

RFFM4204

WiFi 802.11b/g/n/ac Front End Module 2.4GHz to 2.5GHz

The RFFM4204 provides a complete solution in a single front end module (FEM) by integrating the power amplifier (PA), low noise amplifier (LNA) with bypass, power detector, a Single Pole Double Throw (SPDT) switch, and some filtering for harmonic rejection. The integrated matching greatly reduces the number of external components and layout area in the customer application. This simplifies the total front end solution by reducing the bill of materials, system footprint, and manufacturing cost. The RFFM4204 is provided in a 6.0mm X 6.0mm X 0.9mm 24-pin laminate package. The FEM meets or exceeds the RF front end needs of IEEE 802.11b/g/n/ac WiFi RF systems.

Functional Block Diagram

Ordering Information

RFFM4204SB	Standard 5-piece sample bag
RFFM4204SQ	Standard 25-piece sample bag
RFFM4204SR	Standard 100-piece reel
RFFM4204TR13	Standard 2500-piece reel
RFFM4204PCK-410	Fully assembled evaluation board w/5 pc bag

Package: Laminate, 24-pin, 6.0mm x 6.0mm x 0.9mm

Features

- Voltage Supply: 5V
- P_{OUT} = 24dBm, 256QAM MCS9 HT40 at 1.8% DEVM
- P_{OUT} = 25dBm, 64QAM MCS7 HT20 and HT40 at 3% DEVM
- Input and Output Matched to 50Ω
- Integrated PA, SPDT, and LNA with bypass
- High Impedance Enable Pin

Applications

- IEEE 802.11b/g/n/ac WiFi Systems
- Wireless Access Points, Gateways, Router and Set Top Box Applications
- ISM Band Transmitter Applications

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS141017

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Absolute Maximum Ratings

Rating	Unit
-0.5 to +5.5	V
-0.5 to +6.0	V
1000	mA
+10*	dBm
-40 to +85	°C
-40 to +150	°C
MSL3	
	-0.5 to +5.5 -0.5 to +6.0 1000 +10* -40 to +85 -40 to +150

*Maximum Input Power with a 50 Ω load.

Caution! ESD sensitive device.

∕ rfmd⋙ RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000pm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Perometer	Specification			Unit	Condition	
Parameter	Min	Тур	Max	Unit	Condition	
Compliance					802.11b, 802.11g, 802.11n, 802.11ac	
DC Operating Conditions						
Power Supply		5	5.25	V	Operating Voltage for V_{CC} (PA) and V_{DD} (LNA)	
ENABLE Voltage - High	2.8	3.0	V _{CC} – 0.2	V	PA_EN; LNA_EN	
ENABLE Voltage - Low		0	0.2	V		
Control Voltage - High	2.8	3.0	$V_{CC} - 0.2$	V	C_TX, C_RX	
Control Voltage - Low		0	0.2	V		
Transmit Performance					T= 25°C, V _{CC} = 5.0V, Control voltage= 3V, unless otherwise noted	
Frequency	2412		2484	MHz		
802.11n Output Power	24	25		dBm	HT20 and HT40	
802.11n Dynamic EVM			3	%		
			-30.5	dB		
802.11ac Output Power	23	24		dBm	HT40	
802.11ac Dynamic EVM			1.8	%		
			-35	dB		
Second Harmonic		-30	-25	dBm/MHz	P _{OUT} = 26dBm 11b 11Mbps CCK Modulation	
Third Harmonic		-33	-25	dBm/MHz		
Spectral Mask HT20/HT40 Output Power		25		dBm	MCS0; CCK 11Mbps	
Gain	31	34		dB	At rated Pout	
Gain variation	-2.5		2.5	dB	Over temperature of -10°C to +70°C	
Power Detector Voltage Range	0.15		1	V	P _{OUT} = 0dBm to 29dBm	
Power Detector Nominal Voltage		0.6		V	At rated 11ac Pout	
Input Return Loss	9	10		dB	In specified frequency band	
Output Return Loss	7	8		dB		
Operating Current	350	450	550	mA	P _{OUT} = 24dBm	
		450	600	mA	P _{OUT} = 24dBm, over temp	
Quiescent Current		175		mA	V_{CC} = 5.0V, PA Enable = 3V, and RF = OFF	

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

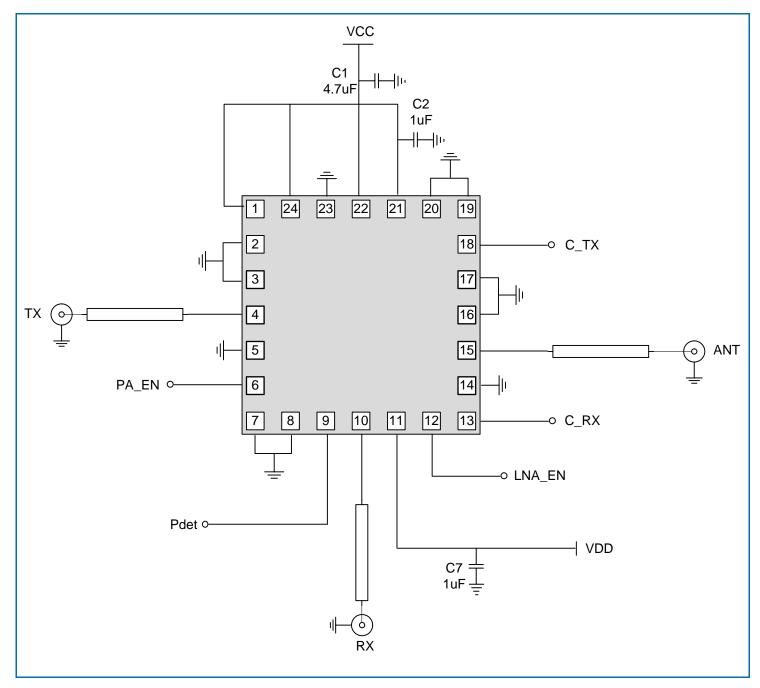
The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

DS141017

Parameter	Specification			Unit	Condition
Falameter	Min Typ Max		Condition		
Transmit Performance (continued)					T= 25°C, V _{CC} = 5.0V, Control voltage= 3V, unless otherwise noted
Leakage Current		650		uA	$V_{cc} = 5V$, Control voltage = 0.2V
Turn-On Time		200	400	ns	Output stable to within 90% of final value
Turn-Off Time		250	500	ns	
Stability	-25		34	dBm	No spurs above -47dBm into 4:1 VSWR
Output P1dB		31		dBm	CW signal
RX Performance					T= 25°C, V _{CC} = 5.0V, Control voltage= 3V, unless otherwise noted
LNA High Gain mode	9	12	14	dB	
Bypass Insertion Loss	5	8	11	dB	
LNA Current		12	18	mA	
LNA Leakage Current			5	uA	
Noise Figure		2.2		dB	
		2.2	3.3	dB	Over temperature
Input Return Loss (High Gain)	5	6		dB	
Output Return Loss (High Gain)	10	16		dB	
ANT to RX Isolation	25	30		dB	FEM in TX mode
Input IP3 (High Gain)	3	7		dBm	
Input IP3 (Bypass mode)	13	18		dBm	
General Specifications					
T/R Switching Time		150	300	nS	10% to 90% of RF Power
Control Current - Logic High		5	10	uA	
Thermal Resistance (Th-j)		33		°C/W	
ESD					
Human Body Model		1000		V	EIA/JESD22-114A, Class 1C, all pins
Charge Device Model 1000 V JESD22-C101C, all pins		JESD22-C101C, all pins			

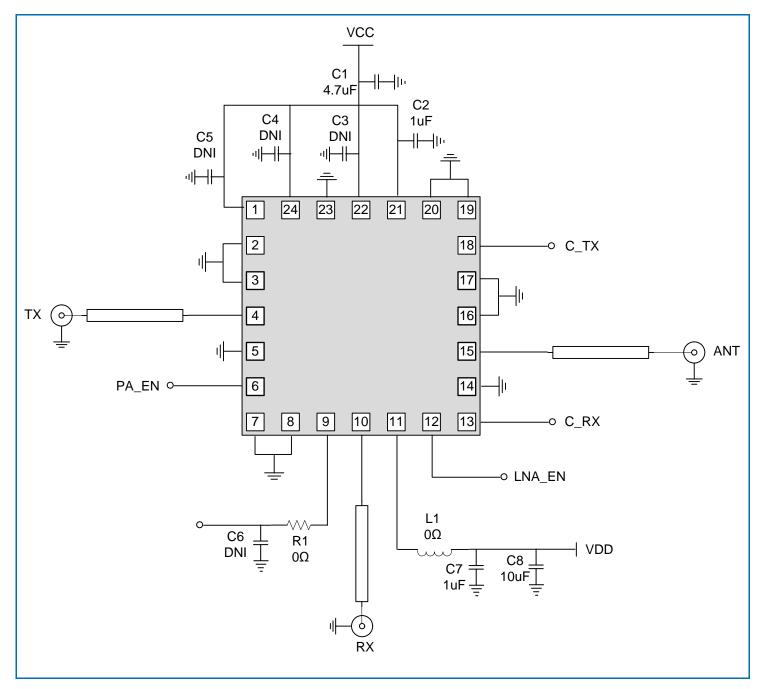
Control Logic Table

Operating Mode	PA_EN	LNA_EN	C_RX	C_TX
Standby	Low	Low	Low	Low
Transmit Mode	High	Low	Low	High
Receive High Gain Mode	Low	High	High	Low
Receive Bypassed Mode	Low	Low	High	Low


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS141017

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent sor patent sor for RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


Applications Schematic

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS141017

Evaluation Board Schematic

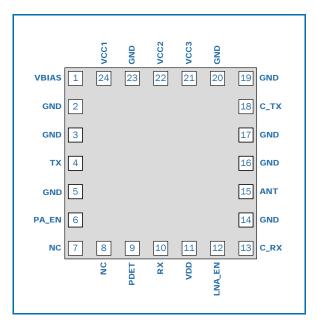
RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS141017

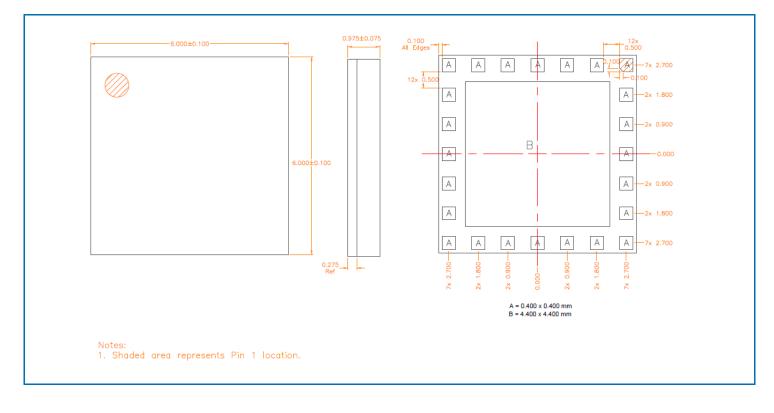


Evaluation Board Characteristics:

- 1) Material: FR4 4-layer board
- 2) Surface finish: ENIG
- 3) Size: 2x2x0.032 in +/- 10%
- 4) Layer stack up

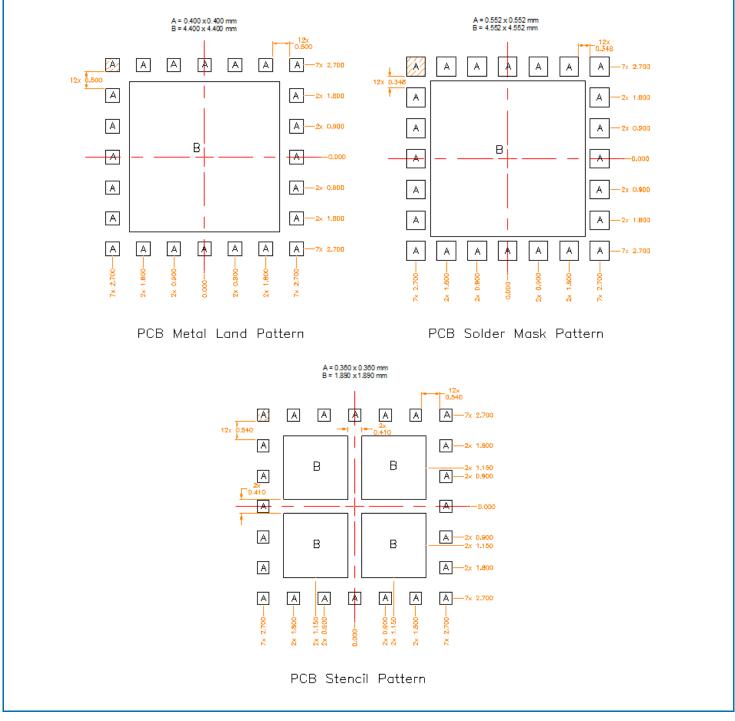
4		LAYER 1 1.0 OZ BASE COPPER + PLATING
10 12 13	0025 008	MATL, TYPE Core FR-4
	0014	LAYER 2 1.0 OZ BASE COPPER
+ .9	ŏŏ82 < 0014	MATL. TYPE Pre-Preg FR-4
5	008	LAYER 3 1.0 OZ BASE COPPER
J . (0025	MATL. TYPE Core FR-4
		LAYER 4 1.0 OZ BASE COPPER + PLATING


Layer description


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS141017 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Pin Out

Package Outline and Branding Drawing (Dimensions in millimeters)


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS141017

RFFM4204

PCB Patterns

Note: shaded area represents Pin 1 location

DS141017

Pin Description Table

Pin	Name	Description		
1	VBIAS	Bias voltage for the PA. This pin should be tied to V_{CC}		
2	GND	Ground connection		
3	GND	Ground connection		
4	тх	RF Input Port for the PA. Input is matched to 50Ω and DC blocked internally.		
5	GND	Ground connection		
6	PA_EN	Control voltage for the PA and Tx switch. See truth table for proper settings.		
7	NC	No Connect. Can be connected to GND or open.		
8	NC	No Connect. Can be connected to GND or open.		
9	PDET	Power detector voltage for transmit mode. P _{DET} voltage varies with output power and may need external decoupling for noise decoupling.		
10	RX	RF Output Port for the LNA, Input is matched to 50Ω and DC blocked internally.		
11	Vdd	Supply voltage for the LNA. See applications schematic for biasing and bypassing components.		
12	LNA_EN	Control Voltage for the LNA. When this pin is set "LOW" LNA bypass switch is closed.		
13	C_RX	Receive switch control pin. See switch truth table for proper level.		
14	GND	Ground connection		
15	ANT	RF bidirectional antenna port matched to 50Ω and DC blocked internally.		
16	GND	Ground connection		
17	GND	Ground connection		
18	C_TX	Transmit switch control pin. See switch truth table for proper level.		
19	GND	Ground connection		
20	GND	Ground connection		
21	VCC3	Supply voltage for the PA. See applications schematic for biasing and bypassing components.		
22	VCC2	Supply voltage for the PA. See applications schematic for biasing and bypassing components.		
23	GND	Ground connection		
24	VCC1	Supply voltage for the PA. See applications schematic for biasing and bypassing components.		
PKG Base	GND	Ground slug connection. The backside of the package should be connected directly to the reference ground plane with as many ground vias as possible to minimize ground inductance.		

DS141017