bit-pump used
on other terminal
Non-Bt8960 bit-pump on
other terminal

_BT

_NO_BT

LOST Time Period _LOST_TIME_PERIOD 1-Byte unsigned integer

Bit-pump ON/OFF _SYSTEM_CONFIG Bit-pump On
Bit-pump OFF

_PRESENT
_NOT_PRESENT

Transmit External
Data

_TRANSMIT_EXT_DATA 0

Activate _ACTIVATE 0

Deactivate _DEACTIVATE 0
100251B Conexant 6-11
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

6.4 Opcodes and Parameters Software User’s Guide

Test Mode _TEST_MODE _EXIT_TEST_MODE
_ANALOG_LOOPBACK
_NEAR_LOOPBACK
_FAR_LOOPBACK
_ISOLATED_PULSE_PLUS3
_ISOLATED_PULSE_PLUS1
_ISOLATED_PULSE_MINUS1
_ISOLATED_PULSE_MINUS3
_FOUR_LEVEL_SCR
_TWO_LEVEL_SCR
_VCXO_NOMINAL
_VCXO_MIN
_VCXO_MAX
_INTERNAL_ANALOG_
LOOPBACK
_EXTERNAL_ANALOG_
LOOPBACK

Symbol Rate _SYM_RATE 1-Byte unsigned integer

Reset _RESET_SYSTEM 0

Enable/Disable
Non-Linear EC

_OPERATE_NLEC Enable NL EC
Operation
Disable NL EC
Operation

_NLEC_ON

_NLEC_OFF

Write Transmitter
Gain register

_WRITE_TX_GAIN 1-Byte signed integer

Input Signal Level _SLM 0

Input DC Offset _DC_METER 0

Far-end Signal
Attenuation

_FELM 0

Noise Margin _NMR 0

VCXO Control
Voltage

_VCXO_CONTROL_
VOLTAGE

0

Bit-pump Status _STARTUP_STATUS 0

AAGC Control Bits
Value

_AAGC_VALUE 0

Read Linear EC
Coefficient

_LEC_COEFF Coefficient index

Read NL EC
Coefficient

_NLEC_COEFF Coefficient index

Read EQ Coefficient _EQ_COEFF Coefficient index

Read DFE
Coefficient

_DFE_COEFF Coefficient index

Table 6-3. User Interface Command Summary (2 of 3)

Command Name Opcode C Constants Data Field Options Data Field C Constants
6-12 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 6.0 User Interface

Software User’s Guide 6.4 Opcodes and Parameters

Software / Chip
Versions

_VERSION Major SW & Bitpump
Version
Major SW Version
Minor SW Version
Bitpump Type & Version

_HW_SW_VERSIONS

_MAJOR_SW_VERSION
_MINOR_SW_VERSION
_HW_TYPE_VERSIONS

Bit-pump Present _BIT_PUMP_PRESENT 0

Self-test _SELF_TEST 0

Read Bt8960
Register

_REGISTER Bt8960 register address

Bit-pump
Configuration

_CONFIGURATION Request low byte of user
setup
Request high byte of
user setup
Request LOST time
period information
Request symbol rate
information

_USER_SETUP_LOW_BYTE

_USER_SETUP_HIGH_BYTE

_LOST

_BIT_RATE

Stage Number _STAGE_NUMBER 0

Read Transmitter
Gain register

_READ_TX_GAIN Request Tx Calibration
Value
Request Tx Gain Value

_CALIBRATION

_GAIN

Table 6-3. User Interface Command Summary (3 of 3)

Command Name Opcode C Constants Data Field Options Data Field C Constants
100251B Conexant 6-13
Preliminary Information/Conexant Proprietary and Confidential

6.0 User Interface Bt8960

6.4 Opcodes and Parameters Software User’s Guide

6-14 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
A

Appendix A Command Set Reference

This appendix contains a reference guide to the Bt8960 User Interface command set. All available
commands are listed, giving information on command use, application, syntax, and options.

The set of commands is divided into three groups:

1. Control commands—Control the operation modes of the bit-pump and set various
parameters.

2. Status request commands—Inquire for status and monitoring information from the
bit-pump. A 1-byte response containing the required information is transferred back.

3. Special Commands.

A.1Control Commands

For each command, a description of its operation, opcode, and options is given. Commands that
select bit-pump operational options and set bit-pump parameters have their default value
underlined. The default values are also given in the Setting Bit-pump Parameters section.

A.1.1 Terminal Type

Sets the bit-pump terminal type. In any operational HDSL system, a bit-pump on one side of the
loop should be defined to be an HTU-C (HDSL Terminal Unit – Central office side) and the
bit-pump on the other side should be defined to be an HTU-R (Remote terminal). The two terminal
types differ in their activation procedure, timing recovery mechanism, scrambler/descrambler taps,
and more. Terminal type must be properly defined prior to any activation operation.
Conexant A-1
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

In a multipair system, each bit-pump may be individually set as an HTU-C or HTU-R
(although in most implementations all bit-pumps will be set to the same terminal type).

A.1.2 Analog AGC Configuration

Informs the bit-pump software of the analog AGC configuration implemented in the design.

Opcode

Numeric Value C Constant (defined in file api.h)

0x01 _TERMINAL_TYPE

Options

Option Description Data Field C Constant (api.h)

HTU-C Central Office Terminal 0x00 _HTUC

HTU-R Remote Terminal 0x01 _HTUR

Opcode

Numeric Value C Constant (defined in file api.h)

0x02 _ANALOG_AGC_CONFIG

Options

Option Description
Data
Field
Value

C Constant (api.h)

No AGC No analog AGC is implemented, and constant receiver gain is
used.

0x00 _NO_AGC

2-Step AGC Discrete analog AGC is used, with two possible gain levels. The
gain value is controlled by pin AGC[0].

0x01 _TWO_LEVEL_AGC

4-Step AGC Discrete analog AGC is used, with four possible gain levels. The
gain value is controlled by pins AGC[0] (LSB) and AGC[1].

0x02 _FOUR_LEVEL_AGC

6-Step AGC Discrete analog AGC is used, with six possible gain levels. The
gain value is controlled by pins AGC[0] (LSB), AGC[1], and
AGC[2].

0x03 _SIX_LEVEL_AGC
A-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

The Bt8960 bit-pump internally supports six different analog AGC configurations as shown in
Table A-1. Three internal gain control signals are supplied by the Bt8960. In a 2-level discrete
AGC configuration, pin AGAIN[0] is used to select between two discrete gain values, where a 0
selects the lower gain. In a 4-level discrete AGC configuration, pin AGAIN[0] and AGAIN[1] are
used to select between four discrete gain values, AGAIN[0] being the LSB. A ‘00’ selects the
lowest gain. In a 6-level discrete AGC configuration, pin AGAIN[0], AGAIN[1] and AGAIN[2]
are used to select between six discrete gain values, AGAIN[0] being the LSB. A ‘000’ selects the
lowest gain.

In a 6-level AAGC implementation, the recommended relative gain settings are 0 dB, 3 dB, 6
dB, 9 dB, 12 dB, and 15 dB. In a 4-level AAGC implementation, the recommended relative gain
settings are 0 dB, 3 dB, 6 dB, and 9 dB. In a 2-level AAGC implementation, the recommended
relative gain settings are 0 dB and 6 dB. When no AGC is implemented, the fixed gain is referred to
as the 0 dB level.

NOTE: The 6-Level AGC setting should be set for optimal performance.

A.1.3 Start-up Sequence Source

Selects the the source of activation sequences to be external or internal. The Bt8960 provides for
internally generated activation sequences that may be used in a complete stand-alone transceiver
implementation. The internally generated activation sequences are 2- or 4-level scrambled 1s, with
no HDSL framing information. These sequences do not meet the standard activation requirements
which require HDSL framing information to be included in the activation sequences.

Table A-1. Bt8960 AGAIN Settings

C Constants Numeric Value AGAIN[2] AGAIN[1] AGAIN[0]

_AGAIN0DB 0 0 0 0

_AGAIN3dB 1 0 0 1

_AGAIN6DB 2 0 1 0

_AGAIN9DB 3 0 1 1

_AGAIN12DB 4 1 0 0

_AGAIN15DB 5 1 0 1
100251B Conexant A-3
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

If a framed activation sequence is required, it must be supplied prior to any activation operation
and the start-up sequence source must be set to external. Only a 4-level sequence need be supplied.
The bit-pump ignores the magnitude bit during the initial 2-level transmission.

NOTE: When the internal option is specified, the _TRANSMIT_EXT_DATA command must be
called when the activation process is successfully completed.

A.1.4 Transmit Scrambler

Activates or bypasses the internal transmit scrambler. The internal transmit scrambler (and receive
descrambler) may be used for stand-alone operation of the bit-pump. When activated, all incoming
data is scrambled and then converted to quaternary symbols for transmission.

Opcode

Numeric Value C Constant (defined in file api.h)

0x03 _STARTUP_SEQ_SOURCE

Options

Option Description Data
Field C Constant (api.h)

External Start-up
Sequence

Start-up sequences are supplied externally. A 4-level
activation sequence must be supplied before activation is
initiated.

0x00 _EXTERNAL

Internal Start-up
Sequence

Start-up sequences are generated internally. These sequences
are 2/4 level scrambled 1’s, with no HDSL framing.

0x01 _INTERNAL

Opcode

Numeric Value C Constant (defined in file api.h)

0x04 _TRANSMIT_SCR

Options

Option Description Data
Field C Constant (api.h)

Bypass The transmit scrambler is not used and the symbols supplied by the
application are transmitted with no change.

0x00 _BYPASS

Active The transmit scrambler is activated, and the bit stream supplied by
the application is scrambled on chip before being transmitted.
Standard scrambler taps are used (according to terminal type
setting).
The TX scrambler is operated (when turned ON) only during 4-level
transmission, i.e., during 4-level activation transmission and during
normal operation.

0x01 _ACTIVATE_SCR
A-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

A.1.5 Receive Descrambler

Activates or bypasses the internal receive descrambler. The internal receive descrambler may be
used for stand-alone operation of the bit-pump. When activated, all detected symbols are converted
to bits and descrambled, prior to being transferred to the data output pins. Note that all received bits
are descrambled, including framing and overhead bits.

Opcode

Numeric Value C Constant (defined in file api.h)

0x05 _RECEIVE_DESCR

Options

Option Description Data
Field C Constant (api.h)

Bypass The receive descrambler is not used and the detected symbols
are supplied with no change.

0x00 _BYPASS

Active The receive descrambler is activated and the received bit stream
is descrambled before being transferred.

0x01 _ACTIVATE_DESCR
100251B Conexant A-5
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

A.1.6 Data Transfer Format

Selects the format in which data is transferred between the Bt8960 and the application. This option
has no effect on data value, only the data transfer format is affected. Different data transfer formats
allow for different schemes of framer bit-pump clock distribution. For more details, see the Bt8960
datasheet.

Opcode

Numeric Value C Constant (defined in file api.h)

0x06 _FRAMER_FORMAT

Options

Option Description Data
Field C Constant (api.h)

Parallel data,
clock outputs

The Bt8960 supplies a baud rate clock signal (QCLK) that times
the data transfer in both the receive and transmit directions.
Received quats are being transferred to the framer via the
RQ[0], RQ[1] pins. Transmitted quats are being transferred to
the bit-pump via the TQ[0], TQ[1] pins.

0x00 _PARALLEL_MASTER

Parallel data,
clock inputs

A baud rate clock signal (RBCLK) is supplied that times the data
transfer in the receive direction. Also supplied is a separate
baud rate clock (TBCLK) that times the data transfer in the
transmit direction. Received and transmitted quats are
transferred via the TQ and RQ signals, as in “Parallel with clock
outputs” mode. The RBCLK and TBCLK signals must be a
derivative of the Bt8960’s 16X clock at an arbitrary phase.

0x01 _PARALLEL_SLAVE

Serial data The Bt8960 supplies a baud rate clock (on the QCLK pin) and a
bit rate clock (on the RQ[0] pin) that time the data transfer in
both receive and transmit directions. The received and
transmitted quats are transferred serially, each on a single line,
via the RQ[1] and TQ[1] pins. The 2B1Q magnitude bit is
aligned to QCLK low and the 2B1Q sign bit is aligned to QCLK
high.

0x02 _SERIAL

Serial Swap
data

The Bt8960 supplies a baud rate clock (on the QCLK pin) and a
bit rate clock (on the RQ[0] pin) that time the data transfer in
both receive and transmit directions. The received and
transmitted quats are transferred serially, each on a single line,
via the RQ[1] and TQ[1] pins. The 2B1Q magnitude bit is
aligned to QCLK high and the 2B1Q sign bit is aligned to QCLK
low. This format satisfies the ETSI/ANSI requirements for
output quat orientation

0x03 _SERIAL_SWAP
A-6 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

A.1.7 Other Side Bt8960

In a system where both terminals use Bt8960 bit-pumps, several activation operations can be
performed more efficiently relative to the standard requirements. This command is used to inform
the Bt8960 software that the other terminal uses a Bt8960 bit-pump.

A.1.8 LOST Time Period

An on-chip timer is restarted when a loss of signal condition is detected. When this timer reaches a
pre-defined value, the LOST status bit is turned ON. Once turned on, the status bit will not reset
(even if there is no longer a LOS condition). The LOST indication is cleared only when an Activate
or Reset command is issued.

The LOST mechanism is active only after a Deactivate command is issued. Thus, during
activation or normal operation, the LOST status is never set. This implementation is in
correspondence with the T1E1/ETSI HDSL activation state diagrams. The LOST time interval is
programmable in the range 0–31 seconds with a resolution of 1/10 second. The value of the LOST
status bit may be checked using the Bit-pump Status command.

Opcode

Numeric Value C Constant (defined in file api.h)

0x07 _BT_OTHER_SIDE

Options

Option Description Data
Field C Constant (api.h)

Other side unknown The terminal on the other loop end is not known to use the
Bt8960.

0x00 _NO_BT

Other side Bt8960 The terminal on the other side of the loop employs a Bt8960. 0x01 _BT

Opcode

Numeric Value C Constant (defined in file api.h)

0x08 _LOST_TIME_PERIOD

Options

Option Description Data
Field C Constant (api.h)

LOST time period 1-byte unsigned integer X. The LOST time period is set to X/10
seconds.
Default Value: 10 = 1 second.

X

100251B Conexant A-7
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

A.1.9 Bit-pump ON/OFF

Informs the Bt8960 software which bit-pumps are active in the system. Setting a bit-pump state to
OFF causes the Bt8960 software to put the chip in a “power-down” mode and ignore any further
control commands issued to this bit-pump, other than Bit-pump ON/OFF.

All bit-pumps that are intended to be activated should be turned ON prior to any other control
operation. The bit-pumps are numbered from 0 to 5. Any of the bit-pumps may be used in a system
(note that a hardware implementation may include, for example, three bit-pumps, only two of
which are turned ON).

A.1.10 Transmit External Data

This command should be used only when the activation sequence source is internal. When issued,
this command causes the bit-pump to start transmission of externally supplied data symbols. This
command should be issued upon the successful completion of activation, which is determined by
the application, based on bit-pump and framer status responses. The transmitted data should be
supplied to the bit-pump prior to issuing this command. Avoid situations where a long stream of
constant value symbols is transmitted.

Opcode

Numeric Value C Constant (defined in file api.h)

0x09 _SYSTEM_CONFIG

Options

Option Description Data
Field C Constant (api.h)

OFF Turn bit-pump OFF 0x00 _NOT_PRESENT

ON Turn bit-pump ON 0x01 _PRESENT

Opcode

Numeric Value C Constant (defined in file api.h)

0x0A _TRANSMIT_EXT_DATA

Options

Option Description Data
Field C Constant (api.h)

None 0x00
A-8 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

A.1.11 Activate

Initiates the activation process. On an HTU-C terminal, this command causes 2-level activation
sequence transmission to begin. On an HTU-R terminal, this command causes the bit-pump to wait
for the detection of an incoming signal, and continue with the activation process when such a
signal is detected. The activation process itself is fully automatic. An application may inquire about
the activation status, SNR, etc., but otherwise no actions are required.

A.1.12 Deactivate

Turns the transmitter off and stop all activation operations regardless of the current bit-pump status.
The bit-pump goes to an IDLE state, where it awaits further commands. Issuing the Deactivate
command enables the LOST mechanism (see the LOST Time Period command). If issued during
normal operation, the receiver continues to function properly (useful for test purposes).

Opcode

Numeric Value C Constant (defined in file api.h)

0x0B _ACTIVATE

Options

Option Description Data
Field C Constant (api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x0C _DEACTIVATE

Options

Option Description Data
Field C Constant (api.h)

None 0x00
100251B Conexant A-9
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

A.1.13 Test Mode

Operates the bit-pump in special test modes. These modes include maintenance operating modes
and loopback configurations. To execute a bit-pump self-test procedure, use the Self-test status
request command. To turn off any of the special test modes, use the Test Mode command with an
_EXIT_TEST_MODE (0 value) parameter. All test modes except the two digital loopback modes
require, after exiting the test mode, a complete activation procedure to be repeated (assuming
normal operation is required). When exiting all these test modes (by issuing the Test Mode
command with a 0 value parameter), the bit-pump is initialized to a reset state, and goes to the
IDLE state, where it awaits further commands.

The two digital loopback test modes do not interfere with the operation of the bit-pump, and
only affect the received/transmitted symbol stream. Therefore, operating the bit-pump in a digital
(near/far) loopback during normal operation will not cause loss of synchronization. Exiting one of
these two test modes will turn off the loopback operation, allowing for normal data transfer to
continue with no need for a restart. Table A–A-2 summarizes the action taken when exiting
different test modes.

NOTE: When exiting a “digital far loopback” mode, the transmitted symbol sequence source
depends on the setting of the “internal/external activation sequence” flag.

Table A-2. Exiting Test Modes

Test Mode Action Taken When Exiting Test Mode How to Go Back to Normal Data
Transfer(1)

Digital Near
Loopback

RX symbol stream (bit-pump to framer) is sent
back to be the detected symbols sequence.

Exit test mode.

Digital Far Loopback External activation sequence mode: Transmit
external data (TX scrambler is
operated/bypassed according to the Transmit
Scrambler mode setting).

Exit test mode.

Internal activation sequence mode: Transmit
internally generated 4-level scrambled 1’s
sequence.

Exit test mode. Issue Transmit External Data
command to start transmitting the externally
supplied (payload) data.

All Other Test Modes Bit-pump initialized to a reset state, and goes to
an IDLE state.

Complete activation operation is required.

(1) Assuming normal data transfer took place before issuing test mode

Opcode

Numeric Value C Constant (defined in file api.h)

0x0D _TEST_MODE
A-10 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

Options

Option Description Data
Field C Constant (api.h)

Exit Test Mode Cancel test mode. See Table A-1. 0x00 _EXIT_TEST_MODE

External Analog
Loopback

Transmit the externally supplied TX symbols. Use the echo signal
as a “received” signal and detect the symbols using the standard
equalizer.

0x01 _ANALOG_LOOPBACK

Digital “Near” Loop
Back

TX symbols supplied to the bit-pump by the framer are looped
back as the RX symbols going from the bit-pump to the framer.
Useful for testing the framer and the framer/bit-pump connection.

0x02 _NEAR_LOOPBACK

Digital “Far”
Loop Back

Detected RX symbols are transmitted back on the loop. Useful for
testing full 2-way transmission over a loop.(1)

0x03 _FAR_LOOPBACK

Transmit Isolated
+3 Pulse

Transmit (repeatedly) an isolated +3 level pulse. Useful for testing
the transmitted pulse shape.

0x04 _ISOLATED_PULSE_PLUS3

Transmit Isolated
+1 Pulse

Transmit (repeatedly) an isolated +1 level pulse 0x05 _ISOLATED_PULSE_PLUS1

Transmit Isolated
–1 Pulse

Transmit (repeatedly) an isolated –1 level pulse 0x06 _ISOLATED_PULSE_MINUS1

Transmit Isolated
–3 Pulse

Transmit (repeatedly) an isolated –3 level pulse 0x07 _ISOLATED_PULSE_MINUS3

Continuous 4-level
Transmission

Continuous transmission of a 4-level scrambled 1s sequence
(internally generated). Useful for measuring transmitted power
and spectral shape.

0x08 _FOUR_LEVEL_SCR

Continuous 2-level
Transmission

Continuous transmission of a 2-level scrambled 1s sequence
(internally generated).

0x09 _TWO_LEVEL_SCR

Set Nominal VCXO
Frequency

Set VCXO control word to its nominal value. Useful for measuring
VCXO center frequency.

0x0A _VCXO_NOMINAL

Set Minimum VCXO
Frequency

Set VCXO control word to its minimum value. 0x0B _VCXO_MIN

Set Maximum
VCXO Frequency

Set VCXO control word to its maximum value. 0x0C _VCXO_MAX

Internal Analog
Loop Back

Transmits the externally supplied Tx symbols out the TXP and
TXN pins and detects the symbols on the hybrid inputs (RXBP,
RXBN), the receive inputs (RXP and RXN) are bypassed.

0x0D _INTERNAL_ANALOG_
LOOPBACK

Isolated Analog
Loop Back

The externally supplied Tx symbols are internally looped back in
the Bt8960. The transmitter (TXP and TXN) is turned off (silent).

0x0E _ISOLATED_ANALOG_
LOOPBACK

(1) The operation of a digital “far” loopback requires activating the Bt8960 internal TX scrambler and RX descrambler.
100251B Conexant A-11
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

A.1.14 Symbol Rate

Informs the Bt8960 software of the bit-pump symbol rate. This value is used to convert seconds to
symbols when absolute time interval measurements are performed using the symbol rate on-chip
timers. This value must be programmed for proper bit-pump operation.

NOTE: If the _SYM_RATE command is issued, then it must be called immediately after the
_SYSTEM_CONFIG ON command. The _SYM_RATE command sets the PLL Clock
Center Frequency. There is a potential for the bit-pump registers to get corrupted when the
PLL Clock Frequency is changed. The _SYM_RATE command initializes the bit-pump
registers to the default state after writing the PLL Clock Center Frequency. Therefore, the
user must issue their application specific API Command Values after the _SYM_RATE
command is issued.

A.1.15 Reset

Loads bit-pump microcode, reset all bit-pump internal registers, and set all user-programmable
options to their default values. After issuing a reset, all non-default user-programmable options
should be reprogrammed using the appropriate commands. The Reset operation is automatically
performed when turning a bit-pump ON using the Bit-Pump ON/OFF command. Therefore, under
normal operating conditions, there should be no need for the Reset command.

Opcode

Numeric Value C Constant (defined in file api.h)

0x0E _SYM_RATE

Options

Option Description Data
Field C Constant (api.h)

Symbol rate 1-Byte unsigned integer X, calculated according to:
X=Symbol Rate / 4096.
Default Value: 35=144 Ks/sec.

X

Opcode

Numeric Value C Constant (defined in file api.h)

0x0F _RESET_SYSTEM

Options

Option Description Data
Field C Constant (api.h)

None 0x00
A-12 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

A.1.16 Operate Non-Linear EC

Selects between operating or disabling of the Bt8960 non-linear echo canceler.

NOTE: The Non-Linear echo canceler is not functional in Bt8960 Rev A & B and should not
be activated.

A.1.17 Write Transmitter Gain

Writes the Transmitter Gain Register. The Transmitter Gain register is a 4-bit, 2’s complement
value. The upper 4 bits of this field are ignored. The Tx Gain adjusts the nominal transmit power of
the Bt8960. The Tx Gain ranges from –1.6 dBm (1000b) to +1.4 dBm (0111b) of the nominal
transmit power level.

Opcode

Numeric Value C Constant (defined in file api.h)

0x11 _OPERATE_NLEC

Options

Option Description Data
Field C Constant (api.h)

Disable NL EC NL EC is not activated and not used 0x00 _NLEC_OFF

Enable NL EC NL EC operates normally 0x01 _NLEC_ON

Opcode

Numeric Value C Constant (defined in file api.h)

0x13 _WRITE_TX_GAIN

Options

Option Description Data
Field C Constant (api.h)

Tx Gain 4-bit, 2’s complement integer. Value
100251B Conexant A-13
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.1 Control Commands Software User’s Guide

A.1.18 Tip/Ring Reversal

Reverses the Tip/Ring polarity on the received signal. However, the Bt8960 does not reverse the
Tip/Ring polarity on the transmitted signal. In addition, the Bt8960 does not provide the ability to
detect when Tip/Ring reversal is necessary.

This command is useful in applications where a framer has the ability to detect Tip/Ring
reversal but can not correct the Tip/Ring reversal. Since this command only reverses the received
signal, it is necessary to call this command on both the Central and Remote terminals when
Tip/Ring reversal is detected.

NOTE: This command is only supported by Versions 2.0+.

A.1.19 BER Meter Start

Activates the BER Meter. The bit-pump is set to transmit an internal 4-Level scrambled ones
pattern. The enabled bit is set and the bit_errors & meter_intervals variables are reset to 0. This
command should only be called during the Bit-pump’s normal operation.

NOTE: This command is only supported by Versions 2.0+.

Opcode

Numeric Value Opcode

0x14 _REVERSE_TIP_RING

Options

Option Description Data
Field

C Constant (defined in file
api.h)

Tip/Ring
Normal

Sets the Tip/Ring polarity on the received signal to normal
(not-reversed).

0x00

Tip/Ring
Reverse

Reverses the Tip/Ring polarity on the received signal. 0x01

Opcode

Numeric Value C Constant (defined in file api.h)

0x15 _BER_METER_START
A-14 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.1 Control Commands

A.1.20 BER Meter Stop

Deactivates the BER Meter. The bit-pump is set to transmit external 4-Level data, the transmit
scrambler is set based on the current _TRANSMIT_SCR API setting. The enabled bit is turned
OFF. The bit_errors and meter_intervals variables are unmodified so they can be still read.

NOTE: This command is only supported by Versions 2.0+.

Options

Option Description Data
Field C Constant (defined in file api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x16 _BER_METER_STOP

Options

Option Description Data Field C Constant (defined in file api.h)

None 0x00
100251B Conexant A-15
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

A.2Status Request Commands

Status request commands are used to get performance monitoring information from the bit-pump.
These commands do not affect bit-pump operation in any way. The bit-pump response to all status
request commands is a 1-byte response.

For each status request command, the type and format of information supplied, and the
command opcode and the options are described.

A.2.1 Input Signal Level

Requests the level of the average signal level at the ADC input.

NOTE: The signal at the ADC input consists of a large transmitted echo component, and a
smaller far-end signal component. Thus, no cable attenuation data may be extracted
from this information.

A.2.1.1 Bit-pump Response

Unsigned integer X, 0 ≤ X ≤ 255, relative to the average absolute value of the ADC input signal.
The measurement scale is such that a value of 255 corresponds to the ADC positive full scale
value.

A.2.2 Input DC Offset

Requests the value of the average DC level at the ADC input.

NOTE: Any level of input DC offset is digitally canceled on-chip, but large DC offsets (>2%
of full scale) may degrade performance because of the reduction in effective ADC
dynamic range.

Opcode

Numeric Value C Constant (defined in file api.h)

0x80 _SLM

Options

Option Description Data
Field C Constant (api.h)

None 0x00
A-16 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.2 Status Request Commands

A.2.2.1 Bit-pump Response

Signed integer X, –128 ≤ X ≤ 127, relative to the average DC offset per ADC sample. The
measurement scale is such that the actual DC offset in units of ADC LSB is 32X. In case the actual
DC offset is outside the representable range (–4096 to 4095), the nearest representable value will
be used.

A.2.3 Far-End Signal Attenuation

Requests a value of the far-end signal attenuation. This value is based on measuring the average
far-end signal level after echo cancellation.

The result is calibrated to represent the overall signal power attenuation over the cable in dB. It
is also calibrated for an analog gain value of 0 dB, with an absolute gain value as implemented in
Brooktree’s HDSL EVM system. When using a different analog gain value, or an AAGC gain
selection other than 0 dB, the signal attenuation result must be scaled accordingly. For example, if
an analog gain value of 6 dB is used, the actual signal attenuation is 6 dB larger than reported. Note
also that this value depends on the transmitted power at the far-end side, and is calibrated for the
nominal 13.5 dBm value.

A.2.3.1 Bit-pump Response

1-Byte unsigned integer X, 0 ≤ X ≤ 255, indicating the overall signal power attenuation, in units of
0.5 dB. For example, a value of 60 means total cable attenuation of 30 dB.

Opcode

Numeric Value C Constant (defined in file api.h)

0x81 _DC_METER

Options

Option Description Data
Field C Constant (api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x82 _FELM

Options

Option Description Data
Field C Constant (api.h)

None 0x00
100251B Conexant A-17
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

A.2.4 Noise Margin

Requests a value of the noise margin (NMR) of the receiver. The noise margin is defined as the
maximum tolerable increase in external noise power that still allows for BER of less than 1E–7.

The value is based on measuring the average absolute level of the noise at the input to the
slicer. In order to get a stable response, it is recommended that the average of 10 noise margin
readings is used to reduce the statistical measurement error.

A.2.4.1 Bit-pump Response

1-Byte signed integer X, –128 ≤ X ≤ 127, indicating the noise margin in units of 0.5 dB. For
example, a value of –8 means a noise margin of –4 dB.

A.2.5 Timing Recovery Control

Requests a value of the Timing Recovery Control circuit. This value indicates the timing recovery
frequency relative to its center frequency, which does not necessarily equal the nominal
transmission frequency. On an HTU-C terminal, this response will always be zero since the control
circuit is set to its nominal value. On an HTU-R terminal, this value gives an estimate of the
frequency offset relative to the center frequency. The relation of the given value with the frequency
offset in Hz depends on the timing recovery’s slope.

NOTE: This replaces the _VCXO_CONTROL_VOLTAGE API command found in existing
Brooktree HDSL products.

Opcode

Numeric Value C Constant (defined in file api.h)

0x83 _NMR

Options

Option Description Data
Field C Constant (api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x84 _TIMING_RECOVERY_CONTROL
A-18 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.2 Status Request Commands

A.2.5.1 Bit-pump Response

Signed integer X, –128 ≤ X ≤ 127, indicating the 8 MSBs of the timing recovery control word.

A.2.6 Bit-Pump Status

Requests bit-pump status. The status bits are designated I0 (LSB) to I7 (MSB), and interpreted
according to Table A-2.

Options

Option Description Data
Field C Constant (api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x85 _STARTUP_STATUS

Options

Option Description Data
Field C Constant (api.h)

None 0x00
100251B Conexant A-19
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

A.2.6.1 Bit-pump Response

A.2.7 Read Linear Echo Canceler Coefficient

Reads a specified Linear Echo Canceler coefficient.

Table A-3. Status Bits

Status
Bit Indicates Value = 0 Value = 1

I0
(LSB)

LOS: A LOS condition is defined as the absence of a far-end signal at
the receiver input.

No LOS condition LOS condition

I1 LOST: A LOST condition is defined as a continuously active LOS
condition for more than a period of LOST seconds. The LOST period is
user programmable (see the LOST Time Period command).

No LOST condition LOST condition

I2 Reserved

I3 Activation timer: On an HTU-R, the Activation timer is activated when
2-level transmission begins. On an HTU-C, the Activation timer is
activated when an Activate command is issued and 2-level
transmission begins. The timer is restarted when a far-end (HTU-R)
signal is detected.
Note: The Activation Timer defaults to 50 seconds for a 288kbps data
rate system

Timer not expired Timer expired

I4 Noise Margin OK: Indicates that the noise margin is better than a
threshold of –5 dB.

Noise margin
≤ –5dB

Noise margin
> –5 dB

I5 Reserved

I6 Transmitter 4-Level Indicator: indicates that a 4-Level signal is being
transmitted.

Not transmitting
4-Level

Transmitting
4-Level

I7 Normal Operation Flag: This bit is set when the Bit-pump successfully
completes startup. This bit is cleared when the startup is first
Activated, when the Deactivate command is issued, and when
Initialized.

Not Normal
Operation

Normal
Operation

Opcode

Numeric Value C Constant (defined in file api.h)

0x86 _LEC_COEFF

Options

Option Description Data
Field C Constant (api.h)

Coefficient index Unsigned integer X, 0 ≤ X ≤ 59, indicating the index of
the linear EC coefficient to be read.

X

A-20 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.2 Status Request Commands

A.2.7.1 Bit-pump Response

1-Byte signed integer X, containing the 8 MSBs of the requested Linear EC coefficient value.

A.2.8 Read Non-Linear Echo Canceler Coefficient

Reads a specified Non-Linear Echo Canceler Coefficient.

A.2.8.1 Bit-pump Response

Signed integer X, containing the 8 MSBs of the requested non-linear EC coefficient value.

A.2.9 Read EQ Coefficient

Reads a specified DAGC, FFE, or EP coefficient.

Opcode

Numeric Value C Constant (defined in file api.h)

0x87 _NLEC_COEFF

Options

Option Description Data
Field C Constant (api.h)

Coefficient index Unsigned integer X, 0 ≤ X ≤ 63, indicating the index of
the non-linear EC coefficient to be read.

X

Opcode

Numeric Value C Constant (defined in file api.h)

0x88 _EQ_COEFF
100251B Conexant A-21
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

 A.2.9.1 Bit-pump Response

Signed integer containing the 8 MSBs of the requested EQ coefficient value.

A.2.10 Read DFE Coefficient

Reads a specified DFE coefficient.

Options

Option Description Data
Field C Constant (api.h)

FFE coefficients Request FFE coefficients 0–7 0–7

FFE Data Taps Request FFE Data Taps 0–7 8–15

EP coefficients Request EP coefficients 0–4 16–20

EP Data Taps Request EP Data Taps 0–4 21–25

DAGC gain Request DAGC gain value – LSB
Request DAGC gain value – MSB

26
27

DAGC Output Request DAGC Output 28

FFE Output Request FFE Output 29

DAGC Input Request DAGC Input 30

FFE Output, delayed 1
Symbol

Request FFE Output, delayed 1 Symbol 31

DAGC Error Signal Request DAGC Error Signal 32

Equalizer Error
Signal

Request Equalizer Error Signal 33

Slicer Error Signal Request Slicer Error Signal 34

Reserved 35–47

Opcode

Numeric Value C Constant (defined in file api.h)

0x89 _DFE_COEFF

Options

Option Description Data
Field C Constant (api.h)

Coefficient index Unsigned integer X, 0 ≤ X ≤ 57, indicating the index
of the DFE coefficient to be read.

X

A-22 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.2 Status Request Commands

A.2.10.1 Bit-pump Response

Signed integer X, containing the 8 MSBs of the requested DFE coefficient value.

A.2.11 Software/Chip Version

Requests software and chip version numbers.

Opcode

Numeric Value C Constant (defined in file api.h)

0x8A _VERSION

Options

Option Description Data
Field C Constant (api.h)

Major SW Version
Chip Version

The 4 LSBs of the status byte (bit 0–bit 3) contain the
bit-pump major software version, bit 0 being the LSB.
The 4 MSBs of the status byte (bit 4–bit 7) indicate the
bit-pump chip version, bit 4 being the LSB

0x00 _HW_SW_VERSIONS

Major SW Version 1-Byte unsigned integer field returning the major
software version.

0x01 _MAJOR_SW_VERSION

Minor SW Version 1-Byte unsigned integer field returning the minor
software version.

0x02 _MINOR_SW_VERSION

Bit-pump Type
Chip Version

The 3 LSBs of the status byte (bit 0–bit2) contain the
bit-pump type (see table below). Bit 3 is undefined.
The 4 MSBs of the status byte (bit 4–bit 7) indicate the
bit-pump chip version, bit 4 being the LSB.

0x03 _HW_TYPE_VERSIONS

Bit-pump Types

Bits 2-0 Bit-pump Type

000 Bt8952

001 Bt8960

010–111 undefined
100251B Conexant A-23
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

A.2.12 Bit-pump Present

Requests a bit-pump presence status. A positive response means that the bit-pump is present in the
system and connected to the microprocessor. The presence of a bit-pump is determined by
performing a write/read operation to a single internal bit-pump RAM location. It is possible for
hardware faults to masquerade as the presence of a bit-pump at a location. The presence of a
bit-pump does not guarantee that all microprocessor bit-pump hardware connections are OK.

A.2.12.1 Bit-pump Response

• 0x00: Bit-pump not present
• 0x01: Bit-pump present

A.2.13 Self Test

Executes a bit-pump self-test. The self-test does not cover all aspects of the chip operation, but
verifies read/write operations.

A.2.13.1 Bit-pump Response

• 0x00: Bit-pump self-test pass
• 0x01: Bit-pump self-test fail

Opcode

Numeric Value C Constant (defined in file api.h)

0x8B _BIT_PUMP_PRESENT

Options

Option Description Data
Field C Constant (api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x8C _SELF_TEST

Options

Option Description Data
Field C Constant (api.h)

None 0x00
A-24 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.2 Status Request Commands

A.2.14 Read Bt8960 Register

Reads an internal Bt8960 register. Register address is required.

A.2.14.1 Bit-pump Response

Value stored in specified Bt8960 internal register.

A.2.15 Bit-pump Configuration

Requests a bit-pump configuration. This includes user programmable options and parameters.

Opcode

Numeric Value C Constant (defined in file api.h)

0x8D _REGISTER

Options

Option Description Data
Field C Constant (api.h)

Bt8960 register
address

Address of internal Bt8960 register to be read. See Bt8960
datasheet for register address map.

X

Opcode

Numeric Value C Constant (defined in file api.h)

0x8E _CONFIGURATION

Option

Option Description Data
Field C Constant (api.h)

Read low
application setup
byte

Read low byte of application setup word. See Table
A-3 for structure of application setup word.

0x00 _USER_SETUP_LOW_BYTE

Read high
application setup
byte

Read high byte of application setup word. See Table
A-4 for structure of application setup word.

0x01 _USER_SETUP_HIGH_BYTE

Read LOST time
period

Read LOST time period. The format of this status
byte is identical to the format in the LOST Time
Period command.

0x02 _LOST

Read symbol rate Read symbol rate. The format of this status byte is
identical to the format in the Symbol Rate command.

0x03 _BIT_RATE
100251B Conexant A-25
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

All fields of the application setup word are coded in exactly the same way as the data field byte in
the corresponding control command. For example, the two Data Transfer Format bits (bits 0,1 of
the high application setup byte) are interpreted exactly the same as the data field byte in the Data
Transfer Format command.

The 4 test mode bits (Test mode 0–Test mode 3) show the current test mode index (numbered
from 0 to 14) with Test Mode 0 being the LSB. A zero value indicates that no test mode is currently
in effect. A non-zero value indicates that the bit-pump currently operates in the specified test
mode. See the Test Mode command.

A.2.16 Stage Number

Gets the bit-pump software stage number.

A.2.16.1 Bit-pump Response

The Bt8960 software internal stage number. This stage number changes when the bit-pump goes
through a activation procedure. File suc.h contains C definitions mapping the stage numbers to
stage names. This command is only used for test and debug purposes.

Table A-4. Low Application Setup Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Other side
Bt8960

Receive
descr.

Transmit
scramb.

Start-up
sequence

source

Analog AGC
Config 1

Analog AGC
Config 0

Terminal
type

Table A-5. High Application Setup Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Test mode
3

Test mode
2

Test mode
1

Test mode
0

Reserved Reserved Data
transfer
format 1

Data
transfer
format 0

Opcode

Numeric Value C Constant (defined in file api.h)

0x8F _STAGE_NUMBER

Options

Option Description Data
Field C Constant (api.h)

None 0x00
A-26 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.2 Status Request Commands

A.2.17 AAGC Value

Gets the current value of the 3 AAGC control bits.

A.2.17.1 Bit-pump Response

The 3 LSBs of this status byte reflect the state of the AAGC control bits. This command is useful
for calculating the true signal attenuation by compensating for the actual AAGC gain (see Far-End
Signal Attenuation command).

A.2.18 Read Tx Gain

Reads the Transmitter Calibration/Gain registers. The Transmitter Gain registers are a 4-bit, 2’s
complement value. The upper 4 bits of this field are ignored.

A.2.18.1 Bit-pump Response

The Tx Calibration Register contains the nominal setting for the transmitter gain. The Tx Gain
Register contains the current transmitter gain setting. On software initialization, the Tx Gain
register is programmed to the Tx Calibration register.

Opcode

Numeric Value C Constant (defined in file api.h)

0x90 _AAGC_VALUE

Options

Option Description Data
Field C Constant (api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x91 _READ_TX

Options

Option Description Data
Field C Constant (api.h)

Tx Calibration Transmitter Calibration Register 0x00 _CALIBRATION

Tx Gain Transmitter Gain Register 0x01 _GAIN
100251B Conexant A-27
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.2 Status Request Commands Software User’s Guide

A.2.19 BER Meter Status

Request the BER Meter Status. Reading the BER Meter status commands while the BER Meter is
enabled does not effect the BER meter operation.

NOTE: This command is only supported by Versions 2.0+.

Opcode

Numeric Value C Constant (defined in file api.h)

0x92 _BER_METER_STATUS

Options

Option Description Data
Field C Constant (defined in file api.h)

BER Status Read the BER Meter Status, see the
BER Status below for bit definitions.

0x00 _BER_STATUS

Bit Errors Low Byte Reads the low byte of the number of
bit-errors.

0x01 _BER_BIT_ERRORS_LOW

Bit Errors High Byte Reads the high byte of the number
of bit-errors.

0x02 _BER_BIT_ERRORS_HIGH

Meter Intervals Low
Byte

Reads the low byte of the number of
meter intervals elapsed.

0x03 _BER_METER_INTERVALS_LOW

Meter Intervals High
Byte

Reads the high byte of the number
of meter intervals elapsed.

0x04 _BER_METER_INTERVALS_HIGH

BER Status Bits

Status
Bit Indicates Value = 0 Value = 1

0 BER Meter Enabled Not Active Active

1-–7 Reserved
A-28 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix A Command Set Reference

Software User’s Guide A.3 Special Messages

A.3Special Messages

A.3.1 Acknowledge

This message is sent by the 8032 to acknowledge a correctly received message, in a serial
communication UI configuration. The acknowledge message is 4 bytes long (like all other
messages), with the first 3 being 0xFF, 0xFF, 0xFF. Byte 4 (last transmitted) is the standard
checksum byte, which equals 0x55.
100251B Conexant A-29
Preliminary Information/Conexant Proprietary and Confidential

Appendix A Command Set Reference Bt8960

A.3 Special Messages Software User’s Guide

A-30 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
B

Appendix B Calibrating Noise Margin Table

B.1Introduction

The Noise Margin Table defined in module USER.C is calibrated to W & G ILS 200 ETSI Loop 2
with 1.5 MHz shaped noise with low crest factor. This document describes the steps needed to
calibrate the noise margin table to a user’s specific noise source. The Noise Margin Table has a 0.5
dB resolution.

B.1.1 Setup

Use a line simulator or true line and a noise generator. Select a simple standard loop like ISDN
Loop 2 and perform startup. Connect a BER meter to the HDSL equipment.

B.1.2 Noise Margin Table Calibration

B.1.2.1 Calculate scale factor.

1. Read meter timer high byte address 0x19, using the API command :
_BtStatus (loop_no, _REGISTER, 0x19, &scale);

2. Calculate scale factor.
scale_factor = ((2^7) / scale);

B.1.2.2 Find 0 dB Noise Margin Reference Point.

1. Change the noise source until BER reading is 1.0e–7 (for 1 loop) or 5.0e–8 (for 2 loops).
This point is the 0 dB Noise Margin reference point
Conexant B-1
Preliminary Information/Conexant Proprietary and Confidential

Appendix B Calibrating Noise Margin Table Bt8960

B.1 Introduction Software User’s Guide

B.1.2.3 Calculate reference point value.

1. Read NLM meter low byte address 0x50, using the API command:
_BtStatus (loop_no, _REGISTER, 0x50, &low_byte);

2. Read NLM meter high byte address 0x51, using the API command:
_BtStatus (loop_no, _REGISTER, 0x51, &high_byte);

3. Combine the two NLM bytes (low_byte and high_byte) to an integer:
nlm_value = 256 * high_byte + low_byte;

4. Calculate the normalized value of noise level meter:
nlm_value = nlm_value * (2^scale factor);

5. Repeat steps 1 to 4 ten times. Calculate the average nlm_value over the ten readings.

B.1.2.4 Set 0dB reference point.

1. Write the averaged value of noise level meter to cell 32 in the _noise_margin[] array,
module USER.C.

B.1.2.5 Calculate +0.5dB Margin.

1. Decrement the noise source by 0.5 dB.

2. Repeat the Calculate Reference Point Value step B.1.2.3 (1 to 5).

3. Write the calculated value to next higher cell.

B.1.2.6 Calculate positive margin.

1. Repeat step B.1.2.5 (1 to 3) until the upper half of the table if full. The significant part of
the table is 0 dB to 15 dB noise margin. Higher margins can not be measured reliably.

B.1.2.7 Set Noise Source to 0dB.

1. Set the noise source to the 0 dB noise margin reference point.

B.1.2.8 Calculate –0.5 dB Margin.

1. Increment the noise source by 0.5 dB.

2. Repeat the Calculate Reference Point Value step B.1.2.3 (1 to 5).

3. Write the calculated value to next lower cell.

B.1.2.9 Calculate negative margin.

1. Repeat step B.1.2.8 (1 to 3) until the lower half of the table is full.
B-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
C

Appendix C ERLE Diagnostic Code

C.1Introduction

The ERLE program is a diagnostic tool to verify the integrity of the hardware’s analog front-end
and echo canceler. The ERLE program is useful when modifying the hybrid for different data rates.

C.2What is ERLE?

ERLE = Echo Return Loss Enhancement.
Four results are given from the ERLE program.

1. Background Noise Test
2. ERLE
3. Analog ERLE
4. AAGC Check

The background test measures the SLM while the transmitter is turned off. This effectively
gives the amount of noise present at the input of the A/D.

The ERLE result determines the amount of echo canceled. The echo is canceled initially by the
external hybrid and then by the Linear Echo Canceler in the bit-pump. The ERLE measurement is
determined by the following formula.

ERLE = 20 * log (SLM / FELM)

SLM = Signal Level Meter

FELM = Far End Level Meter

The Analog ERLE determines how much echo is canceled by the hybrid. This is done by
bypassing the hybrid and measuring the input signal level meter. The Analog ERLE measurement
is determined by the following formula.

ERLE = 20 * log (SLM2 / SLM)

SLM2 = Signal Level Meter with hybrid input bypassed

SLM = Signal Level Meter from ERLE result

The AAGC Check makes sure the gain settings are monatomic. The AAGC is the bit-pump’s
internal Analog Automatic Gain Control.
Conexant C-1
Preliminary Information/Conexant Proprietary and Confidential

Appendix C ERLE Diagnostic Code Bt8960

C.3 ERLE Files Software User’s Guide

C.3ERLE Files

The ERLE.C and ERLE.H files found in the bit-pump directory contains the ERLE functions.
Prior to calling these functions, the bit-pump must be configured using the appropriate API
commands.

C.3.1 _ERLE()

The _ERLE() routine measures the Background Noise, ERLE, and Analog ERLE.
Parameters: no - which bit-pump, _BIT_PUMP0 - _BIT_PUMP6

mode - mode of operation
The mode bits are defined as follows:

C.3.2 _MeasureAagc()

The _MeasureAagc() routine verifies the gain settings are monatomic.
Parameters:no- which bit-pump, _BIT_PUMP0 - _BIT_PUMP6

Routine Description

_Erle() Contains the ERLE diagnostic code. _Erle() is used to measure the Background Noise, ERLE, and
Analog ERLE.

_MeasureAagc() This function cycles through the AAGC settings and measures the SLM to make sure the gain
settings are monatomic.

Bit Description

0 Adapt Non-linear Echo Canceler. A ‘0’ does not adapt the NLEC. A ‘1’ adapts the NLEC.

1 Reserved

2,3,4 Select AGAIN setting. These 3 bits correspond to the 3 Gain Control bits of the ADC Control Register
(0x21).
000 = 0dB
001 = 3 dB
010 = 6 dB
011 = 9 dB
100 = 12 dB
101 = 15 dB

5,6,7 Reserved
C-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix C ERLE Diagnostic Code

Software User’s Guide C.4 Invoking the Tests

C.4Invoking the Tests

C.4.1 Background Test

To perform the Background Noise Test, call _Erle() when the transmitter is OFF. In this mode, the
program adapts the LEC (linear echo canceler). If the NLEC (non linear echo canceler) mode is on,
then the NLEC is also adapted. After adapting the coefficients, the SLM and FELM are read and
ERLE is calculated. The ERLE number is not important here, what is important are the SLM and
FELM register values.

C.4.2 ERLE and Analog ERLE Test

To perform the ERLE and Analog ERLE test, call _Erle() when the transmitter is ON. In this mode,
the program adapts the LEC (linear echo canceler). If the NLEC (non linear echo canceler) mode is
on, then the NLEC is also adapted. After adapting the coefficients, the SLM and FELM are read
and ERLE is calculated. After that, the hybrid bypass bit is set and Analog ERLE is calculated.

C.4.3 AAGC Check

To perform the AAGC Check test, call the _MeasureAagc() when the transmitter is ON.

C.5Compiling the ERLE Code

The ERLE code requires the compiler flag ERLE to be specified in the compiler flag define list.

C.5.1 TDEBUG Compiler Flag

The TDEBUG compiler is typically specified when generating the ERLE code. The TDEBUG
provides a ’printf()’ environment to display the results. In the TDEBUG environment, an RS232
cable must be connected to a terminal emulator.

NOTE: The SER_COM compiler flag can not be specified at the same time as the TDEBUG
flag.

However, it is possible to compile without the TDEBUG flag. If this is the case, then the user
would be responsible for extracting the results.
100251B Conexant C-3
Preliminary Information/Conexant Proprietary and Confidential

Appendix C ERLE Diagnostic Code Bt8960

C.5 Compiling the ERLE Code Software User’s Guide

C-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
D

Appendix D Release Notes

Appendix D contains the previous release notes for the Bt8960 software. These notes have also
been incorporated into their respective sections within this user’s guide.

NOTE: Bt8960 Bit-pump Version 2.0, Release Notes—November 13, 1996

D.1Memory Requirements

The RAM and ROM requirements for four common build options with their associated compiler
flags are given in Table D-1.

D.1.0.1 BT8960CR w/o BER_METER

C51, ADD_DELAY, PDATA_MODE, SER_COM, HTUC, HTUR, SINGLE_LOOP,
CHAN_UNIT

D.1.0.2 BT8960CR w/ BER_METER

C51, ADD_DELAY, PDATA_MODE, SER_COM, HTUC, HTUR, SINGLE_LOOP,
BER_METER, CHAN_UNIT

D.1.0.3 BT8960C w/ BER_METER

C51, ADD_DELAY, PDATA_MODE, SER_COM, HTUC, SINGLE_LOOP, BER_METER,
CHAN_UNIT

Table D-1. RAM and ROM Requirements

Build Option RAM ROM

BT8960CR w/o BER_METER 111 24.0 k

BT8960CR w/ BER_METER 117 24.4 k

BT8960C w/ BER_METER 117 20.0 k

BT8960R w/ BER_METER 117 20.6 k

NOTE(S): The RAM requirements do not include the stack size, an additional 24 bytes is required for the run-time stack.
Conexant D-1
Preliminary Information/Conexant Proprietary and Confidential

Appendix D Release Notes Bt8960

D.1 Memory Requirements Software User’s Guide

D.1.0.4 BT8960R w/ BER_METER

C51, ADD_DELAY, PDATA_MODE, SER_COM, HTUR, SINGLE_LOOP, BER_METER,
CHAN_UNIT

D.1.1 Bug Fixes

The following bugs were fixed in Version 2.0.

D.1.1.1 HTU-C Phase #0 = 0 vs AagcCheck() Bug

When the AagcCheck() incremented the gain setting, the Linear EC was not re-adapted so the first
phase quality (phase #0) always reported 0. To solve this, in the START_OPEN_EYE stage, always
set the next stage to PHASE_ADAPT_EC1 instead of OPEN_EYE1; this will force the Echo
Canceler to be re-adapted. Fixing this bug improves startup reliability and performance.

D.1.1.2 External and Internal Analog Loopback

The External and Internal Analog loopback function did not work properly in Version 1.x. Please
see the Analog Loopbacks section below for details.

D.1.2 Support new Bt8960 Rev C

Version 2.0 supports the new Bt8960 Rev C silicon. The Bt8960 Rev C is identified by the
package marking PROTO3 or ES2, and the chip revision number 1 in the global modes register
(Addr. 0x00) and JTAG ID register. Version 2.0 is backwards compatible with the existing Bt8960
Rev A & B parts. However, the existing Version 1.x Bt8960 Bit-pump Software is not forward
compatible with the new Rev C parts.

D.1.2.1 _ReadAccessDataByte() function

When reading the indirect RAM (i.e. linear echo canceler, equalizer register, etc.) of the Bt8960
Rev C silicon, there can not be any other write operations to the Bt8960 after the indirect RAM
read address register (i.e. Addr: 0x70, 0x72, etc.) is selected and before the Access Data Byte
registers (Addr: 0x7C-0x7F) are read.

In the Bt8960 code, the only time this condition is violated is if an interrupt occurs in between
selecting the read address and reading the access data bytes. The _ReadAccessDataByte() function
disables the interrupts whenever reading the indirect RAM and re-enables the interrupts on exit.
The four Access Data Byte registers are stored in the global_access_data_byte[] array. The
calling function or routine then just accesses this global array without interfering with the bit-pump
registers.

D.1.2.2 Analog Loopbacks

The Bt8960 Rev C silicon fixed the Isolated Analog loopback. Please see the Analog Loopbacks
section below for details.
D-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix D Release Notes

Software User’s Guide D.1 Memory Requirements

D.1.3 Improved Performance

The startup reliability and performance for ANSI Loops #1 & #2 and maximum reach were
significantly improved.

D.1.3.1 Phase Quality Selection

In Bit-pump Version 1.x, a Bt8960 system would occasionally select the incorrect optimal phase on
some of the more difficult loops. During this bad startup, the system would successfully pass data
but the noise margin would be noticeably worse than a good startup. In addition, the Bt8960 could
not startup on ANSI Loops #1 and #2. Version 2.0 modified the optimal phase selection to provide
a more robust algorithm for the Bt8960 systems. This provides more reliable startups, the ability to
startup on ANSI Loops #1 & #2, and gains more maximum reach.

NOTE: This improvement applies to both Rev B and Rev C silicon.

D.1.4 New / Modified Features

The following features were added or fixed in Version 2.0.

D.1.4.1 Implemented Internal BER Meter

Implemented the Bt8960 internal BER Meter. Please see the Internal BER Meter Operation
section below for details.

D.1.4.2 READ_METER_REG() Macro

During the BER Meter operation, the bit-pump interrupt handler reads the BER Meter register
every meter interval. To insure that the interrupt doesn’t occur in between reading the low byte and
high byte of another meter register, the READ_METER_REG() macro disables the bit-pump
interrupt when accessing any of the meter registers.

D.1.4.3 Analog Loopbacks

The Bt8960 supports 3 types of analog loopbacks: External, Internal, and Isolated.

1. External—Transmitter ON, receiver uses both the receive (RXP, RXN) and hybrid (RXBP,
RXBN) inputs.

2. Internal—Transmitter ON, receiver only uses the hybrid inputs (RXBP, RXBN).
3. Isolated—Transmitter silent, internally loopbacked.

Table D-2 shows the relationship between the Chip Rev, Software Version, and Analog
Loopbacks supported.

Table D-2. Version Relationships

Version External Internal Isolated

V 1.x None None None

V 2.0 Rev B and C Rev C only Rev C only
100251B Conexant D-3
Preliminary Information/Conexant Proprietary and Confidential

Appendix D Release Notes Bt8960

D.1 Memory Requirements Software User’s Guide

D.1.5 New API Commands

The following API commands were added in Version 2.0.

D.1.5.1 Tip/Ring Reversal

This command reverses the Tip/Ring polarity on the received signal. However, the Bt8960 does
not reverse the Tip/Ring polarity on the transmitted signal. In addition, the Bt8960 does not
provide the ability to detect when Tip/Ring reversal is necessary.

This command is useful in applications where a framer has the ability to detect Tip/Ring
reversal but can not correct the Tip/Ring reversal. Since this command only reverses the received
signal, it is necessary to call this command on both the Central and Remote terminals when
Tip/Ring reversal is detected.

D.1.5.2 BER Meter Start

This command activates the BER Meter. The bit-pump is set to transmit an internal 4-Level
scrambled ones pattern. The enabled bit is set and the bit_errors & meter_intervals variables are
reset to 0. This command should only be called during the Bit-pump’s normal operation.

Opcode

Numeric Value C Constant (defined in file api.h)

0x14 _REVERSE_TIP_RING

Options

Option Description Data
Field

C Constant (defined in file
api.h)

Tip/Ring
Normal

Sets the Tip/Ring polarity on the received signal to normal
(not-reversed).

0x00

Tip/Ring
Reverse

Reverses the Tip/Ring polarity on the received signal. 0x01

Opcode

Numeric Value C Constant (defined in file api.h)

0x15 _BER_METER_START

Options

Option Description Data Field C Constant (defined in file api.h)

None 0x00
D-4 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix D Release Notes

Software User’s Guide D.1 Memory Requirements

D.1.5.3 BER Meter Stop

This command deactivates the BER Meter. The bit-pump is set to transmit external 4-Level data,
the transmit scrambler is set based on the current _TRANSMIT_SCR API setting. The enabled bit
is turned OFF. The bit_errors & meter_intervals variables are unmodified so they can be still
read.

D.1.5.4 BER Meter Status

Request the BER Meter Status. Reading the BER Meter status commands while the BER Meter is
enabled does not effect the BER meter operation.

Opcode

Numeric Value C Constant (defined in file api.h)

0x16 _BER_METER_STOP

Options

Option Description Data Field C Constant (defined in file api.h)

None 0x00

Opcode

Numeric Value C Constant (defined in file api.h)

0x92 _BER_METER_STATUS

Options

Option Description Data
Field C Constant (defined in file api.h)

BER Status Read the BER Meter Status, see the BER
Status below for bit definitions.

0x00 _BER_STATUS

Bit Errors Low
Byte

Reads the low byte of the number of
bit-errors.

0x01 _BER_BIT_ERRORS_LOW

Bit Errors High
Byte

Reads the high byte of the number of
bit-errors.

0x02 _BER_BIT_ERRORS_HIGH

Meter Intervals
Low Byte

Reads the low byte of the number of
meter intervals elapsed.

0x03 _BER_METER_INTERVALS_LOW

Meter Intervals
High Byte

Reads the high byte of the number of
meter intervals elapsed.

0x04 _BER_METER_INTERVALS_HIGH
100251B Conexant D-5
Preliminary Information/Conexant Proprietary and Confidential

Appendix D Release Notes Bt8960

D.1 Memory Requirements Software User’s Guide

D.1.6 Internal BER Meter Operation

This section describes how to use the Bt8960’s Internal BER Meter. The BER Meter can be used to
verify the integrity of the line. The BER Meter can be used as a diagnostic tool during
production/field testing or hardware/software development.

The BER Meter uses its internal scrambled ones generator & de-scrambler to detect bit-errors.
For the BER Meter to function properly, both the HTU-C and HTU-R must issue the
_BER_METER_START API command. Since the BER Meter uses its own internal scrambled
ones generator, the BER Meter can be not used when transporting real payload data. The BER
Meter is only operational after the bit-pump has successfully completed startup.

D.1.6.1 BER_METER Compiler Flag

The BER_METER flag compiles in the BER Meter code. The BER Meter code adds ~400 bytes of
ROM and 1 byte of RAM plus an additional 5 bytes of RAM for each bit-pump.

NOTE: The BER_METER flag can not be declared when the INT_BUG compiler flag is
specified.

D.1.6.2 BER_METER API Commands

The BER Meter API commands are discussed in Section 5.

D.1.6.3 Calculating Avg BER and Elapsed Time

The following formulas are used to calculate the Avg BER and Elapsed Time.

BER Status Bits

Status
Bit Indicates Value = 0 Value = 1

0 BER Meter Enabled Not Active Active

1–7 Reserved

AvgBER
ofBitError s

ofMeterInt ervals MeterInter valLength
=

#

* *2

ElapsedTim e
ofMeterInt ervals MeterInter valLength

DataRate
=

* *2
D-6 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix D Release Notes

Software User’s Guide D.1 Memory Requirements

Variable How derived

of Bit-Errors Read the # of Bit-Errors Low & High Byte API commands and build a 16-bit unsigned integer.

of Meter Intervals Read the # of Meter Intervals Low & High Byte API commands and build a 16-bit unsigned integer.

Meter Interval Length Read the Bt8960 Meter Interval Register (Address 0x18, 0x19) and build a 16-bit unsigned
integer. During normal operation, these registers should always read 0x8000 (32768).

Data Rate Data Rate of the system, i.e. 288000 or 416000.

2 The ‘* 2’ is necessary since there are 2 bits per symbol and the meter interval length is based on
the number of symbols.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

Figure D-1. Example

/*
 * Assuming 288kbps Data Rate, Normal Operation, and BER Meter Active
 * Also assumes using compiler/linker that supports floating point.
 */
void get_ber_meter_status (unsigned char no)
{
 unsigned char temp, temp1;
 unsigned int errors, intervals;
 float avg_ber, elapsed_time;

 _BtStatus(no, _BER_METER_STATUS, _BER_BIT_ERRORS_LOW, &temp);
 _BtStatus(no, _BER_METER_STATUS, _BER_BIT_ERRORS_HIGH, &temp1);
 errors = (unsigned)BYTE2WORD(temp1, temp);

 _BtStatus(no, _BER_METER_STATUS, _BER_METER_INTERVALS_LOW, &temp);
 _BtStatus(no, _BER_METER_STATUS, _BER_METER_INTERVALS_HIGH, &temp1)
 intervals = (unsigned)BYTE2WORD(temp1, temp);

 avg_ber = (errors) / (intervals * 0x8000 * 2) /* equations don’t show necessary type casting */
 elapsed_time = (intervals * 0x8000 * 2) / (288000)

#if TDEBUG
 printf("# Bit Errors = %u\n", errors);
 printf("# Meter Intervals = %u\n", intervals);
 printf("Avg Ber = %.2e\n", avg_ber);
 printf("Elapsed Time = %.1f seconds\n", elapsed_time);
#endif

 return;
}

100251_008
100251B Conexant D-7
Preliminary Information/Conexant Proprietary and Confidential

Appendix D Release Notes Bt8960

D.1 Memory Requirements Software User’s Guide

D.1.7 BER Meter Bit-pump Code Implementation

This section describes how the Bt8960’s Internal BER Meter is implemented in the Bit-pump
Software. The user does not need to be aware of the exact details since all access to the BER Meter
status is done through the API.

D.1.7.1 BER_METER_STRUCT Structure

The user should not directly access the BER Meter structure.
The BER Meter Structure is defined as follows:

#ifdef BER_METER
typedef union
{
 unsigned char reg;
 struct
 {
 unsigned char enabled:1;
 unsigned char :7;
 } bits;
} ber_meter_status;

typedef struct
{
 ber_meter_status status;
 unsigned int bit_errors;
 unsigned int meter_intervals;
}BER_METER_STRUCT;
extern BER_METER_STRUCT idata ber_meter[_NO_OF_LOOPS];
#endif

The ber_meter array is stored in idata since it takes up 5 bytes of memory per bit-pump.

be_meter_status: struct
The ber_meter_status structure contains 1 field, enabled. The enabled flag is used to determine
when the BER Meter is currently active. The enabled bit is deactivated whenever the part is reset,
startup is activated or deactivated, or the _BER_METER_STOP API command is called.

bit_errors: int
This variable keeps track of the number of bit errors. This is updated every Meter Interval when
the BER Meter is enabled. This variable is reset whenever the _BER_METER_START API
command is called.

meter_intervals: int
This variable keeps track of the number of meter intervals elapsed. This is updated every Meter
Interval when the BER Meter is enabled. This variable is reset whenever the
_BER_METER_START API command is called.

D.1.7.2 Interrupt Handler

The interrupt handler reads the Bit Error Rate Meter Register (Address 0x4C, 0x4D) and updates
the Number of Bit-Errors and Number of Meter Intervals counter after every meter interval. This
causes the interrupt handler to be slightly longer, ~55uS per bit-pump on an 11.0592MHz
Intel 8032.
D-8 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Bt8960 Appendix D Release Notes

Software User’s Guide D.2 Bt8960 Bit-pump Version 1.1, Release Notes—September 2, 1996

D.2Bt8960 Bit-pump Version 1.1, Release Notes—September 2, 1996

D.2.1 PLL Modes CLK_FREQ Bits were Incorrect

The PLL Frequency #defines for 2 & 8 Channel in API.H (line 116) were incorrect. However, the
4 and 6 channel #defines were correct. This bug could potentially impact the performance on
systems running below 220kbps or running above 483kbps since the wrong CLK_FREQ range
setting was selected. The PLL Modes Register (Addr: 0x22) should be as follows:

D.2.2 Added ERLE Support

The ERLE code is a diagnostic tool to verify the integrity of the hardware’s analog front-end and
echo canceler. The files ERLE.C and ERLE.H contain the ERLE code. These 2 files are located
in the bit-pump sub-directory. The SCRIPT.BLD file was modified to include the ERLE target.

Please see the Bt8960 Single-Chip 2B1Q Transceiver Bit-pump Software User’s Guide
Version 1.1 (UG8960-1A) for complete details of the ERLE code.

D.2.3 Bt8960EVM Single Board Support

Brooktree now offers a production Bt8960EVM System. These systems have integrated the
Bt8960 Chip, Microprocessor, EPROM, etc. onto a single PCB. The Bt8960EVM System now has
separate code and data space unlike previous EVM versions. The following changes were made to
the bit-pump code to support the new systems:

D.2.3.1 USER.C - Different Bit-pump Address Mapping

The bit-pump address map is located at 0x0000, the _BIT_PUMP0_ADD #define was changed to
reflect the new hardware.

clk_freq[1,0] Number of Channels (N) Resulting Data Rate Nominal Crystal Center
Freq

00 4 288 kbps 9.216 MHz

01 6 416 kbps 13.312 MHz

10 2 160 kbps 5.120 MHz

11 Reserved - -

NOTE(S): The ‘Reserved’ setting behaves identically to the 6 Channel setting and not as an 8 Channel setting as initially presumed.
Brooktree reserves the right to change the definition of the ‘Reserved’ setting.
100251B Conexant D-9
Preliminary Information/Conexant Proprietary and Confidential

Appendix D Release Notes Bt8960

D.2 Bt8960 Bit-pump Version 1.1, Release Notes—September 2, 1996 Software User’s Guide

D.2.3.2 SCRIPT.BLD - XDATA Mapping

The LFLAGS XDATA() option was changed to 0x0000 to reflect the new hardware. In addition,
the CFLAGS is compiled with the SINGLE_LOOP bit-pump compiler option since the new
hardware only supports one bit-pump.

D.2.3.3 Application Code

The high-level application code was modified to take advantage of the features of the new system.
Please see the Bt8960 Single-Chip 2B1Q Transceiver EVM Software User’s Guide Version 1.1
(UG8960-3A) and EVM Hardware User’s Guide (UG8960-4A) for complete details on the new
Bt8960EVMs.=
D-10 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

100251B
E

Appendix E Version 1.1 Release Notes

Bt8960 Bit-pump Version 1.1, Release Notes, September 2, 1996

E.1PLL Modes CLK_FREQ Bits were Incorrect

The PLL Frequency #defines for 2 & 8 Channel in API.H (line 116) were incorrect. However, the
4 and 6 channel #defines were correct. This bug could potentially impact the performance on
systems running below 220kbps or running above 483kbps since the wrong CLK_FREQ range
setting was selected. The PLL Modes Register (Addr: 0x22) should be as follows:

clk_freq[1,0] Number of Channels (N) Resulting Data Rate Nominal Crystal Center
Freq

00 4 288 kbps 9.216 MHz

01 6 416 kbps 13.312 MHz

10 2 160 kbps 5.120 MHz

11 Reserved - -

NOTE(S): The ‘Reserved’ setting behaves identically to the 6 Channel setting and not as an 8 Channel setting as initially presumed.
Brooktree reserves the right to change the definition of the ‘Reserved’ setting.
Conexant E-1
Preliminary Information/Conexant Proprietary and Confidential

Appendix E Version 1.1 Release Notes Bt8960

E.2 Added ERLE Support Software User’s Guide

E.2Added ERLE Support

The ERLE code is a diagnostic tool to verify the integrity of the hardware’s analog front-end and
echo canceler. The files ERLE.C and ERLE.H contain the ERLE code. These 2 files are located
in the bit-pump sub-directory. The SCRIPT.BLD file was modified to include the ERLE target.

Please see the Bt8960 Single-Chip 2B1Q Transceiver Bit-pump Software User’s Guide Version
1.1 (UG8960-1A) for complete details of the ERLE code.

E.3Bt8960EVM Single Board Support

Brooktree now offers a production Bt8960EVM System. These systems have integrated the
Bt8960 Chip, Microprocessor, EPROM, etc. onto a single PCB. The Bt8960EVM System now has
separate code and data space unlike previous EVM versions. The following changes were made to
the bit-pump code to support the new systems:

E.3.1 USER.C - Different Bit-pump Address Mapping

The bit-pump address map is located at 0x0000, the _BIT_PUMP0_ADD #define was changed to
reflect the new hardware.

E.3.2 SCRIPT.BLD - XDATA Mapping

The LFLAGS XDATA() option was changed to 0x0000 to reflect the new hardware. In addition,
the CFLAGS is compiled with the SINGLE_LOOP bit-pump compiler option since the new
hardware only supports one bit-pump.

E.3.3 Application Code

The high-level application code was modified to take advantage of the features of the new system.
Please see the Bt8960 Single-Chip 2B1Q Transceiver EVM Software User’s Guide Version 1.1
(UG8960-3A) and EVM Hardware User’s Guide (UG8960-4A) for complete details on the new
Bt8960EVMs.
E-2 Conexant 100251B
Preliminary Information/Conexant Proprietary and Confidential

Further Information
literature@conexant.com
(800) 854-8099 (North America)
(949) 483-6996 (International)
Printed in USA

World Headquarters
Conexant Systems, Inc.
4311 Jamboree Road
Newport Beach, CA
92660-3007
Phone: (949) 483-4600
Fax 1: (949) 483-4078
Fax 2: (949) 483-4391

Americas

U.S. Northwest/
Pacific Northwest – Santa Clara
Phone: (408) 249-9696
Fax: (408) 249-7113

U.S. Southwest – Los Angeles
Phone: (805) 376-0559
Fax: (805) 376-8180

U.S. Southwest – Orange County
Phone: (949) 483-9119
Fax: (949) 483-9090

U.S. Southwest – San Diego
Phone: (858) 713-3374
Fax: (858) 713-4001

U.S. North Central – Illinois
Phone: (630) 773-3454
Fax: (630) 773-3907

U.S. South Central – Texas
Phone: (972) 733-0723
Fax: (972) 407-0639

U.S. Northeast – Massachusetts
Phone: (978) 367-3200
Fax: (978) 256-6868

U.S. Southeast – North Carolina
Phone: (919) 858-9110
Fax: (919) 858-8669

U.S. Southeast – Florida/
South America
Phone: (727) 799-8406
Fax: (727) 799-8306

U.S. Mid-Atlantic – Pennsylvania
Phone: (215) 244-6784
Fax: (215) 244-9292

Canada – Ontario
Phone: (613) 271-2358
Fax: (613) 271-2359

Europe

Europe Central – Germany
Phone: +49 89 829-1320
Fax: +49 89 834-2734

Europe North – England
Phone: +44 1344 486444
Fax: +44 1344 486555

Europe – Israel/Greece
Phone: +972 9 9524000
Fax: +972 9 9573732

Europe South – France
Phone: +33 1 41 44 36 51
Fax: +33 1 41 44 36 90

Europe Mediterranean – Italy
Phone: +39 02 93179911
Fax: +39 02 93179913

Europe – Sweden
Phone: +46 (0) 8 5091 4319
Fax: +46 (0) 8 590 041 10

Europe – Finland
Phone: +358 (0) 9 85 666 435
Fax: +358 (0) 9 85 666 220

Asia – Pacific

Taiwan
Phone: (886-2) 2-720-0282
Fax: (886-2) 2-757-6760

Australia
Phone: (61-2) 9869 4088
Fax: (61-2) 9869 4077

China – Central
Phone: 86-21-6361-2515
Fax: 86-21-6361-2516

China – South
Phone: (852) 2 827-0181
Fax: (852) 2 827-6488

China – South (Satellite)
Phone: (86) 755-5182495

China – North
Phone: (86-10) 8529-9777
Fax: (86-10) 8529-9778

India
Phone: (91-11) 692-4789
Fax: (91-11) 692-4712

Korea
Phone: (82-2) 565-2880
Fax: (82-2) 565-1440

Korea (Satellite)
Phone: (82-53) 745-2880
Fax: (82-53) 745-1440

Singapore
Phone: (65) 737 7355
Fax: (65) 737 9077

Japan
Phone: (81-3) 5371 1520
Fax: (81-3) 5371 1501

www.conexant.com

0.0 Sales Offices

