
LTR		DESCRIPTION							DATE (YR-MO-DA)		DA)	APPROVED								
Α		Add paragraph 3.1.1 and appendix A for microcircuit die. Changes in accordance with N.O.R. 5962-R168-96.							96-08-01			R. MONNIN								
В	Make	e chang	es to b	oilerpla	ate and	l add d	evice c	lass T.	- ro					98-1	2-04			R. M	NINNC	
С	Draw	ring upo	lated to	reflec	t curre	nt requ	iremen	ts g	t					03-0	1-06			R. M	NINNC	
D	Add	device	ype 04	. Dele	te dose	e rate u	ıpset te	sting.	- ro					06-1	2-12			R. M	NINNC	
Е	Make as sp	e limit c pecified	hanges under	to the	"Supp aph 1.3	ly volta 3 ro	ge betv	ween –	V and g	ground"	param	eter		07-0	2-27		J	I. ROD	ENBEC	K
F	Add	device	ype 05	i ro										08-0	6-19			R. H	EBER	
G	Add parag parag	BiCMO araph 1	S devid .5, par .4.4.4	e type agraph dose ra	s 06, 0 4.4.4.3 ite burr	7, and 3 dose	08. De	elete lat duced l	MOS to ch up c atchup and ref	lata fro testina	m . and	vice		13-0	3-22			C. SA	AFFLE	
REV SHEET REV SHEET REV STATUS OF SHEETS	G 15	G 16	G 17	G 18 REV SHE		G 20	G 21 G 1	G 22 G 2	G 23 G 3	G 24 G 4	G 25 G 5	G 26 G 6	G 27 G 7	G 28 G 8	G 9	G 10	G 11	G 12	G 13	G 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA	INDAFOCIRO	16		18 REV SHE PRE SAN	19 PAREINDRA	20 D BY ROONI	21 G 1	22 G	23 G	24 G	25 G	26 G 6	G 7 DLA I	28 G 8	9 AND OHIO	10 MAR D 432		12 E	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR THIS DRAWI FOR U	INDAFOCIRO AWIN	RD CUIT G VAILAR ALL ITS OF THE	17	18 REV SHE PRE SAN CHE SAN APPI MIC	19 PAREE NDRA CKED NDRA ROVEE CHAEL	20 D BY ROONI BY ROONI D BY A. FRY	21 G 1 EY	22 G 2	23 G	G 4 MIC CM	25 G 5	G 6 CC http:	27 G 7 DLA I DLUM //www	28 G 8 AND BUS, w.land	9 AND OHIO	10 MAR O 432 mariti	11 RITIMI 218-39	E 990 la.mil	13	14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR THIS DRAWI FOR L DEPA AND AGE DEPARTME	INDAFOCIRO AWIN	16 RD CUIT G VAILABALL ITS DF THE DEFEN	17	18 REV SHE PREI SAN CHE SAN APPI MIC	19 CKED NDRA CKED NDRA CHAEL WING	20 D BY ROONI D BY A. FRY APPRO 95-1	21 G 1 EY EY CE DVAL C 1-09	22 G 2	23 G	G 4 MIC CM MO	25 G 5	26 G 6 CC http:	27 G 7 DLA I DLUM //www	28 G 8 AND BUS, W.lane	9 AND OHIO	MARD 432 mariti	11 RITIMI 218-33 me.d	E 990 la.mil	13	14

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents three product assurance class levels consisting of high reliability (device class Q), space application (device class V) and for appropriate satellite and similar applications (device class T). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN. For device class T, the user is encouraged to review the manufacturer's Quality Management (QM) plan as part of their evaluation of these parts and their acceptability in the intended application.
 - 1.2 PIN. The PIN is as shown in the following example:

- 1.2.1 RHA designator. Device classes Q, T and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01	HS303RH	Radiation hardened DI, dual SPDT CMOS switch
02	HS307RH	Radiation hardened DI, dual SPDT CMOS switch
03	HS390RH	Radiation hardened DI, dual SPDT CMOS switch
04	HS303ARH	Radiation hardened DI, dual SPDT BiCMOS switch
05	HS303BRH	Radiation hardened DI, dual SPDT BiCMOS switch
06	HS303AEH	Radiation hardened DI, dual SPDT BiCMOS switch
07	HS303BEH	Radiation hardened DI, dual SPDT BiCMOS switch
08	HS303CEH	Radiation hardened DI, dual SPDT BiCMOS switch

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class	Device requirements documentation
Q, V	Certification and qualification to MIL-PRF-38535
Т	Certification and qualification to MIL-PRF-38535 with performance as specified in the device manufacturers approved quality management plan.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 2

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
С	CDIP2-T14	14	Dual-in-line
E	CDIP2-T16	16	Dual-in-line
Χ	CDFP3-F14	14	Flat package
Υ	CDFP4-F16	16	Flat package

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q, T and V.

1.3 Absolute maximum ratings. 1/

Supply voltage between +V and -V :	
Device types 01, 02, 03	44 V
Device types 04, 05, 06, 07, and 08	
Supply voltage between +V and ground :	
Device types 01, 02, 03	
Device types 04, 05, 06, 07, and 08	17.5 V
Supply voltage between -V and ground :	
Device types 01, 02, 03	22 V
Device types 04, 05, 06, 07, and 08	17.5 V
Digital input overvoltage :	
+V _A	+VSUPPLY + 4 V
-V _A	VSUPPLY - 4 V
Analog input overvoltage :	
+V _S	+VSUPPLY + 1.5 V
-V _S	VSUPPLY - 1.5 V
Continuous current, S or D	
Peak current, S or D	
(pulsed at 1 ms, 10 percent duty cycle max)	40 mA
Storage temperature range	65°C to +150°C
Maximum package power dissipation at 125°C (PD): 2/	
Case outlines C and E	0.71 W
Case outlines X and Y	
Thermal resistance, junction-to-case (θ,ις):	
Case outlines C and E	19°C/W
Case outlines X and Y	
Thermal resistance, junction-to-ambient (θ _{JA}):	
Case outlines C and E	70°C\\\
Case outlines X and Y	
Lead temperature (soldering, 10 seconds)	
Junction temperature (T _J)	+1/5°C

 $[\]underline{2}$ / If device power exceeds package dissipation capacity, provide heat sink or derate linearly (the derating is based on θ_{JA}) at the following rates:

Case outlines C and E	 14.3 mW/°C
Case outlines X and Y	 9.5 mW/°C

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 3

^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

1.4 Recommended operating conditions.

Operating supply voltage (±VSUPPLY):

Device types 01, 02, 03, 04, 06, and 08 \pm 15 V Device type 05 and 07 \pm 12 V

Ambient operating temperature range (T_A)-55°C to +125°C

1.5 Radiation features

Maximum total dose available (dose rate = 50 - 300 rads(Si)/s):

Device types 01, 02, 03	 	> 100 krads(Si) 3/
		•	. –

Maximum total dose available (dose rate ≤ .010 rad(Si)/s):

Device type 06, 07, and 08	50 krads(Si)	5/6/
Single event latch-up (SEL)		

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://assist.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

- 3/ Device types 01, 02, and 03 radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019, condition A to a maximum total dose of 100 krads(Si).
- 4/ Device types 04 and 05 may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. The radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019, condition A to a maximum total dose of 300 krads(Si).
- 5/ Device types 06 and 07 radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019, condition A to a maximum total dose of 300 krads(Si) and condition D to a maximum total dose of 50 krads(Si).
- 6/ Device type 08 radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019, condition A to a maximum total dose of 100 krads(Si) and condition D to a maximum total dose of 50 krads(Si).
- <u>T</u>/ Devices use dielectrically isolated (DI) technology and latch up is physically not possible.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 4

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q, T and V shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
 - 3.1.1 Microcircuit die. For the requirements of microcircuit die, see appendix A to this document.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q. T and V.
 - 3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.4 Timing diagrams. The timing diagrams shall be as specified on figure 3.
- 3.2.5 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.
- 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q, T and V shall be in accordance with MIL-PRF-38535.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q, T and V shall be a "QML" or "Q" as required in MIL-PRF-38535.
- 3.6 <u>Certificate of compliance</u>. For device classes Q, T and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q, T and V, the requirements of MIL-PRF-38535 and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q, T and V in MIL-PRF-38535 appendix A shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 5

Test	Symbol			Group A subgroups	Device type			Unit
						Min	Max	
"Switch on" resistance	+R _{DS}	$V_D = 10 V,$	I _S = -10 mA	1	01, 02,		50	Ω
		S1/S2/S3/S	64	2,3	03, 08		75	
			M,D,P,L,R <u>2</u> /	1			60	
		V _D = 10 V,	I _S = -10 mA	1	04, 06		50	
		S1/S2/S3/S	64	2,3			75	
			M,D,P,L,R,F <u>2</u> /	1			60	
		V _D = 10 V,	I _S = -10 mA	1	05, 07		60	
		S1/S2/S3/S	64	2,3			85	
			M,D,P,L,R,F <u>2</u> /	1			70	
	-R _{DS}	V _D = -10 V	, I _S = 10 mA	1	01, 02,		50	
	S1	S1/S2/S3/S	54	2,3	03, 08		75	
			M,D,P,L,R <u>2</u> /	1			60	
		V _D = -10 V	, I _S = 10 mA	1	04, 06		50	
		S1/S2/S3/S	64	2,3			75	
			M,D,P,L,R,F <u>2</u> /	1			60	
		V _D = -10 V	, I _S = 10 mA	1	05, 07		60	
		S1/S2/S3/S	64	2,3	1		85	
			M,D,P,L,R,F <u>2</u> /	1			70	
Leakage current into the	+I _{S(OFF)}	V _S = +14 V	′, V _D = -14 V	1	01, 02,	-2	+2	nA
source terminal of an		S1/S2/S3/S	S4	2,3	03 -100 +		+100	1
"OFF" switch			M,D,P,L,R <u>2</u> /	1		-100	+100	
		V _S = +14 V	$V_{1}, V_{2} = -14 V \frac{3}{2}$	1	04, 06	-10	+10	
		S1/S2/S3/S	S4	2,3		-100	+100	
			M,D,P,L,R,F <u>2</u> /	1		-100	+100	
		V _S = +V - 1	I V, <u>3</u> /	1	05, 07	-10	+10	
		$V_D = -V + c$	1 V, S1/S2/S3/S4	2,3	1	-100	+100	
			M,D,P,L,R,F <u>2</u> /	1	1	-100	+100	
		V _S = +14 V	/, V _D = -14 V	1	08	-100	+100	
		S1/S2/S3/S	S4	2,3	1	-150	+150	
			M,D,P,L,R <u>2</u> /	1		-150	+150	
		V _S = +15 V	/, V _D = -15 V	1	08	-1	+1	μА
		S1/S2/S3/S	S4	2,3	1	-20	+20	
			M,D,P,L,R <u>2</u> /	1	1	-20	+20	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 6

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol			Group A subgroups	Device type	Lir	nits	Unit
						Min	Max	
Leakage current into the	-Is(OFF)	VS = -14 V, VD = +14 V		1	01, 02,	-2	+2	nA
source terminal of an		S1/S2/S3/	S4	2,3	03	-100	+100]
"OFF" switch			M,D,P,L,R <u>2</u> /	1		-100	+100	
		V _S = -14 V	$'$, $V_D = +14 \ V \ \underline{3}/$	1	04, 06	-10	+10	
		S1/S2/S3/		2,3		-100	+100	
			M,D,P,L,R,F <u>2</u> /	1		-100	+100	
		Vs = -V +	1 V, <u>3</u> /	1	05, 07	-10	+10	
		V _D = +V -	1 V, S1/S2/S3/S4	2,3		-100	+100	
			M,D,P,L,R,F <u>2</u> /	1		-100	+100	
		V _S = -14 V	′, V _D = +14 V	1	08	-100	+100	
		S1/S2/S3/	S4	2,3		-150	+150	
			M,D,P,L,R <u>2</u> /	1		-150	+150	
		V _S = -15 V	$'$, $V_D = +15 V$	1	08	-1	+1	μΑ
		S1/S2/S3/	S4	2,3		-20	+20	
			M,D,P,L,R <u>2</u> /	1		-20	+20	
Leakage current into the	+I _{D(OFF)}	V _D = -14 V	/, V _S = +14 V	1	01, 02,	-2	+2	nA
drain terminal of an		S1/S2/S3/	S4	2,3	03	-100	+100	
"OFF" switch			M,D,P,L,R <u>2</u> /	1		-100	+100	
		V _D = -14 V	/, V _S = +14 V	1	04, 06	-10	+10	
		S1/S2/S3/	S4 <u>3</u> /	2,3	1	-100	+100	=
			M,D,P,L,R,F <u>2</u> /	1	1	-100	+100	=
		V _S = +V -	1 V, <u>3</u> /	1	05, 07	-10	+10	
		V _D = -V +	1 V, S1/S2/S3/S4	2,3	1	-100	+100	
			M,D,P,L,R,F <u>2</u> /	1	1	-100	+100	
		V _D = -14 V	/, V _S = +14 V	1	08	-100	+100	
		S1/S2/S3/	S4	2,3		-150	+150	
			M,D,P,L,R <u>2</u> /	1		-150	+150	
		$V_D = -15 V_D$	$V_{S} = +15 \text{ V}$	1	08	-1	+1	μΑ
		S1/S2/S3/	S4	2,3		-20	+20	
			M,D,P,L,R <u>2</u> /	1		-20	+20	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 7

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol			Group A subgroups	Device type	Lir	nits	Unit
						Min	Max	
Leakage current into the	-I _{D(OFF)}	V _D = +14 \	V, Vs = -14 V	1	01, 02,	-2	+2	nA
drain terminal of an	(- /	S1/S2/S3/S4		2,3	03	-100	+100	
"OFF" switch		M,D,P,L,R <u>2/</u> V _D = +14 V, V _S = -14 V <u>3/</u>	1		-100	+100		
			V, V _S = -14 V <u>3</u> /	1	04, 06	-10	+10	
		S1/S2/S3/	S4	2,3		-100	+100	
			M,D,P,L,R,F <u>2</u> /	1		-100	+100	
		V _S = -V +	1 V, <u>3</u> /	1	05, 07	-10	+10	
		V _D = +V - 1 V, S1/S2/S3/S4		2,3		-100	+100	
		M,	M,D,P,L,R,F <u>2</u> /	1		-100	+100	1
		V _D = +14 \	V, V _S = -14 V	1	08	-100	+100	
	S1	S1/S2/S3/S	S4	2,3	1	-150	+150	μΑ
			M,D,P,L,R <u>2</u> /	1		-150	+150	
		V _D = +15 \	V, V _S = -15 V	1	08	-1	+1	
		S1/S2/S3/	S4	2,3		-20	+20	
			M,D,P,L,R <u>2</u> /	1		-20	+20	
Leakage current from an	+I _{D(ON)}	$V_D = V_S =$	+14 V,	1	01, 02,	-2	+2	nA
"ON" driver into the		S1/S2/S3/	S4	2,3	03	-100	+100	
switch (Drain and			M,D,P,L,R <u>2</u> /	1		-100	+100	_
Source)		V _D = V _S =	+14 V,	1	04, 06	-10	+10	
		S1/S2/S3/	S4	2,3		-100	+100	1
			M,D,P,L,R,F <u>2</u> /	1	-	-100	+100	
		V _D = V _S =	+V – 1 V,	1	05, 07	-10	+10	
		S1/S2/S3/	S4	2,3	1	-100	+100	-
			M,D,P,L,R,F <u>2</u> /	1	-	-100	+100	
		V _D = V _S =	+14 V,	1	08	-20	+20	1
		S1/S2/S3/	S4	2,3	1	-100	+100	
			M,D,P,L,R <u>2</u> /	1	1	-100	+100	1

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 8

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol			Group A subgroups	Device type	Lir	Limits	
						Min	Max	
Leakage current from an	-I _{D(ON)}	$V_D = V_S$	= -14 V,	1	01, 02,	-2	+2	nA
"ON" driver into the		S1/S2/S3/S4		2,3	03	-100	+100	
switch (Drain and			M,D,P,L,R <u>2</u> /	1		-100	+100	1
Source)		V _D = V _S	= -14 V,	1	04, 06	-10	+10	=
		S1/S2/S3/	/S4	2,3	-	-100	+100	
			M,D,P,L,R,F <u>2</u> /	1	-	-100	+100	-
		V _D = V _S =	V + 1 V,	1	05, 07	-10	+10	
		S1/S2/S3/S4	/S4	2,3		-100	+100	
			M,D,P,L,R,F <u>2</u> /	1		-100	+100	=
		V _D = V _S =	+14 V,	1	08	-20	+20	
		S1/S2/S3/S4	/S4	2,3	1	-100	+100	
			M,D,P,L,R <u>2</u> /	1		-100	+100	
Low level input address	I _{AL}	All channe	els V _A = 0.8 V	1,2,3	01, 03,	-1	+1	μА
current			M,D,P,L,R <u>2</u> /	1	08	-1	+1	
		All channels V _A = 3.5 V		1,2,3	02	-1	+1	
			M,D,P,L,R <u>2</u> /	1		-1	+1	
		All channe	els V _A = 0.8 V	1,2,3	04, 05,	-1	+1	
			M,D,P,L,R,F <u>2</u> /	1	06, 07	-1	+1	
High level input address	I _{AH}	All channe	els V _A = 4.0 V	1,2,3	01,03,	-1	+1	μА
current			M,D,P,L,R <u>2</u> /	1	08	-1	+1	
		All channe	els V _A = 11 V	1,2,3	02	-1	+1	1
			M,D,P,L,R <u>2</u> /	1	1	-1	+1	1
		All channe	els V _A = 4.0 V	1,2,3	04, 05,	-1	+1	
			M,D,P,L,R,F <u>2</u> /	1	06, 07	-1	+1	1

STANDARD
MICROCIRCUIT DRAWING
DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990

SIZE A		5962-95813
	REVISION LEVEL G	SHEET 9

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics} \text{ - Continued.}$

Test	Symbol			Group A subgroups	Device type	e Limits		Unit	
						Min	Max		
Positive supply current	+l	All channels	All channels V _A = 0.8 V		01, 03		10	μΑ	
				2,3			100		
			M,D,P,L,R <u>2</u> /	1			100		
		All channels	$V_A = 0.8 \ V$	1	04, 05,		100		
		_		2,3	06, 07		150		
			M,D,P,L,R,F <u>2</u> /	1			150		
		All channels	$V_A = 0.8 \ V$	1	80		100		
				2, 3			150		
			M,D,P,L,R <u>2</u> /	1			150		
		V _{A1} = 0 V, V	$'_{A2} = 4.0 \text{ V}$	1	01, 03		0.5	mA	
		$V_{A1} = 4.0 V,$	$V_{A2} = 0 V$	2,3			1		
			M,D,P,L,R <u>2</u> /	1			1		
		V _{A1} = 0 V, V	' _{A2} = 4.0 V	1	04, 05,		0.4	mA	
		$V_{A1} = 4.0 V,$	$V_{A2} = 0 V$	2,3	06, 07,	7,	0.6		
			M,D,P,L,R,F <u>2</u> /	1			0.6		
		V _{A1} = 0 V, V	' _{A2} = 4.0 V	1	08		0.4		
		$V_{A1} = 4.0 V,$	$V_{A2} = 0 V$	2, 3			0.6		
			M,D,P,L,R <u>2</u> /	1			0.6		
		All channels	V _A = 0 V,	1	02		10	μА	
		15 V		2,3			100	-	
		M,D,P,L,R All channels,		1			100		
			<u>2</u> /,	1			100		

STANDARD
MICROCIRCUIT DRAWING
DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990

SIZE A		5962-95813
	REVISION LEVEL G	SHEET 10

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	-55°C ≤	ditions $\underline{1}/$ $T_A \le +125^{\circ}C$ rwise specified	Group A subgroups	Device type	Li	mits	Unit
						Min	Max	1
Negative supply current	-1	All channels	s VA = 0.8 V	1	01, 03,		-10	μА
				2,3	08	08 -100		
			M,D,P,L,R <u>2</u> /	1			-100	
		$V_{A1} = 0 V, V$	$V_{A2} = 4.0 \text{ V}$	1			-10	
		V _{A1} = 4.0 V	$V_{A2} = 0 V$	2,3			-100	1
			M,D,P,L,R <u>2</u> /	1	-		-100	
		All channels	s V _A = 0 V,	1	02		-10	
		15 V		2,3	1		-100	1
			M,D,P,L,R <u>2</u> /	1	-		-100	
		All channels	s V _A = 0.8 V	1	04, 05,		-10	
				2,3	06, 07		-100	
		Γ	M,D,P,L,R,F <u>2</u> /	1	-		-100	
		V _{A1} = 0 V, V	V _{A2} = 4.0 V	1	-		-10	
		V _{A1} = 4.0 V	$V_{A2} = 0 \text{ V}$	2,3	1		-100	
		_	M,D,P,L,R,F <u>2</u> /	1	-		-100	1
Switch input capacitance	C _{IS(OFF)}	Measured S	Source to GND	4	All		28	pF
,	10(011)	<u>4</u> / <u>5</u> /						
Driver input capacitance	C _{C1}	V _A = 0 V	<u>4</u> / <u>5</u> /	4	All		10	pF
	C _{C2}	V _A = 15 V	<u>4</u> / <u>5</u> /				10	
Switch output	Cos	Measured D	Drain to GND	4	All		28	pF
o mon o alpai	- 00	<u>4</u> / <u>5</u> /						
Off isolation	V _{ISO}	V _{GEN} = 1 V	PP, <u>4</u> / <u>5</u> /	4	All	40		dB
Cross talk	VCR	V _{GEN} = 1 V f = 1 MHz	PP, <u>4</u> / <u>5</u> /	4	All	40		dB
Charge transfer error	VCTE	V _S = GND, C _L = 0.01 μ	<u>4</u> / <u>5</u> /	4	All		15	mV

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	11

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	-55°C ≤ 7	itions $\underline{1}/\Gamma_A \le +125^{\circ}C$ wise specified	Group A subgroups	Device type	Limits		Unit
			-			Min	Max	
Break-before-make	tOPEN	$R_L = 300 \Omega$,	V _S = +3 V,	9	01, 03	30	150	ns
time delay		$V_{AH} = 5.0 V,$	$V_{AL} = 0 V$,	10,11			300	
		see figure 3	M,D,P,L,R <u>2</u> /	9		2	300	
		$R_L = 300 \Omega$,	V _S = +3 V,	9	02	30	50	
		V _{AH} = 15.0 \	/, V _{AL} = 0 V,	10,11			300	
		see figure 3	M,D,P,L,R <u>2</u> /	9		2	300	
		$R_L = 300 \Omega$,	V _S = +3 V,	9	04, 05,	10	150	
		V _{AH} = 5.0 V, see figure 3	$V_{AL} = 0 V$,	10,11	06, 07		300	
		N	1,D,P,L,R,F <u>2</u> /	9		2	300	
		$R_L = 300 \Omega$,	V _S = +3 V,	9	08	10	150	
		V _{AH} = 5.0 V, see figure 3	$V_{AL} = 0 V$,	10, 11			300	
		N	1,D,P,L,R <u>2</u> /	9		2	300	
Switch turn "ON" time	toN	$R_L = 300 \Omega$,	V _S = +3 V,	9	01, 03		300	ns
		V _{AH} = 4.0 V,	$V_{AL} = 0 V$,	10,11			500	
		see figure 3	M,D,P,L,R <u>2</u> /	9			500	
		$R_L = 300 \Omega$	V _S = +3 V,	9	02		300	
		V _{AH} = 15.0 \	/, V _{AL} = 0 V,	10,11	-		500	
		see figure 3	M,D,P,L,R <u>2</u> /	9	-		500	
		$R_L = 300 \Omega$	V _S = +3 V,	9	04, 05,		375	1
		V _{AH} = 4.0 V,	$V_{AL} = 0 V$,	10,11	06, 07		500	
		see figure 3	M,D,P,L,R,F <u>2</u> /	9			500	
		$R_L = 300 \Omega$,		9	08		375	1
			V _{AL} = 0 V, M,D,P,L,R <u>2</u> /	10,11	1		500	1
		see figure 3	M,D,P,L,R 2/	9	1		1000	1

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 12

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol		litions <u>1</u> / T _A ≤ +125°C ise specified	Group A subgroups	Device type	Lir	mits	Unit
						Min	Max	
Switch turn "OFF" time	tOFF	R _L = 300 Ω, V	's = +3 V,	9	01,03		250	ns
		V _{AH} = 4.0 V, V	$V_{AL} = 0 V$,	10,11			450	
		see figure 3	M,D,P,L,R <u>2</u> /	9			450	
		R _L = 300 Ω, V	's = +3 V,	9	02		250	
		V _{AH} = 15.0 V,	$V_{AL} = 0 V$,	10,11			450	
		see figure 3	M,D,P,L,R <u>2</u> /	9			450	
		R _L = 300 Ω, V	' _S = +3 V,	9	04, 05,		300	
		V _{AH} = 4.0 V, V	$V_{AL} = 0 V$,	10,11	06, 07		450	
		see figure 3	M,D,P,L,R,F <u>2</u> /	9			450	
		R _L = 300 Ω, V	' _S = +3 V,	9	08		300	
		V _{AH} = 4.0 V, V	$V_{AL} = 0 V$,	10,11			450]
		see figure 3	M,D,P,L,R,F <u>2</u> /	9			1000	

1/V = -15 V and V + = +15 V for device types 01, 02, 03, 04, 05, 06, 07, and 08.

V- = -12 V \pm 10% and V+ = +12 V \pm 10% for device type 05 and 07.

For device types 01, 03, 04, 05, 06, 07, and 08, $V_{AH} = +4 \text{ V}$ and $V_{AL} = 0.8 \text{ V}$ and for device type 02,

 $V_{AH} = +11 \text{ V} \text{ and } V_{AI} = 3.5 \text{ V}.$

2/ RHA device types 01, 02, and 03 supplied to this drawing will meet all levels M, D, P, L, and R of irradiation. However, device types 01, 02, and 03 are only tested at the R level in accordance with MIL-STD-883, method 1019, condition A (see 1.5 herein).

RHA device types 04 and 05 supplied to this drawing will meet all levels M, D, P, L, R, and F of irradiation. However, device types 04 and 05 are only tested at the F level in accordance with MIL-STD-883, method 1019, condition A (see 1.5 herein).

RHA device types 06 and 07 supplied to this drawing will meet all levels M, D, P, L, R, and F of irradiation for condition A and levels M, D, P, and L for condition D. However, device types 06, 07, and 08 are only tested at the F level in accordance with MIL-STD-883, method 1019, condition A and tested at the L level in accordance with MIL-STD-883, method 1019, condition D (see 1.5 herein).

RHA device type 08 supplied to this drawing will meet all levels M, D, P, L, and R of irradiation for condition A and levels M, D, P, and L for condition D. However, device type 08 is only tested at the R level in accordance with MIL-STD-883, method 1019, condition A and tested at the L level in accordance with MIL-STD-883, method 1019, condition D (see 1.5 herein).

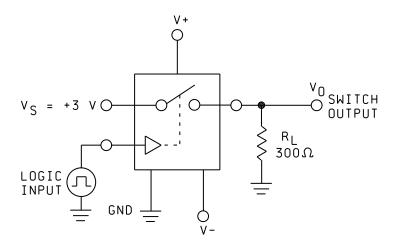
Pre and post irradiation values are identical unless otherwise specified in Table I. When performing post irradiation electrical measurements for all RHA levels, $T_A = +25$ °C.

- 3/ For device types 04, 05, 06, and 07 as indicated by the test, switch voltage must be more than 1 V inside of the device rails. For rail-to-rail operation, refer to device type 08.
- 4/ Tested initially and after any design changes which may affect these parameters.
- 5/ For device types 01, 03, 04, 05, 06, 07, and 08, $V_{AL} = 0$ V and $V_{AH} = 4.0$ V and for device type 02, $V_{AL} = 0$ V and $V_{AH} = 15$ V.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	13

Case outlines	C and X	E and Y
Device types	01, 02 04, 05, 06, 07, and 08	03
Terminal number	Termina	l symbol
1	NC	D1
2	S3	NC
3	D3	D3
4	D1	S3
5	S1	S4
6	IN1	D4
7	GND	NC
8	V-	D2
9	IN2	S2
10	S2	IN2
11	D2	V+
12	D4	NC
13	S4	GND
14	V+	V-
15		IN1
16		S1

NC = No connections


FIGURE 1. Terminal connections.

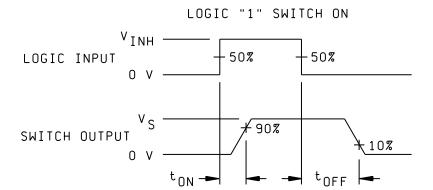
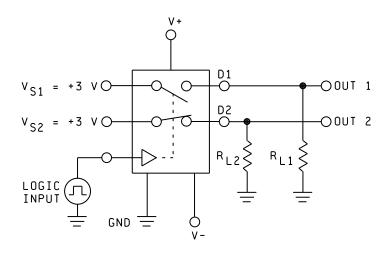
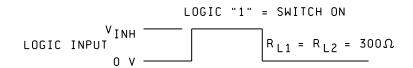

LOGIC	SW1	SW3
	SW2	SW4
0	OFF	ON
1	ON	OFF

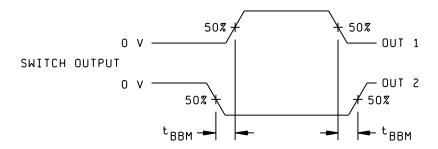
FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	14

SWITCHING TEST CIRCUIT




NOTE: For device types 01, 03, 04, 05, 06, 07, and 08, V_{INH} = +4 V. For device type 02, V_{INH} = +15 V. For device types 01, 02, 03, 04, 06, and 08, V- = -15 V and V+ = +15 V. For device types 05 and 07, V- = -12 V \pm 10 % and V+ = +12 V \pm 10 %.


FIGURE 3. Timing diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	15

BREAK-BEFORE-MAKE TEST CIRCUIT

NOTE: For device types 01, 03, 04, 05, 06, 07, and 08, V_{INH} = +5 V. For device type 02, V_{INH} = +15 V. For device types 01, 02, 03, 04, 06, and 08, V- = -15 V and V+ = +15 V. For device types 05 and 07, V- = -12 V \pm 10 % and V+ = +12 V \pm 10 %.

FIGURE 3. <u>Timing diagram</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	16

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. For device classes Q, and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan, including screening (4.2), qualification (4.3), and conformance inspection (4.4). The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class T, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 and the device manufacturer's QM plan including screening, qualification, and conformance inspection. The performance envelope and reliability information shall be as specified in the manufacturer's QM plan.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class T, screening shall be in accordance with the device manufacturer's Quality Management (QM) plan, and shall be conducted on all devices prior to qualification and technology conformance inspection.
 - 4.2.1 Additional criteria for device classes Q, T and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. For device classes Q, T and V interim and final electrical test parameters shall be as specified in table IIA herein.
 - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, Appendix B.
- 4.3 <u>Qualification inspection for device classes Q, T and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Qualification inspection for device class T shall be in accordance with the device manufacturer's Quality Management (QM) plan. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections, and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for class T shall be in accordance with the device manufacturer's Quality Management (QM) plan.
 - 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. Subgroups 5, 6, 7, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{C1}, C_{C2}, C_{OS}, and C_{IS} measurements) should be measured only for initial qualification and after any process or design changes which may affect input or output capacitance.
 - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.2 Additional criteria for device classes Q, T and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	17

TABLE IIA. Electrical test requirements.

Test requirements	Subgroups (in accordance with MIL-PRF-38535, table III)		
	Device	Device	Device
	class Q	class V	class T
Interim electrical parameters (see 4.2)	1,9	1,9	As specified in QM plan
Final electrical	1,2,3,9, <u>1</u> /	1,2,3, <u>1</u> / <u>2</u> /	As specified
parameters (see 4.2)	10,11	9,10,11,∆	in QM plan
Group A test	1,2,3,4,9, <u>3</u> /	1,2,3,4, <u>3</u> /	As specified
requirements (see 4.4)	10,11	9,10,11	in QM plan
Group C end-point electrical	1,2,3,9,10,11	1,2,3,9, <u>2</u> /	As specified
parameters (see 4.4)	1,2,3,3,10,11	10,11	in QM plan
Group D end-point electrical	1,9	1,9	As specified
parameters (see 4.4)			in QM plan
Group E end-point electrical parameters (see 4.4)	1,9	1,9	As specified in QM plan

- 1/ PDA applies to subgroup 1. For class V to subgroups 1, 9, and Δ .
- 2/ Delta limits (see table IIB) shall be required and the delta values shall be computed with reference to the zero hour electrical parameters (see table I).
- 3/ Subgroup 4, if not tested, shall be guaranteed to the limits specified in table I.
- 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4.1 <u>Group E inspection for device class T</u>. For device class T, the RHA requirements shall be in accordance with the class T radiation requirements of MIL-PRF-38535. End-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4.2 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A for device types 01, 02, 03, 04, and 05 and as specified herein. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A and condition D for device types 06, 07, and 08 and as specified herein.
- 4.4.4.2.1 <u>Accelerated annealing test</u>. Accelerated annealing tests shall be performed on all devices requiring a RHA level greater than 5 krads(Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at 25° C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	18

TABLE IIB. <u>Burn-in delta parameters and group C delta parameters (+25°C)</u>.

Parameters	Symbol	Conditions	Device type 1/	Delta limits
Switch on resistance	+R _{DS}	Per table I	01, 02, 03, 04, 05, 06, 07	±5 Ω
			08	+10 Ω
	-R _{DS}	Per table I	01, 02, 03, 04, 05, 06, 07	±5 Ω
			08	+10 Ω
Leakage current into	+I _{S(OFF)}	V _S = +14 V, V _D = -14 V	01, 02, 03, 04, 05, 06, 07	±2 nA
the source terminal of			08	±20 nA
an "OFF" switch	-IS(OFF)	V _S = -14 V, V _D = +14 V	01, 02, 03, 04, 05, 06, 07	±2 nA
			08	±20 nA
Leakage current into	+I _{D(OFF)}	Per table I	01, 02, 03, 04, 05, 06, 07	±2 nA
the drain terminal of an			08	±5 nA
"OFF" switch	-I _D (OFF)	Per table I	01, 02, 03, 04, 05, 06, 07	±2 nA
			08	±5 nA
Leakage current from an "ON" driver into the	+I _{D(ON)}	Per table I	01, 02, 03, 04, 05, 06, 07	±2 nA
switch (drain and			08	±5 nA
source)	-I _{D(ON)}	Per table I	01, 02, 03, 04, 05, 06, 07	±2 nA
			08	±5 nA
Low level input address current	I _{AL}	All channels V _A = 0.8 V	01, 03, 04, 05, 06, 07, 08	±100 nA
address current		All channels $V_A = 3.5 \text{ V}$	02	±100 nA
High level input	I _{AH}	All channels V _A = 4.0 V	01, 03, 04, 05, 06, 07, 08	±100 nA
address current		All channels V _A = 11 V	02	±100 nA
	l+	All channels V _A = 0.8 V	01,03	±1 μA
Positive supply		All channels V _A = 0.8 V	04, 05, 06, 07, 08	±10 μA
current		V _{A1} = 0 V, V _{A2} = 4.0 V and V _{A1} = 4.0 V, V _{A2} = 0 V	01, 03, 04, 05, 06, 07, 08	±0.1 mA
		All channels V _A = 0 V	02	±1 μA
		All channels V _A = 15 V	02	±1 μA
Negative supply	l-	All channels V _A = 0.8 V	01, 03, 04, 05, 06, 07, 08	±1 μA
current		$V_{A1} = 0 \text{ V}, V_{A2} = 4.0 \text{ V} \text{ and}$ $V_{A1} = 4.0 \text{ V}, V_{A2} = 0 \text{ V}$	01, 03, 04, 05, 06, 07, 08	±1 μA
		All channels V _A = 0 V	02	±1 μA
		All channels V _A = 15 V	02	±1 μA

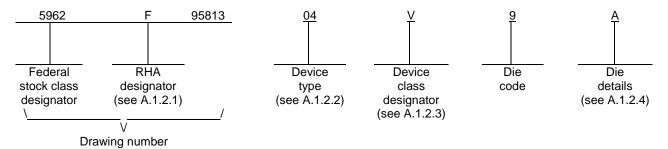
^{1/} Device type 04 conditions may be used for device type 05.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	19

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q, T and V.

6. NOTES


- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
 - 6.6 Sources of supply.
- 6.6.1 <u>Sources of supply for device classes Q, T and V</u>. Sources of supply for device classes Q, T and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 20

A.1 SCOPE

A.1.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device class V) are reflected in the Part or Identification Number (PIN). When available, a choice of Radiation Hardiness Assurance (RHA) levels are reflected in the PIN.

A.1.2 PIN. The PIN is as shown in the following example:

A.1.2.1 <u>RHA designator</u>. Device classes Q and V RHA identified die meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

A.1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01	HS-303RH	Radiation hardened DI, dual SPST CMOS switch
02	HS-307RH	Radiation hardened DI, dual SPST CMOS switch
03	HS-393RH	Radiation hardened DI, dual SPST CMOS switch
04	HS-303ARH	Radiation hardened DI, dual SPST BiCMOS switch
05	HS-303BRH	Radiation hardened DI, dual SPST BiCMOS switch
06	HS303AEH	Radiation hardened DI, dual SPDT BiCMOS switch
07	HS303BEH	Radiation hardened DI, dual SPDT BiCMOS switch
08	HS303CEH	Radiation hardened DI, dual SPDT BiCMOS switch

A.1.2.3 Device class designator.

Device class

Q or V

Certification and qualification to the die requirements of MIL-PRF-38535

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 21

A.1.2.4 <u>Die details</u>. The die details designation is a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

A.1.2.4.1 Die physical dimensions.

<u>Die type</u>	Figure number
01, 04, 05, 06, 07	A-1
02	A-2
03	A-3
08	A-4

A.1.2.4.2 <u>Die bonding pad locations and electrical functions.</u>

<u>Die type</u>	Figure number
01, 04, 05, 06, 07	A-1
02	A-2
03	A-3
08	A-4

A.1.2.4.3 Interface materials.

<u>Die type</u>	Figure number
01, 04, 05, 06, 07	A-1
02	A-2
03	A-3
08	A-4

A.1.2.4.4 Assembly related information.

Die type	<u>Figure number</u>
01, 04, 05, 06, 07	A-1
02	A-2
03	A-3
08	A-4

- A.1.3 Absolute maximum ratings. See paragraph 1.3 herein for details.
- A.1.4 Recommended operating conditions. See paragraph 1.4 herein for details.
- A.1.5 Radiation features. See paragraph 1.5 herein for details.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 22

A.2 APPLICABLE DOCUMENTS.

A.2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARD

MIL-STD-883 - Test Method Standard Microcircuits.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://assist.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

A.2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

A.3 REQUIREMENTS

- A.3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- A.3.2 <u>Design, construction and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein and the manufacturer's QM plan for device classes Q and V.
- A.3.2.1 <u>Die physical dimensions</u>. The die physical dimensions shall be as specified in A.1.2.4.1 and on figures A-1, A-2, A-3, and A-4.
- A.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in A.1.2.4.2 and on figures A-1, A-2, A-3, and A-4.
- A.3.2.3 Interface materials. The interface materials for the die shall be as specified in A.1.2.4.3 and on figures A-1, A-2, A-3, and A-4.
- A.3.2.4 <u>Assembly related information</u>. The assembly related information shall be as specified in A.1.2.4.4 and on figures A-1, A-2, A-3, and A-4.
 - A.3.2.5 Truth table. The truth table shall be as defined in paragraph 3.2.3 herein.
 - A.3.2.6 Radiation exposure circuit. The radiation exposure circuit shall be as defined in paragraph 3.2.5 herein.
- A.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this document.
- A.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table I.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 23

- A.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in A.1.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.
- A.3.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see A.6.4 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.
- A.3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

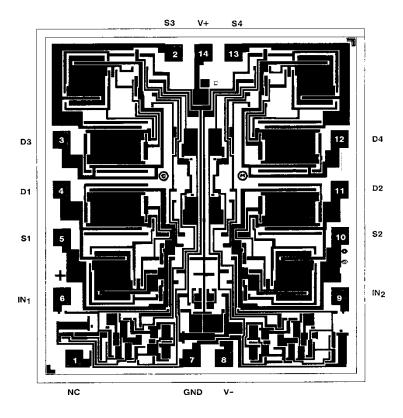
A.4 VERIFICATION

- A.4.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not affect the form, fit, or function as described herein.
- A.4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum, it shall consist of:
 - a. Wafer lot acceptance for class V product using the criteria defined in MIL-STD-883, method 5007.
 - b. 100% wafer probe (see paragraph A.3.4 herein).
 - c. 100% internal visual inspection to the applicable class Q or V criteria defined in MIL-STD-883, method 2010 or the alternate procedures allowed in MIL-STD-883, method 5004.

A.4.3 Conformance inspection.

A.4.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see A.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table II herein. Group E tests and conditions are as specified in paragraphs 4.4.4, 4.4.4.1, 4.4.4.2, and 4.4.4.2.1 herein.

A.5 DIE CARRIER


A.5.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.

A.6 NOTES

- A.6.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications, and logistics purposes.
- A.6.2 <u>Comments</u>. Comments on this appendix should be directed to DLA Land and Maritime -VA, Columbus, Ohio, 43218-3990 or telephone (614)-692-0540.
- A.6.3 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
- A.6.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see A.3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 24

Device types 01, 02

NOTE: Pad numbers reflect terminal numbers when placed in case outlines C and X (see figure 1).

Die physical dimensions.

Die size: 1930 microns x 2130 microns.

Die thickness: 11 ± 1 mils.

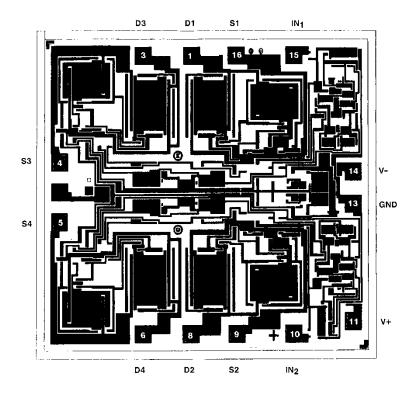
Interface materials.

Top metallization: Al 12.5 kÅ \pm 2 kÅ

Backside metallization: Gold over polysilicon

Glassivation. Type: Si02

Type: Si02 Thickness: 8 kÅ ± 1 kÅ


Substrate: DI (dielectric isolation)

Assembly related information.
Substrate potential: Unbiased
Special assembly instructions: None

FIGURE A-1 / A-2. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 25

Device type 03

NOTE: Pad numbers reflect terminal numbers when placed in case outlines E and Y (see figure 1).

Die physical dimensions.

Die size: 2130 microns x 1930 microns.

Die thickness: 11 ± 1 mils.

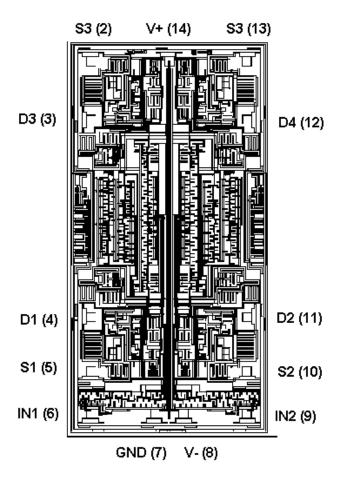
Interface materials.

Top metallization: Al 12.5 kÅ \pm 2 kÅ

Backside metallization: Gold over polysilicon

Glassivation. Type: Si02

Thickness: 8 kÅ ± 1 kÅ


Substrate: DI (dielectric isolation)

Assembly related information.
Substrate potential: Unbiased
Special assembly instructions: None

FIGURE A-3. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 26

Device types 04, 05, 06, and 07

NOTE: Pad numbers reflect terminal numbers when placed in case outlines C and X (see figure 1).

Die physical dimensions.

Die size: 2690 microns x 5200 microns.

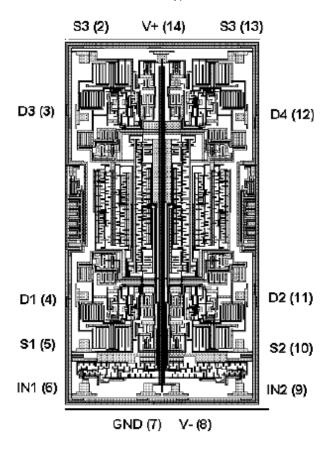
Die thickness: 19 ± 1 mils.

Interface materials.

Top metallization: Al Si Cu 16 kÅ ± 2 kÅ

Backside metallization: None

Glassivation. Type: PSG Thickness: $8 \text{ kÅ} \pm 1 \text{ kÅ}$


Substrate: DI (dielectric isolation)

Assembly related information. Substrate potential: Unbiased Special assembly instructions: None

FIGURE A-1. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 27

Device type 08

NOTE: Pad numbers reflect terminal numbers when placed in case outlines C and X (see figure 1).

Die physical dimensions.

Die size: 2815 microns x 5325 microns.

Die thickness: 19 ± 1 mils.

Interface materials. Top metallization: Al Si Cu 16 kÅ \pm 2 kÅ

Backside metallization: None

Glassivation. Type: PSG

Thickness: 8 kÅ ± 1 kÅ

Substrate: DI (dielectric isolation)

Assembly related information. Substrate potential: Unbiased Special assembly instructions: None

FIGURE A-4. Die bonding pad locations and electrical functions

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95813
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 28

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 13-03-22

Approved sources of supply for SMD 5962-95813 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

		1
Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962R9581301QCC	<u>3</u> /	HS1-303RH-8
5962R9581301QXC	<u>3</u> /	HS9-303RH-8
5962R9581301TCC	<u>3</u> /	HS1-303RH-T
5962R9581301TXC	<u>3</u> /	HS9-303RH-T
5962R9581301VCC	<u>3</u> /	HS1-303RH-Q
5962R9581301VXC	<u>3</u> /	HS9-303RH-Q
5962R9581301V9A	<u>3</u> /	HS0-303RH-Q
5962R9581302QCC	<u>3</u> /	HS1-307RH-8
5962R9581302QXC	<u>3</u> /	HS9-307RH-8
5962R9581302VCC	<u>3</u> /	HS1-307RH-Q
5962R9581302VXC	34371	HS9-307RH-Q
5962R9581302V9A	34371	HS0-307RH-Q
5962R9581303QEC	<u>3</u> /	HS1-390RH-8
5962R9581303QYC	<u>3</u> /	HS9-390RH-8
5962R9581303TEC	<u>3</u> /	HS1-390RH-T
5962R9581303TYC	<u>3</u> /	HS9-390RH-T
5962R9581303VEC	<u>3</u> /	HS1-390RH-Q
5962R9581303VYC	<u>3</u> /	HS9-390RH-Q
5962R9581303V9A	<u>3</u> /	HS0-390RH-Q
5962F9581304QCC	34371	HS1-303ARH-8
5962F9581304QXC	34371	HS9-303ARH-8
5962F9581304VCC	34371	HS1-303ARH-Q
5962F9581304VXC	34371	HS9-303ARH-Q
5962F9581304V9A	34371	HS0-303ARH-Q

DATE: 13-03-22

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962F9581305QCC	34371	HS1-303BRH-8
5962F9581305QXC	34371	HS9-303BRH-8
5962F9581305VCC	34371	HS1-303BRH-Q
5962F9581305VXC	34371	HS9-303BRH-Q
5962F9581305V9A	34371	HS0-303BRH-Q
5962F9581306VCC	34371	HS1-303AEH-Q
5962F9581306VXC	34371	HS9-303AEH-Q
5962F9581306V9A	34371	HS0-303AEH-Q
5962F9581307VCC	34371	HS1-303BEH-Q
5962F9581307VXC	34371	HS9-303BEH-Q
5962F9581307V9A	34371	HS0-303BEH-Q
5962R9581308VXC	34371	HS9-303CEH-Q
5962R9581308V9A	34371	HS0-303CEH-Q

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2/</u> <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

Vendor CAGE <u>number</u> Vendor name and address

34371

Intersil Corporation 1001 Murphy Ranch Road Milpitas, CA 95035-6803

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.