- ADVANGE INFORMATION
INal.

M80C286
HIGH PERFORMANCE CHMOS MICROPROCESSOR
WITH MEMORY MANAGEMENT AND PROTECTION

Military
m High Speed CHMOS Ill Technology m 10 MHz Clock Rate
m Pin for Pin, Clock for Clock, and m 68 Lead Pin Grid Array Package
Functionally Compatible with the HMOS

m 68 Lead Ceramic Quad Flatpack
Package
(See Packaging Spec., Order #231369)

M80286
(See M80286 Data Sheet, Order #271028-003)

m Stop Clock Capability m Military Temperature Range:
— Uses Less Power (see Iccs —55°C to +125°C (Tg)
Specification)

INTRODUCTION

The M80C286 is an advanced 16 bit CHMOS Ill microprocessor designed for multi-user and multi-tasking
applications that require low power and high performance. The M80C286 is fully compatible with its predeces-
sor the HMOS M80286 and object-code compatible with the M8086 and M80386 family of products. In
addition, the M80C286 has a power down mode which uses less power, making it ideal for mobile applications.
The M80C286 has built-in memory protection that maintains a four level protection mechanism for task isola-
tion, a hardware task switching facility and memory mangement capabilities that map 230 bytes (one gigabyte)
of virtual address space per task (per user) into 224 bytes (16 megabytes) of physical memory.

The M80C286 is upward compatible with M8086 and M8088 software. Using M8086 real address mode, the
M80C286 is object code compatible with existing M8086, M8088 software. In protected virtual address mode,
the M80C286 is source code compatible with M8086, M8088 software which may require upgrading to use
virtual addresses supported by the M80C286’s integrated memory management and protection mechanism.
Both modes operate at full M80C286 performance and execute a superset of the M8086 and M8088 instruc-
tions.

The M80C286 provides special operations to support the efficient implementation and execution of operating
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load
its state, and start execution of the new task. The M80C286 also supports virtual memory systems by providing
a segment-not-present exception and restartable instructions.

F—— - - - - T T T T T T - — bl reeemm s - - - - hl
|
| : ADDRESS ! A23 - Ao
LATCHES AND DRIVERS BHE, M/I0
phvsicaL]! ! !
ADDRESS PROCESSOR || BEATK
ADDER T] ereFeTcHER| | ExTENsION [| rEREQ
SEGMENT 1 | INTERFACE [T
BASES | | t READY, HOLD
_____ { | BUS CONTROL §1, 50, COD/INTA
SEGMENT | secment 1) TOCK, HLDA
CHECKER SIzes ! !
DATA TRANSCEIVERS Dys - Do
| I |
[| 6 BYTE |
| | PREFETCH |
! QUEVE BUS UNIT (8U) |
L [-~—] — = — — — — —— — 4
I
| == —————J\L—— ——————— 4 fe— REser
REGISTERS | CONTROL | | oLk
| JADECODED |ysraycrion INSTRUCTION | [*—
UCTION |5 coper UNIT (V) | |—> Vss
- QUEUE I fe— Vec
7
——————————————————————————— Kl b e mm— == — — — — — — —— — 3 _la»caAP
NmiT l I TBusy
NTR' 'ERROR
271103-1

Figure 1. M80C286 Internal Block Diagram

February 1990 Order Number: 271103-001

M80C286

FUNCTIONAL DESCRIPTION

Introduction

The M80C286 is an advanced, high-performance mi-
croprocessor with specially optimized capabilities for
multiple user and multi-tasking systems. Depending
on the application, a 10 MHz M80C286’s perform-
ance is up to eight times faster than the standard 5
MHz M8086’s, while providing complete upward
software compatibility with Intel’s M8086, 88, and
186 family of CPU’s.

The M80C286 operates in two modes: M8086 real
address mode and protected virtual address mode.
Both modes execute a superset of the M8086 and
88 instruction set.

In M8086 real address mode programs use real ad-
dresses with up to one megabyte of address space.
Programs use virtual addresses in protected virtual
address mode, also called protected mode. In pro-
tected mode, the M80C286 CPU automatically maps
1 gigabyte of virtual addresses per task into a 16
megabyte real address space. This mode also pro-
vides memory protection to isolate the operating
system and ensure privacy of each tasks’ programs
and data. Both modes provide the same base in-
struction set, registers, and addressing modes.

The following Functional Description describes first,
the base M80C286 architecture common to both
modes, second, M8086 real address mode, and
third, protected mode.

M80C286 BASE ARCHITECTURE

The M8086, 88, 186, and 286 CPU family all contain
the same basic set of registers, instructions, and

intgl.

addressing modes. The M80C286 processor is up-
ward compatible with the M8086, M8088, and 80186
CPU’s and fully compatible with the HMOS M80286.

Register Set

The M80C286 base architecture has fifteen registers
as shown in Figure 2. These registers are grouped
into the following four categories:

General Registers: Eight 16-bit general purpose
registers used to contain arithmetic and logical oper-
ands. Four of these (AX, BX, CX, and DX) can be
used either in their entirety as 16-bit words or split
into pairs of separate 8-bit registers.

Segment Registers: Four 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data. (For usage, refer to Memory Organi-
zation.)

Base and Index Registers: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers
may contain base addresses or indexes to particular
locations within a segment. The addressing mode
determines the specific registers used for operand
address calculations.

Status and Control Registers: The 3 16-bit special
purpose registers in Figure 3 record or control cer-
tain aspects of the M80C286 processor state includ-
ing the Instruction Pointer, which contains the offset
address of the next sequential instruction to be exe-
cuted.

GENERAL
REGISTERS

16.BIT SPECIAL
REGISTER REGISTER
NAME FUNCTIONS
7 07 0
BYTE AX AH AL MULTIPLY/DIVIDE
ADDRESSABLE 1/0 INSTRUCTIONS
(8-BIT DX DH DL
REGISTER
NAMES
SHOWN) ox CH cL } LOOP/SHIFT/REPEAT/COUNT
BX BH BL
BASE REGISTERS
BP
sl
INDEX REGISTERS
DI
sp } STACK POINTER
15 0

cs CODE SEGMENT SELECTOR
Ds DATA SEGMENT SELECTOR
Sss STACK SEGMENT SELECTOR
ES EXTRA SEGMENT SELECTOR
SEGMENT REGISTERS
15 0
F STATUS WORD
P INSTRUCTION POINTER

STATUS AND CONTROL
REGISTERS

Figure 2. Register Set

ADVANGE INFORMATION I

u
| n‘tel M80C286
®
STATUS FLAGS:
CARRY
PARITY
AUXILIARY CARRY
ZERO
SIGN
OVERFLOW
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
FLAGS: [\X&\\l NT l 1oPL l OF I OF [IF | T I SF I zF [\X\N AF r\\\\\l PF I\\\\\I CF I
CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG
SPECIAL FIELDS:
VO PRIVILEGE LEVEL
NESTED TASK FLAG
15 3 2 1 0
wsw: A\VRVNTN VA TV VRNV s [ew [we T ee |
‘\‘\\ INTEL RESERVED PROCESSOR EXTENSIJ:SE:lﬁ:l:'II"z:
MONITOR PROCESSOR EXTENSION
PROTECTION ENABLE
271103-2

Figure 3. Status and Control Register Bit Functions

Flags Word Description

The Flags word (Flags) records specific characteris-
tics of the result of logical and arithmetic instructions
(bits 0, 2, 4, 6, 7, and 11) and controls the operation
of the M80C286 within a given operating mode (bits
8 and 9). Flags is a 16-bit register. The function of
the flag bits is given in Table 1.

Instruction Set

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string
manipulation, control transfer, high level instruc-
tions, and processor control. These categories are
summarized in Table 2.

An M80C286 instruction can reference zero, one, or
two operands; where an operand resides in a regis-
ter, in the instruction itself, or in memory. Zero-oper-
and instructions (e.g. NOP and HLT) are usually one
byte long. One-operand instructions (e.g. INC and
DEC) are usually two bytes long but some are en-
coded in only one byte. One-operand instructions
may reference a register or memory location. Two-
operand instructions permit the following six types of
instruction operations:

—Register to Register
—Memory to Register
—Immediate to Register
—Memory to Memory
—Register to Memory
—Immediate to Memory

ADVANGE INFORMATION

Table 1. Flags Word Bit Functions

Bit
Position

Name

Function

0

CF

Carry Flag—Set on high-order bit
carry or borrow; cleared otherwise

PF

Parity Flag—Set if low-order 8 bits
of result contain an even number of
1-bits; cleared otherwise

AF

Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

ZF

Zero Flag—Set if result is zero;
cleared otherwise

SF

Sign Flag—Set equal to high-order
bit of result (0 if positive, 1 if negative)

OF

Overflow Flag—Set if result is a too-
large positive number or a too-small
negative number (excluding sign-bit)
to fit in destination operand; cleared
otherwise

TF

Single Step Flag—Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF is
cleared by the single step interrupt.

Interrupt-enable Flag—When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

DF

Direction Flag—Causes string
instructions to auto decrement
the appropriate index registers
when set. Clearing DF causes
auto increment.

M80C286

Two-operand instructions (e.g. MOV and ADD) are
usually three to six bytes long. Memory to memory
operations are provided by a special class of string
instructions requiring one to three bytes. For de-
tailed instruction formats and encodings refer to the
instruction set summary at the end of this document.

For detailed operation and usage of each instruc-
tion, see Appendix B of the 80286/80287 Program-

intgl.

mer’s Reference Manual (Order No. 210498).

Table 2. Instruction Set

GENERAL PURPOSE ADDITION
MOV Move byte or word ADD Add byte or word
PUSH Push word onto stack ADC Add byte or word with carry
POP Pop word off stack INC Increment byte or word by 1
PUSHA Push all registers on stack AAA ASCII adjust for addition
POPA Pop all registers from stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate byte SUB Subtract byte or word
INPUT/OUTPUT SBB Subtract byte or word with borrow
IN Input byte or word DEC Decrement byte or word by 1
ouT Output byte or word NEG Negate byte or word
ADDRESS OBJECT CMP Compare byte or word
LEA Load effective address AAS ASCII adjust for subtraction
LDS Load pointer using DS DAS Decimal adjust for subtraction
LES Load pointer using ES MULTIPLICATION
FLAG TRANSFER MUL Multiple byte or word unsigned
LAHF Load AH register from flags IMUL Integer multiply byte or word
SAHF Store AH register in flags AAM ASCII adjust for multiply
PUSHF Push flags onto stack DIVISION
POPF Pop flags off stack DIV Divide byte or word unsigned
Data Transfer Instructions IDIV Integer divide byte or word
AAD ASCI!I adjust for division
MOVS Move byte or word string CBW Convert byte to word
INS Input bytes or word string CcWD Convert word to doubleword
OuUTS Output bytes or word string Arithmetic Instructions
CMPS Compare byte or word string
SCAS Scan byte or word string LOGICALS
LODS Load byte or word string NOT “Not” byte or word
STOS Store byte or word string AND “And” byte or word
REP Repeat OR “Inclusive or” byte or word
REPE/REPZ Repeat while equal/zero XOR “Exclusive or”’ byte or word
REPNE/REPNZ Repeat while not equal/not zero TEST “Test” byte or word
String Instructions SHIFTS
SHL/SAL Shift logical/arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word

Shift/Rotate Logical Instructions

ADVANGE INFORMATION

L}
| n‘tel M80C286
®
Table 2. Instruction Set (Continued)
CONDITIONAL TRANSFERS FLAG OPERATIONS
JA/IJNBE Jump if above/not below nor equal STC Set carry flag
JAE/JNB Jump if above or equal/not below CLC Clear carry flag
JB/JNAE Jump if below/not above nor equal CMC Complement carry flag
JBE/JNA Jump if below or equal/not above STD Set direction flag
JC Jump if carry CLD Clear direction flag
JE/JZ Jump if equal/zero STI Set interrupt enable flag
JG/JNLE Jump if greater/not less nor equal CLI Clear interrupt enable flag
JGE/JNL Jump if greater or equal/not less EXTERNAL SYNCHRONIZATION
JL/UNGE Jump if less/not greater nor equal HLT Halt until interrupt or reset
JLE/ING Jump if less or equal/not greater WAIT Wait for BUSY not active
JNC Jump if not carry ESC Escape to extension processor
JNE/JNZ Jump if not equal/not zero LOCK Lock bus during next instruction
JNO Jump if not overflow NO OPERATION
JNP/JPO Jump if not parity/parity odd NOP No operation
JNS Jump if not sign EXECUTION ENVIRONMENT CONTROL
JO Jump if overflow LMSW Load machine status word
JP/JPE Jump if parity/parity even SMSW Store machine status word
JS Jump if sign Process Control Instructions
UNCONDITIONAL TRANSFERS
CALL Call procedure ENTER Format stack for procedure entry
RET Return from procedure LEAVE Restore stack for procedure exit
JMP Jump BOUND Ere;segrtiz;/glgaensgce)ut&de
ITERATION CONTROLS N N
LooP Loop High Level Instructions
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not zero
JCXZ Jump if register CX = 0
INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
IRET Interrupt return

Program Transfer Instructions

Memory Organization

Memory is organized as sets of variable length seg-
ments. Each segment is a linear contiguous se-
quence of up to 64K (216) 8-bit bytes. Memory is
addressed using a two component address (a point-
er) that consists of a 16-bit segment selector, and a
16-bit offset, see Figure 4. The segment selector in-
dicates the desired segment in memory. The offset
component indicates the desired byte address within
the segment.

ADVANGE INFORMATION

32-BIT POINTER

I SEGMENT
31

l OFFSET I
0

16 15

OPERAND
SELECTED

SELECTED
SEGMENT

[
b3

MEMORY

u
\,

271103-3

Figure 4. Two Component Address

]
M80C286 |n‘te|
®
Table 3. Segment Register Selection Rules
Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP
as a base register.

Local Data Data (DS) All data references except when relative to stack or
string destination

External (Global) Data Extra (ES) Alternate data segment and destination of string operation

All instructions that address operands in memory
must specify the segment and the offset. For speed
and compact instruction encoding, segment selec-
tors are usually stored in the high speed segment
registers. An instruction need specify only the de-
sired segment register and an offset in order to ad-
dress a memory operand.

Most instructions need not explicitly specify which
segment register is used. The correct segment reg-
ister is automatically chosen according to the rules
of Table 3. These rules follow the way programs are
written (see Figure 5) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.
To access operands not residing in one of the four
immediately available segments, a full 32-bit pointer
or a new segment selector must be loaded.

Addressing Modes

The M80C286 provides a total of eight addressing
modes for instructions to specify operands. Two ad-
dressing modes are provided for instructions that
operate on register or immediate operands:

Register Operand Mode: The operand is locat-
ed in one of the 8 or 16-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: seg-
ment selector and offset. The segment selector is
supplied by a segment register either implicitly cho-
sen by the addressing mode or explicitly chosen by
a segment override prefix. The offset is calculated
by summing any combination of the following three
address elements:

the displacement (an 8 or 16-bit immediate val-
ue contained in the instruction)

the base (contents of either the BX or BP base
registers)

r——=1

CODE
MODULE A

DATA

cope Py
MODULE B
DATA =

] i L DATA

STACK

PROCESS
STACK EXTRA

SEGMENT
REGISTERS

PROCESS
DATA
BLOCK 1

PROCESS
DATA
BLOCK 2

| 1
| RS |
MEMORY 271103-4

Figure 5. Segmented Memory Helps
Structure Software

the index (contents of either the Sl or DI index
registers)

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements de-
fine the six memory addressing modes, described
below.

Direct Mode: The operand’s offset is contained in
the instruction as an 8 or 16-bit displacement ele-
ment.

Register Indirect Mode: The operand’s offset is in
one of the registers S, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an

8 or 16-bit displacement and the contents of a base
register (BX or BP).

ADVANGE INFORMATION I

in‘tel . M80C286

Indexed Mode: The operand’s offset is the sum of either an 8-bit port address, specified in the instruc-
an 8 or 16-bit displacement and the contents of an tion, or a 16-bit port address in the DX register. 8-bit
index register (Sl or DI). port addresses are zero extended such that A{s—Ag

are LOW. 1/0O port addresses O00F8(H) through
Based Indexed Mode: The operand’s offset is the O00FF(H) are reserved.
sum of the contents of a base register and an index

register. 7 o
SIGNED m
BYTE
Based Indexed Mode with Displacement: The op- SIGNBITJ
erand’s offset is the sum of a base register’s con- MAGNITUDE

0

tents, an index register’s contents, and an 8 or 16-bit

. UNSIGNED d
displacement. BYTE

L MsB
MAGNITUDE
Data Types sioNED [T
WORD
The M80C286 directly supports the following data SIGN BIT - -MsB
types: MAGNITUDE
. . X SIGNED 31 *3 +2 4545) 0,
Integer: A signed binary numeric value con- DOUBLE n'rrrrrrrrnTrrrI'rrrrmTrrrrrrq
tained in an 8-bit byte or a 16-bit :{Sﬂz.TJﬂsa)
word. All operations assume a 2’s MAGNITUDE
complement representation. Signed SIGNED 85 . P Tlnar® tlee! 0,
32_ and 64-bit integers are supported v] |] [] J
using the Numeric Data Processor, SIGN BITJ_MSB |
the M80C287. MAGNITUDE
0
Ordinal: An unsigned binary numeric value ONSIGNED FrTT. 3
contained in an 8-bit byte or 16-bit WORD e
Word MAGNITUDE
Pointer: A 32-bit quantity, composed of a anary 7N o 7 1 o 0 o
segment selector component and an Dé:;ailzl | l T |' T "I
offset component. Each component @®cp) _BCD BCD BCD
H 16'b|t WOl’d DIGIT N DIGIT 1 DIGIT 0
Isa ' 7 *N A T

String: A contiguous sequence of bytes or Ascll | |] |

words. A string may contain from 1 ascil ASCIlASCIl
byte tO 64K byteS CHARI:‘CTERN CNAHAC:EFH CHARACTERo
i 7 *N 7 *1 g7 0
ASCII: A byte representation of alphanu- PACkeD e M T T
meric and control characters using
:deﬁtsa?||!):tandard Of CharaCter rep- HSAI?S?!TFICANT DIGIT SIGNIFICANTLEIAGSI}
’ s +N s 1 s 0
BCD: A byte (unpacked) representation of STRING 7ﬁﬂ'rl'|'lzl 7|1:7-|-l-,-1-|-|3|Zvl:-|-|-v-|-|£|
the deCImaI dlgltS 0_9 BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0
Packed BCD: A byte (packed) representation of 3 *+3 +2 545 +1 L
two decimal digits 0-9 storing one POINTER | T |' T '| | T |
digit in each nibble of the byte. L L)
Floating Point: A signed 32, 64, or 80-bit real num- 70+9 SEECNT 48 45 wd 5a 2 41 0 o
ber representation. (Floating point P T T T T T T T T T
operands are supported using the SIGN BIT, N |
M80C287 Numeric Processor). EXPONENT MAGNITUDE
*Supported by iAPX 286/20 Numeric Data Processor Configuration
Figure 6 graphically represents the data types sup- 271103-5

ported by the M80C286. .
Figure 6. M80C286 Supported Data Types

1/0 Space

The 1/0 space consists of 64K 8-bit or 32K 16-bit
ports. 1/0 instructions address the 1/0 space with

I ADVANGE INFORMATION 7

M80C286

intgl.

Table 4. Interrupt Vector Assignments

Does Return Address
Function Interrupt Relate.d Point to Instruction
Number Instructions Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 INT 2 or NMI pin
Breakpoint interrupt 3 INT 3
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC or WAIT Yes
Intel reserved-do not use 8-15
Processor extension error interrupt 16 ESC or WAIT
Intel reserved—-do not use 17-31
User defined 32-255

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma-
chine state (Flags) are saved on the stack to allow
resumption of the interrupted program. Interrupts fall
into three classes: hardware initiated, INT instruc-
tions, and instruction exceptions. Hardware initiated
interrupts occur in response to an external input and
are classified as non-maskable or maskable. Pro-
grams may cause an interrupt with an INT instruc-
tion. Instruction exceptions occur when an unusual
condition, which prevents further instruction pro-
cessing, is detected while attempting to execute an
instruction. The return address from an exception
will always point at the instruction causing the ex-
ception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt. In-
terrupts 0-31, some of which are used for instruc-
tion exceptions, are reserved. For each interrupt, an
8-bit vector must be supplied to the M80C286 which
identifies the appropriate table entry. Exceptions
supply the interrupt vector internally. INT instructions
contain or imply the vector and allow access to all
256 interrupts. The Interrupt Vector Assignments are
listed in Table 4. Maskable hardware initiated inter-
rupts supply the 8-bit vector to the CPU during an
interrupt acknowledge bus sequence. Non-maska-
ble hardware interrupts use a predefined internally
supplied vector.

MASKABLE INTERRUPT (INTR)

The M80C286 provides a maskable hardware inter-
rupt request pin, INTR. Software enables this input

8

by setting the interrupt flag bit (IF) in the flag word.
All 224 user-defined interrupt sources can share this
input, yet they can retain separate interrupt han-
dlers. An 8-bit vector read by the CPU during the
interrupt acknowledge sequence (discussed in Sys-
tem Interface section) identifies the source of the
interrupt.

Further maskable interrupts are disabled while serv-
icing an interrupt by resetting the IF but as part of
the response to an interrupt or exception. The saved
flag word will reflect the enable status of the proces-
sor prior to the interrupt. Until the flag word is re-
stored to the flag register, the interrupt flag will be
zero unless specifically set. The interrupt return in-
struction includes restoring the flag word, thereby
restoring the original status of IF.

NON-MASKABLE INTERRUPT REQUEST (NMI)

A non-maskable interrupt input (NMI) is also provid-
ed. NMI has higher priority than INTR. A typical use
of NMI would be to activate a power failure routine.
The activation of this input causes an interrupt with
an internally supplied vector value of 2. No external
interrupt acknowledge sequence is performed.

While executing the NMI servicing procedure, the
M80C286 will service neither further NMI requests,
INTR requests, nor the processor extension seg-
ment overrun interrupt until an interrupt return (IRET)
instruction is executed or the CPU is reset. If NMI
occurs while currently servicing an NMl, its presence
will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an
NMI interrupt to inhibit INTR interrupts.

ADVANGE INFORMATION I

intgl.

SINGLE STEP INTERRUPT

The M80C286 has an internal interrupt that allows
programs to execute one instruction at a time. It is
called the single step interrupt and is controlled by
the single step flag bit (TF) in the flag word. Once
this bit is set, an internal single step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc-
tion to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they
are processed in a fixed order as shown in Table 5.
Interrupt processing involves saving the flags, return
address, and setting CS:IP to point at the first in-
struction of the interrupt handler. If other interrupts
remain enabled they are processed before the first
instruction of the current interrupt handler is execut-
ed. The last interrupt processed is therefore the first
one serviced.

Table 5. Interrupt Processing Order

M80C286

Table 6.M80C286 Initial Register State after RESET

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOO0O0(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

HOLD must not be active during the time from the
leading edge of RESET to 34 CLKs after the trailing
edge of RESET.

Machine Status Word Description

The machine status word (MSW) records when a
task switch takes place and controls the operating
mode of the M80C286. It is a 16-bit register of which
the lower four bits are used. One bit places the CPU
into protected mode, while the other three bits, as
shown in Table 7, control the processor extension
interface. After RESET, this register contains
FFFO(H) which places the M80C286 in M8086 real
address mode.

Table 7. MSW Bit Functions

Bit

Position Function

Name

0 PE | Protected mode enable places the
M80C286 into protected mode and

cannot be cleared except by RESET.

Monitor processor extension allows
WAIT instructions to cause a processor
extension not present exception
(number 7).

Order Interrupt
1 Instruction exception
2 Single step
3 NMI
4 Processor extension segment overrun
5 INTR
6 INT instruction

Initialization and Processor Reset

Processor initialization or start up is accomplished
by driving the RESET input pin HIGH. RESET forces
the M80C286 to terminate all execution and local
bus activity. No instruction or bus activity will occur
as long as RESET is active. After RESET becomes
inactive and an internal processing interval elapses,
the M80C286 begins execution in real address
mode with the instruction at physical location
FFFFFO(H). RESET also sets some registers to pre-
defined values as shown in Table 6.

Emulate processor extension causes a
processor extension not present
exception (number 7) on ESC
instructions to allow emulating a
processor extension.

Task switched indicates the next
instruction using a processor extension
will cause exception 7, allowing software
to test whether the current processor
extension context belongs to the current
task.

The LMSW and SMSW instructions can load and
store the MSW in real address mode. The recom-
mended use of TS, EM, and MP is shown in Table 8.

Table 8. Recommended MSW Encodings For Processor Extension Control

Instructions
TS | MP | EM Recommended Use Causing
Exception 7
0 0 0 Initial encoding after RESET. M80C286 operation is identical to M8086, 88. None
0 0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 A processor extension exists. None
1 1 0 A processor extension exists. The current processor extension context may belongto | ESC or
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT
from a previous processor extension operation.

I ADVANGE INFORMATION

M80C286

Halt

The HLT instruction stops program execution and
prevents the CPU from using the local bus until re-
started. Either NMI, INTR with IF = 1, or RESET will
force the M80C286 out of halt. If interrupted, the
saved CS:IP will point to the next instruction after
the HLT.

M8086 REAL ADDRESS MODE

The M80C286 executes a fully upward-compatible
superset of the M8086 instruction set in real address
mode. In real address mode the M80C286 is object
code compatible with M8086 and M8088 software.
The real address mode architecture (registers and
addressing modes) is exactly as described in the
M80C286 Base Architecture section of this Func-
tional Description.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins
A through Aq1g and BHE. Ayg through Apg should be
ignored.

Memory Addressing

In real address mode physical memory is a contigu-
ous array of up to 1,048,576 bytes (one megabyte)
addressed by pins Ag through A9 and BHE. Ad-
dress bits Apg—Ap3 may not always be zero in real
mode. Asp—Ao3 should not be used by the system
while the M80C286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always
zero. Segment addresses, therefore, begin on multi-
ples of 16 bytes. See Figure 7 for a graphic repre-
sentation of address information.

All segments in real address mode are 64K bytes in
size and may be read, written, or executed. An ex-
ception or interrupt can occur if data operands or
instructions attempt to wrap around the end of a
segment (e.g. a word with its low order byte at offset
FFFF(H) and its high order byte at offset 0000(H). If,
in real address mode, the information contained in a
segment does not use the full 64K bytes, the unused
end of the segment may be overlayed by another
segment to reduce physical memory requirements.

Reserved Memory Locations

The M80C286 reserves two fixed areas of memory
in real address mode (see Figure 8); system initiali-

10

intgl.

zation area and interrupt table area. Locations from
addresses FFFFO(H) through FFFFF(H) are re-
served for system initialization. Initial execution be-
gins at location FFFFO(H). Locations 00000(H)
through 003FF(H) are reserved for interrupt vectors.

15 0
OFFSET
0000 OFFSET ADDRESS
\—___—T —
15 0
SEGMENT 000 SEGMENT
SELECTOR 0000] ADDRESS
ADDER
19 0
20-BIT PHYSICAL
MEMORY ADDRESS

271103-6

Figure 7. M8086 Real Address Mode
Address Calculation

FFFFFH
RESET BOOTSTRAP
PROGRAM JUMP
FFFFOH
. ~
OV : r
3FFH
INTERRUPT POINTER
FOR VECTOR 255
3FCH
~ * ~
q: . sy
- 7H
INTERRUPT POINTER
FOR VECTOR 1 4H
INTERRUPT POINTER 3H
FOR VECTOR 0 oH

INITIAL CS:IP VALUE IS FO00:FFFO.

271103-7

Figure 8. M8086 Real Address Mode Initially
Reserved Memory Locations

ADVANGE INFORMATION I

intgl.

M80C286

Table 9. Real Address Mode Addressing Interrupts

Function Interrupt Related Return Address
Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extend- No
interrupt ing beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with offset Yes
= FFFF(H) or an attempt to exe-
cute past the end of a segment
Interrupts PROTECTED VIRTUAL ADDRESS

Table 9 shows the interrupt vectors reserved for ex-
ceptions and interrupts which indicate an addressing
error. The exceptions leave the CPU in the state ex-
isting before attempting to execute the failing in-
struction (except for PUSH, POP, PUSHA, or POPA).
Refer to the next section on protected mode initiali-
zation for a discussion on exception 8.

Protected Mode Initialization

To prepare the M80C286 for protected mode, the
LIDT instruction is used to load the 24-bit interrupt
table base and 16-bit limit for the protected mode
interrupt table. This instruction can also set a base
and limit for the interrupt vector table in real address
mode. After reset, the interrupt table base is initial-
ized to 000000(H) and its size set to 03FF(H). These
values are compatible with M8086, 88 software.
LIDT should only be executed in preparation for pro-
tected mode.

Shutdown

Shutdown occurs when a severe error is detected
that prevents further instruction processing by the
CPU. Shutdown and halt are externally signalled via
a halt bus operation. They can be distinguished by
A1 HIGH for halt and Ay LOW for shutdown. In real
address mode, shutdown can occur under two con-
ditions:

e Exceptions 8 or 13 happen and the IDT limit does

not include the interrupt vector.

e A CALL INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if
the IDT limit is at least 000F(H) and SP is greater
than 0005(H), otherwise shutdown can only be exit-
ed via the RESET input.

I ADVANGE INFORMATION

MODE

The M80C286 executes a fully upward-compatible
superset of the M8086 instruction set in protected
virtual address mode (protected mode). Protected
mode also provides memory management and pro-
tection mechanisms and associated instructions.

The M80C286 enters protected virtual address
mode from real address mode by setting the PE
(Protection Enable) bit of the machine status word
with the Load Machine Status Word (LMSW) instruc-
tion. Protected mode offers extended physical and
virtual memory address space, memory protection
mechanisms, and new operations to support operat-
ing systems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the M80C286 Base Architecture section
of this Functional Description remain the same. Pro-
grams for the M8086, 88, 186, and real address
mode M80C286 can be run in protected mode; how-
ever, embedded constants for segment selectors
are different.

Memory Size

The protected mode M80C286 provides a 1 gigabyte
virtual address space per task mapped into a 16
megabyte physical address space defined by the ad-
dress pin As3_Ap and BHE. The virtual address
space may be larger than the physical address
space since any use of an address that does not
map to a physical memory location will cause a re-
startable exception.

Memory Addressing

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset
components. The selector, however, specifies an in-
dex into a memory resident table rather than the up-
per 16-bits of a real memory address. The 24-bit
base address of the desired segment is obtained

11

M80C286

from the tables in memory. The 16-bit offset is add-
ed to the segment base address to form the physical
address as shown in Figure 10. The tables are auto-
matically referenced by the CPU whenever a seg-
ment register is loaded with a selector. All M80C286
instructions which load a segment register will refer-
ence the memory based tables without additional
software. The memory based tables contain 8 byte
values called descriptors.

CPU

16 15

POINTER |SELECTOR| OFFSET

PHYSICAL MEMORY

=
-J

PN
o\

MEMORY

OPERAND SEGMENT

PHYSICAL
ADDRESS

ADDER

SEGMENT
DESCRIPTOR
TABLE

SEGMENT BASE
ADDRESS

SEGMENT
DESCRIPTOR

¥

2
(49

271103-8

intgl.

of control and task switching. The M80C286 has
segment descriptors for code, stack and data seg-
ments, and system control descriptors for special
system data segments and control transfer opera-
tions, see Figure 10. Descriptor accesses are per-
formed as locked bus operations to assure descrip-
tor integrity in multi-processor systems.

CODE AND DATA SEGMENT DESCRIPTORS
s=1

Besides segment base addresses, code and data
descriptors contain other segment attributes includ-
ing segment size (1 to 64K bytes), access rights
(read only, read/write, execute only, and execute/
read), and presence in memory (for virtual memory
systems) (See Figure 11). Any segment usage vio-
lating a segment attribute indicated by the segment
descriptor will prevent the memory cycle and cause
an exception or interrupt.

0 7

T
+7 INTEL RESERVED* +6
1
ACCESS
mcHtseyre 5 |P|OPL|s| Tvee |a BASE23-16 +4
+3 BASE (5 42
1
1 LIMIT;5_o 0
1
15 87 0
271103-9

*Must be set to 0 for compatibility with 80386.

Figure 9. Protected Mode Memory Addressing

DESCRIPTORS

Figure 10. Code or Data Segment Descriptor

Descriptors define the use of memory. Special types
of descriptors also define new functions for transfer

Access Rights Byte Definition
Bit .
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exits, base and limit are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor
tor (S) S=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Data segment descriptor type is: If
2 Expansion Direc- ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED =1 Expand down segment, offsets must be > limit. Segment
1 Writeable (W) W=0 Data segment may not be written into. S=1,
- W =1 Data segment may be written into. E =0)
e
Fi):arid 3 Executable (E) E=1 Code Segment Descriptor type is: If
Definition 2 Conforming (C) C=1 Code segment may only be executed Code
when CPL >DPL and CPL Segment
remains unchanged.
1 Readable (R) R =0 Code segment may not be read S=1,
R=1 Code segment may be read. E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.
Figure 11. Code and Data Segment Descriptor Formats
12 ADVANCE INFORMATION

intgl.

Code and data (including stack data) are stored in
two types of segments: code segments and data
segments. Both types are identified and defined by
segment descriptors (S = 1). Code segments are
identified by the executable (E) bit set to 1 in the
descriptor access rights byte. The access rights byte
of both code and data segment descriptor types
have three fields in common: present (P) bit, De-
scriptor Privilege Level (DPL), and accessed (A) bit.
If P = 0, any attempted use of this segment will
cause a not-present exception. DPL specifies the
privilege level of the segment descriptor. DPL con-
trols when the descriptor may be used by a task
(refer to privilege discussion below). The A bit shows
whether the segment has been previously accessed
for usage profiling, a necessity for virtual memory
systems. The CPU will always set this bit when ac-
cessing the descriptor.

Data segments (S = 1, E = 0) may be either read-
only or read-write as controlled by the W bit of the
access rights byte. Read-only (W = 0) data seg-
ments may not be written into. Data segments may
grow in two directions, as determined by the Expan-
sion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment
containing a stack. The limit field for a data segment
descriptor is interpreted differently depending on the
ED bit (see Figure 11).

A code segment (S = 1, E = 1) may be execute-
only or execute/read as determined by the Read-
able (R) bit. Code segments may never be written
into and execute-only code segments (R = 0) may
not be read. A code segment may also have an attri-
bute called conforming (C). A conforming code seg-
ment may be shared by programs that execute at
different privilege levels. The DPL of a conforming
code segment defines the range of privilege levels
at which the segment may be executed (refer to priv-
ilege discussion below). The limit field identifies the
last byte of a code segment.

SYSTEM SEGMENT DESCRIPTORS (S = 0,
TYPE = 1-3)

In addition to code and data segment descriptors,
the protected mode M80C286 defines System Seg-
ment Descriptors. These descriptors define special
system data segments which contain a table of de-
scriptors (Local Descriptor Table Descriptor) or seg-
ments which contain the execution state of a task
(Task State Segment Descriptor).

Figure 12 gives the formats for the special system
data segment descriptors. The descriptors contain a
24-bit base address of the segment and a 16-bit lim-
it. The access byte defines the type of descriptor, its
state and privilege level. The descriptor contents are
valid and the segment is in physical memory if P =1.
If P = 0, the segment is not valid. The DPL field is

I ADVANGE INFORMATION

M80C286

only used in Task State Segment descriptors and
indicates the privilege level at which the descriptor
may be used (see Privilege). Since the Local De-
scriptor Table descriptor may only be used by a spe-
cial privileged instruction, the DPL field is not used.
Bit 4 of the access byte is 0 to indicate that it is a
system control descriptor. The type field specifies
the descriptor type as indicated in Figure 12.

System Segment Descriptor

7 07 0

T
+7 INTEL RESERVED* +6
N
+5 PI DPLIOI]TYIPEI | BASEz;-15 +4
1
+3 BASE(5-9 +2
1
+1 LIMT15-0 0
1
15 87 [
271103-10

*Must be set to 0 for compatibility with 80386.

System Segment Descriptor Fields

Name | Value Description
TYPE 1 Available Task State Segment (TSS)
2 Local Descriptor Table
3 Busy Task State Segment (TSS)
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
BASE 24-bit Base Address of special system data
number | segment in real memory
LIMIT 16-bit | Offset of last byte in segment
number

Figure 12. System Segment Descriptor Format

GATE DESCRIPTORS (S = 0, TYPE = 4-7)

Gates are used to control access to entry points
within the target code segment. The gate descrip-
tors are call gates, task gates, interrupt gates and
trap gates. Gates provide a level of indirection be-
tween the source and destination of the control
transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry
point of the destination. Call gates are used to
change privilege levels (see Privilege), task gates
are used to perform a task switch, and interrupt and
trap gates are used to specify interrupt service rou-
tines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Figure 13 shows the format of the gate descriptors.
The descriptor contains a destination pointer that
points to the descriptor of the target segment and
the entry point offset. The destination selector in an
interrupt gate, trap gate, and call gate must refer to a
code segment descriptor. These gate descriptors
contain the entry point to prevent a program from
constructing and using an illegal entry point. Task
gates may only refer to a task state segment. Since
task gates invoke a task switch, the destination off-
set is not used in the task gate.

13

M80C286 in‘tel .

causes exception 11 if referenced. DPL is the de-

Gate Descriptor scriptor privilege level and specifies when this de-

; o7 . scriptor may be used by a task (refer to privilege
+7 INTEL RESERVED" ‘6 discussion below). Bit 4 must equal O to indicate a
WORD system control descriptor. The TYPE field specifies

+

«

plopL[of Tvee xxx[44
l||I|1|l11 COUNTo

DESTINATION SELECTOR1s_ Ix X| +2
L 1

the descriptor type as indicated in Figure 13.

+

w

+1 DESTINATION OFFSETy5.o 13 SEGMENT DESCRIPTOR CACHE REGISTERS
L
O o7 o A segment descriptor cache register is assigned to
271103-11 each of the four segment registers (CS, SS, DS, ES).
*Must be set to 0 for compatibility with 80386 (X is don’t care) Segment descriptors are automatica"y loaded
Gate Descriptor Fields (cached) into a segment descriptor cache register
Name Value Description (Figure 14) whenever the associated segment regis-
ter is loaded with a selector. Only segment descrip-
4 —Call Gate p -
5 Task Gat tors may be loaded into segment descriptor cache
TYPE [inie= i Once loaded, all ref h -
6 —Interrupt Gate registers. Once loaded, all references to that seg
7 ~Trap Gate ment of memory use the cached descriptor informa-
P 0 Descriptor Contents are not tion instead of reaccessing the d_e_scrlptor. The de-
valid scriptor cache registers are not visible to programs.
1 —Descriptor Contents are No instructions exist to store their contents. They
valid only change when a segment register is loaded.
DPL 0-3 Descriptor Privilege Level
- . b"’ f 'V'd gt o SELECTOR FIELDS
umber ot woras 10 CO| . .
COUNT from callers stack to Ca’,’ﬁ;d A protected mode selector has three fields: descrip-
0-31 procedures stack. Only used tor entry index, local or global descriptor table indi-
with call gate. cator (Tl), and selector privilege (RPL) as shown in
Selector to the target code Eigurg t15bI The?edfield_s tselect cl)nei ?r: two memotry
ased tables of descriptors, select the appropriate
DESTINATION | 16-bit ?’egmgni (el Interruptor table entry and allow hiphs eed testing of Ft)rim)e gelec-
SELECTOR | selector | 2P Gate) ' entry ow highsp sting of the sele
Selector to the target task tor’s privilege attribute (refer to privilege discussion
state segment (Task Gate) below).
DESTINATION | 16-bit | Entry point within the target
OFFSET offset | code segment SELECTOR
=
Figure 13. Gate Descriptor Format l A ['IRT’LJ
15 3210
Exception 13 is generated when the gate is used if a BITS NAME FUNCTION
destination selector does not refer to the correct de- -0 REQUESTED | INDICATES SELECTOR PRIVILEGE
. . . . PRIVILEGE LEVEL DESIRED
scriptor type. The word count field is used in the call LEVEL
gate descriptor to indicate the number of parameters (RPL)
(0-31 words) to be automatically copied from the 2 mtﬁwa T :?G%s; GLOBAL DESCRIPTOR TABLE
caller’s stack to the stack of the called routine when) T = 1USE LOCAL DESCRIPTOR TABLE
a control transfer changes privilege levels. The word on
count field is not used by any other gate descriptor. 15-3 | INDEX SELECT DESCRIPTOR ENTRY IN TABLE
The access byte format is the same for all gate de- 271103-12
scrjptors. P = 1. indicates that the gate conteqts are Figure 15. Selector Fields
valid. P = 0 indicates the contents are not valid and
PROGRAM VISIBLE T T T T T 7" SRocrammvisieLe 7
ACCESS
SEGMENT SELECTORS RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE

cs

Ss

ES

15 [} a7 40 39 16 15

SEGMENT REGISTERS SEGMENT DESCRIPTOR CACHE REGISTERS
(LOADED BY PROGRAM) L (AUTOMATICALLY LOADED BY CPU) _l

271103-13

Figure 14. Descriptor Cache Registers

14 ADVANGE INFORMATION I

intgl.

LOCAL AND GLOBAL DESCRIPTOR TABLES

Two tables of descriptors, called descriptor tables,
contain all descriptors accessible by a task at any
given time. A descriptor table is a linear array of up
to 8192 descriptors. The upper 13 bits of the selec-
tor value are an index into a descriptor table. Each
table has a 24-bit base register to locate the descrip-
tor table in physical memory and a 16-bit limit regis-
ter that confine descriptor access to the defined lim-
its of the table as shown in Figure 16. A restartable
exception (13) will occur if an attempt is made to
reference a descriptor outside the table limits.

One table, called the Global Descriptor table (GDT),
contains descriptors available to all tasks. The other
table, called the Local Descriptor Table (LDT), con-
tains descriptors that can be private to a task. Each
task may have its own private LDT. The GDT may
contain all descriptor types except interrupt and trap
descriptors. The LDT may contain only segment,
task gate, and call gate descriptors. A segment can-
not be accessed by a task if its segment descriptor
does not exist in either descriptor table at the time of
access.

~, MEMORY
cPu WV

"
]
g
I GDT LIMIT ,\ : Got
23

GDT BASE
24-BIT PHYS AD.
1

5
5 0
(X7 s o
DESCR, LoT,
SELECTOR

F—A‘_s___—‘

CURRENT
LDT

LDT LIMIT
23

LDT BASE
24-BIT PHYS AD.

JR [)

LDTH
PROGRAM INVISIBLE | g 2
(AUTOMATICALLY | - axd
| LOADED | : u g o«
| FROM LDY DESCR. | o 3
WITHINGDT) | £2<
_______ J
A i
~ ~
271103-14

Figure 16. Local and Global
Descriptor Table Definition

The LGDT and LLDT instructions load the base and
limit of the global and local descriptor tables. LGDT
and LLDT are privileged, i.e. they may only be exe-
cuted by trusted programs operating at level 0. The
LGDT instruction loads a six byte field containing the
16-bit table limit and 24-bit physical base address of
the Global Descriptor Table as shown in Figure 17.

I ADVANGE INFORMATION

M80C286

The LDT instruction loads a selector which refers to
a Local Descriptor Table descriptor containing the
base address and limit for an LDT, as shown in Fig-
ure 16.

7 07 0

+5 [INTEL RESERVED® BASEz 15 4
43 BASE15-0 +2
!
+1 LIMIT1s- o
15 8'7 0
271103-15

*Must be set to 0 for compatibility with 80386.

Figure 17. Global Descriptor Table and
Interrupt Descriptor Table Data Type

INTERRUPT DESCRIPTOR TABLE

The protected mode M80C286 has a third descriptor
table, called the Interrupt Descriptor Table (IDT)
(see Figure 18), used to define up to 256 interrupts.
It may contain only task gates, interrupt gates and
trap gates. The IDT (Interrupt Descriptor Table) has
a 24-bit physical base and 16-bit limit register in the
CPU. The privileged LIDT instruction loads these
registers with a six byte value of identical form to
that of the LGDT instruction (see Figure 17 and Pro-
tected Mode Initialization).

> MEMORY 2

GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1

INTERRUPT
DESCRIPTOR
TABLE

(IDT)

.

"
o
cPy M
s ° GATE FOR
INTERRUPT #1
A

S—

—_—

woTumT ||
GATE FOR
DT BASE

INTERRUPT #0
3

INCREASING

MEMORY
ADDRESSES

C
2
(s

<

271103-16

Figure 18. Interrupt Descriptor Table Definition

References to IDT entries are made via INT instruc-
tions, external interrupt vectors, or exceptions. The
IDT must be at least 256 bytes in size to allocate
space for all reserved interrupts.

Privilege

The M80C286 has a four-level hierarchical privilege
system which controls the use of privileged instruc-
tions and access to descriptors (and their associat-
ed segments) within a task. Four-level privilege, as
shown in Figure 19, is an extension of the user/su-
pervisor mode commonly found in minicomputers.
The privilege levels are numbered O through 3.

15

M80C286

APPLICATIONS
CPU

ENFORCED
SOFTWARE

INTERFACES OS EXTENSIONS

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

NOTE: PL BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL
INCREASES

271103-17

Figure 19. Privilege Levels

Level 0 is the most privileged level. Privilege levels
provide protection within a task. (Tasks are isolated
by providing private LDT’s for each task.) Operating
system routines, interrupt handlers, and other sys-
tem software can be included and protected within
the virtual address space of each task using the four
levels of privilege. Each task in the system has a
separate stack for each of its privilege levels.

Tasks, descriptors, and selectors have a privilege
level attribute that determines whether the descrip-
tor may be used. Task privilege effects the use of
instructions and descriptors. Descriptor and selector
privilege only effect access to the descriptor.

TASK PRIVILEGE

A task always executes at one of the four privilege
levels. The task privilege level at any specific instant
is called the Current Privilege Level (CPL) and is de-
fined by the lower two bits of the CS register. CPL
cannot change during execution in a single code
segment. A task’s CPL may only be changed by con-
trol transfers through gate descriptors to a new code
segment (See Control Transfer). Tasks begin exe-
cuting at the CPL value specified by the code seg-
ment selector within TSS when the task is initiated
via a task switch operation (See Figure 20). A task
executing at Level 0 can access all data segments
defined in the GDT and the task’s LDT and is con-
sidered the most trusted level. A task executing a
Level 3 has the most restricted access to data and is
considered the least trusted level.

DESCRIPTOR PRIVILEGE

Descriptor privilege is specified by the Descriptor
Privilege Level (DPL) field of the descriptor access

16

intgl.

byte. DPL specifies the least trusted task privilege
level (CPL) at which a task may access the descrip-
tor. Descriptors with DPL = 0 are the most protect-
ed. Only tasks executing at privilege level 0
(CPL = 0) may access them. Descriptors with DPL
= 3 are the least protected (i.e. have the least re-
stricted access) since tasks can access them when
CPL = 0, 1, 2, or 3. This rule applies to all descrip-
tors, except LDT descriptors.

SELECTOR PRIVILEGE

Selector privilege is specified by the Requested Priv-
ilege Level (RPL) field in the least significant two bits
of a selector. Selector RPL may establish a less
trusted privilege level than the current privilege level
for the use of a selector. This level is called the
task’s effective privilege level (EPL). RPL can only
reduce the scope of a task’s access to data with this
selector. A task’s effective privilege is the numeric
maximum of RPL and CPL. A selector with RPL = 0
imposes no additional restriction on its use while a
selector with RPL = 3 can only refer to segments at
privilege Level 3 regardless of the task’s CPL. RPL
is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed
to use data at a more privileged level than the caller
(refer to pointer testing instructions).

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a seg-
ment involves the type of segment to be accessed,
the instruction used, the type of descriptor used and
CPL, RPL, and DPL. The two basic types of segment
accesses are control transfer (selectors loaded into
CS) and data (selectors loaded into DS, ES or SS).

DATA SEGMENT ACCESS

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code
segment descriptor. The CPL of the task and the
RPL of the selector must be the same as or more
privileged (numerically equal to or lower than) than
the descriptor DPL. In general, a task can only ac-
cess data segments at the same or less privileged
levels than the CPL or RPL (whichever is numerically
higher) to prevent a program from accessing data it
cannot be trusted to use.

An exception to the rule is a readable conforming
code segment. This type of code segment can be
read from any privilege level.

If the privilege checks fail (e.g. DPL is numerically
less than the maximum of CPL and RPL) or an incor-
rect type of descriptor is referenced (e.g. gate de-

ADVANGE INFORMATION I

intgl.

scriptor or execute only code segment) exception 13
occurs. If the segment is not present, exception 11
is generated.

Instructions that load selectors into SS must refer to
data segment descriptors for writable data seg-
ments. The descriptor privilege (DPL) and RPL must
equal CPL. All other descriptor types or a privilege
level violation will cause exception 13. A not present
fault causes exception 12.

CONTROL TRANSFER

Four types of control transfer can occur when a se-
lector is loaded into CS by a control transfer opera-
tion (see Table 10). Each transfer type can only oc-
cur if the operation which loaded the selector refer-
ences the correct descriptor type. Any violation of
these descriptor usage rules (e.g. JMP through a call
gate or RET to a Task State Segment) will cause
exception 13.

The ability to reference a descriptor for control trans-
fer is also subject to rules of privilege. A CALL or
JUMP instruction may only reference a code seg-
ment descriptor with DPL equal to the task CPL or a
conforming segment with DPL of equal or greater
privilege than CPL. The RPL of the selector used to
reference the code descriptor must have as much
privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal
to or less privileged than the task CPL. The selector
loaded into CS is the return address from the stack.
After the return, the selector RPL is the task’s new
CPL. If CPL changes, the old stack pointer is popped
after the return address.

When a JMP or CALL references a Task State Seg-
ment descriptor, the descriptor DPL must be the
same or less privileged than the task’s CPL. Refer-

M80C286

ence to a valid Task State Segment descriptor caus-
es a task switch (see Task Switch Operation). Refer-
ence to a Task State Segment descriptor at a more
privileged level than the task’s CPL generates ex-
ception 13.

When an instruction or interrupt references a gate
descriptor, the gate DPL must have the same or less
privilege than the task CPL. If DPL is at a more privi-
leged level than CPL, exeception 13 occurs. If the
destination selector contained in the gate refer-
ences a code segment descriptor, the code seg-
ment descriptor DPL must be the same or more priv-
ileged than the task CPL. If not, Exception 13 is is-
sued. After the control transfer, the code segment
descriptors DPL is the task’s new CPL. If the desti-
nation selector in the gate references a task state
segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

— JMP or CALL direct to a code segment (code
segment descriptor) can only be to a conforming
segment with DPL of equal or greater privilege
than CPL or a non-conforming segment at the
same privilege level.

— interrupts within the task or calls that may
change privilege levels, can only transfer control
through a gate at the same or a less privileged
level than CPL to a code segment at the same or
more privileged level than CPL.

— return instructions that don’t switch tasks can
only return control to a code segment at the
same or less privileged level.

— task switch can be performed by a call, jump or
interrupt which references either a task gate or
task state segment at the same or less privileged
level.

Table 10. Descriptor Types Used for Control Transfer

. Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level Interrupt CALL Call Gate GDT/LDT
within task may change CPL. Interrupt Instruction, Trap or IDT
Exception, External Interrupt
Interrupt Gate
Intersegment to a lower privilege level (changes task CPL) RET, IRET* Code Segment GDT/LDT
CALL, JMP Task State GDT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET**
Interrupt Instruction,
Exception, External Task Gate IDT
Interrupt
*NT (Nested Task bit of flag word) = 0
**NT (Nested Task bit of flag word) = 1
17

I ADVANGE INFORMATION

M80C286

PRIVILEGE LEVEL CHANGES

Any control transfer that changes CPL within the
task, causes a change of stacks as part of the oper-
ation. Initial values of SS:SP for privilege levels 0, 1,
and 2 are kept in the task state segment (refer to
Task Switch Operation). During a JMP or CALL con-
trol transfer, the new stack pointer is loaded into the
SS and SP registers and the previous stack pointer
is pushed onto the new stack.

When returning to the original privilege level, its
stack is restored as part of the RET or IRET instruc-
tion operation. For subroutine calls that pass param-
eters on the stack and cross privilege levels, a fixed
number of words, as specified in the gate, are cop-
ied from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

Protection

The M80C286 includes mechanisms to protect crit-
ical instructions that affect the CPU execution state
(e.g. HLT) and code or data segments from improper
usage. These protection mechanisms are grouped
into three forms:

Restricted usage of segments (e.g. no write al-
lowed to read-only data segments). The only seg-
ments available for use are defined by descrip-
tors in the Local Descriptor Table (LDT) and
Global Descriptor Table (GDT).

Restricted access to segments via the rules of
privilege and descriptor usage.

Privileged instructions or operations that may
only be executed at certain privilege levels as de-
termined by the CPL and 1/O Privilege Level
(IOPL). The IOPL is defined by bits 14 and 13 of
the flag word.

These checks are performed for all instructions and
can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception related to the stack
segment causes exception 12.

The IRET and POPF instructions do not perform
some of their defined functions if CPL is not of suffi-
cient privilege (numerically small enough). Precisely
these are:

® The IF bit is not changed if CPL > IOPL.

® The IOPL field of the flag word is not changed if
CPL > 0.

No exceptions or other indication are given when
these conditions occur.

18

intgl.

Table 11. Segment Register Load Checks

Exception
Number

Error Description

Descriptor table limit exceeded 13
Segment descriptor not-present 11or12
Privilege rules violated 13

Invalid descriptor/segment type seg-
ment register load:
—~Read only data segment load to
SS
—Special Control descriptor load to
DS, ES, SS 13
—Execute only segment load to
DS, ES, SS
—Data segment load to CS
—Read/Execute code segment
load to SS

Table 12. Operand Reference Checks

_— Exception
Error Description Number
Write into code segment 13
Read from execute-only code
segment 13
Write to read-only data segment 13
Segment limit exceeded 120r13

NOTE:
Carry out in offset calculations is ignored.

Table 13. Privileged Instruction Checks

i Exception
Error Description Number
CPL # 0 when executing the following
instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW,
CTS, HLT
CPL > IOPL when executing the fol-
lowing instructions: 13
INS, IN, OUTS, OUT, STI, CLI,
LOCK
EXCEPTIONS

The M80C286 detects several types of exceptions
and interrupts, in protected mode (see Table 14).
Most are restartable after the exceptional condition
is removed. Interrupt handlers for most exceptions
can read an error code, pushed on the stack after
the return address, that identifies the selector in-
volved (0 if none). The return address normally
points to the failing instruction, including all leading
prefixes. For a processor extension segment over-
run exception, the return address will not point at the
ESC instruction that caused the exception; however,
the processor extension registers may contain the
address of the failing instruction.

ADVANGE INFORMATION I

u
| n‘tel M80C286
®
Table 14. Protected Mode Exceptions
Return
Always Error
Interrupt Function Addre'ss Restart- Code
Vector At Falling able? on Stack?
Instruction? i i
8 Double exception detected Yes No2 Yes
9 Processor extension segment overrun No No2 No
10 Invalid task state segment Yes Yes Yes
11 Segment not present Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yesl Yes
13 General protection Yes No2 Yes
NOTE:

1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the

saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted

under those conditions.

These exceptions indicate a violation to privilege
rules or usage rules has occurred. Restart is gener-
ally not attempted under those conditions.

All these checks are performed for all instructions
and can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception causes exception
11 or 12 and is restartable.

Special Operations

TASK SWITCH OPERATION

The M80C286 provides a built-in task switch opera-
tion which saves the entire M80C286 execution
state (registers, address space, and a link to the pre-
vious task), loads a new execution state, and com-
mences execution in the new task. Like gates, the
task switch operation is invoked by executing an in-
ter-segment JMP or CALL instruction which refers to
a Task State Segment (TSS) or task gate descriptor
in the GDT or LDT. An INT n instruction, exception,
or external interrupt may also invoke the task switch
operation by selecting a task gate descriptor in the
associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure
20) containing the entire M80C286 execution state
while a task gate descriptor contains a TSS selector.
The limit field of the descriptor must be >002B(H).

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
M80C286 called the Task Register (TR). This regis-
ter contains a selector referring to the task state
segment descriptor that defines the current TSS. A
hidden base and limit register associated with TR
are loaded whenever TR is loaded with a new selec-
tor.

I ADVANGE INFORMATION

The IRET instruction is used to return control to the
task that called the current task or was interrupted.
Bit 14 in the flag register is called the Nested Task
(NT) bit. It controls the function of the IRET instruc-
tion. If NT = 0, the IRET instruction performs the
regular current task by popping values off the stack;
when NT = 1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a
task switch, the old (except for case of JMP) and
new TSS will be marked busy and the back link field
of the new TSS set to the old TSS selector. The NT
bit of the new task is set by CALL or INT initiated
task switches. An interrupt that does not cause a
task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing
the descriptor type field from Type 1 to Type 3. Use
of a selector that references a busy task state seg-
ment causes Exception 13.

PROCESSOR EXTENSION CONTEXT
SWITCHING

The context of a processor extension (such as the
M80C287 numerics processor) is not changed by
the task switch operation. A processor extension
context need only be changed when a different task
attempts to use the processor extension (which still
contains the context of a previous task). The
M80C286 detects the first use of a processor exten-
sion after a task switch by causing the processor
extension not present exception (7). The interrupt
handler may then decide whether a context change
is necessary.

Whenever the M80C286 switches tasks, it sets the
Task Switched (TS) bit of the MSW. TS indicates
that a processor extension context may belong to a
different task than the current one. The processor
extension not present exception (7) will occur when
attempting to execute an ESC or WAIT instruction if
TS=1 and a processor extension is present (MP=1
in MSW).

19

M80C286

POINTER TESTING INSTRUCTIONS

The M80C286 provides several
speed pointer testing and consistency checks for
maintaining system integrity (see Table 15). These

instructions to

intgl.

instructions use the memory management hardware
to verify that a selector value refers to an appropri-
ate segment without risking an exception. A condi-
tion flag (ZF) indicates whether use of the selector
or segment will cause an exception.

AV X
cpu INTEL RESERVED
A TYPE | DESCRIPTION
TASK REGISTER [
SYSTEM P Plo|TYPE BASE23-15 1 AN AVAILABLE TASK STATE
TR — — — 4 —» SEGMENT Ly SEGMENT. MAY BE USED AS
DESCRIPTOR THE DESTINATION OF A TASK
f——) BASEys5_o bl SWITCH OPERATION.
——————— B} 1 |
| prOGRAM INVISIBLE |) 3 A BUSY TASK STATE SEGMENT.
| 15 o | LIMITys_o CANNOT BE USED AS THE
| i \ ! DESTINATION OF A TASK
UMt | SWITCH.
| U 1
| rt-——-————q-—---——-———-=- -
BASE
| I A J
| 2 0 | > ~
(AU R R Povre
15 0| OFFSeT
TASK LDT SELECTOR 42
DS SELECTOR 40 P_|DESCRIPTION
SS SELECTOR 35| | _|BASE AND LIMIT FIELDS ARE vALID
SEGMENT IS NOT PRESENT IN
CS SELECTOR 36 MEMORY, BASE AND LIMIT ARE NOT
DEFINED
ES SELECTOR 34
DI]
sl 30
B8P 28 | CURRENT
TASK
SP 26 [STATE
B8Xx 24
TASK DX 22
————— STATE
SEGMENT CX 20
AX 8
FLAG WORD 16
IP (ENTRY POINT) 14
SSFOR CPL 2 12
SP FOR CPL 2 10
$S FOR CPL 1 8| INITIAL
STACKS
SP FORCPL 1 6 [FORCPLO,1,2
SS FOR CPL 0 4
SP FOR CPL 0 2
BACK LINK SELECTORTOTSS | o
= ~

271103-18

20

Figure 20. Task State Segment and TSS Registers

ADVANGE INFORMATION

intgl.

Table 15. M80C286 Pointer Test Instructions

Instruction | Operands Function

ARPL Selector,
Register

Adjust Requested Privilege
Level: adjusts the RPL of
the selector to the numeric
maximum of current selec-
tor RPL value and the RPL
value in the register. Set
zero flag if selector RPL
was changed by ARPL.

VERR Selector VERIfy for Read: sets the
zero flag if the segment re-
ferred to by the selector

can be read.

VERW Selector VERIfy for Write: sets the
zero flag if the segment re-
ferred to by the selector

can be written.

LSL Register,
Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the descriptor access
rights byte into the register
if privilege rules allow. Set

zero flag if successful.

DOUBLE FAULT AND SHUTDOWN

If two separate exceptions are detected during a sin-
gle instruction execution, the M80C286 performs the
double fault exception (8). If an execution occurs
during processing of the double fault exception, the
M80C286 will enter shutdown. During shutdown no
further instructions or exceptions are processed. Ei-
ther NMI (CPU remains in protected mode) or RE-
SET (CPU exits protected mode) can force the
M80C286 out of shutdown. Shutdown is externally
signalled via a HALT bus operation with A; LOW.

PROTECTED MODE INITIALIZATION

The M80C286 initially executes in real address
mode after RESET. To allow initialization code to be
placed at the top of physical memory, Apz—Apg will
be HIGH when the M80C286 performs memory ref-
erences relative to the CS register until CS is
changed. Axg—Asqg will be zero for references to the
DS, ES, or SS segments. Changing CS in real ad-
dress mode will force Asg—Aoo LOW whenever CS is
used again. The initial CS:IP value of FO0O:FFFO
provides 64K bytes of code space for initialization
code without changing CS.

Protected mode operation requires several registers
to be initialized. The GDT and IDT base registers
must refer to a valid GDT and IDT. After executing
the LMSW instruction to set PE, the M80C286 must

I ADVANGE INFORMATION

M80C286

immediately execute an intra-segment JMP instruc-
tion to clear the instruction queue of instructions de-
coded in real address mode.

To force the M80C286 CPU registers to match the
initial protected mode state assumed by software,
execute a JMP instruction with a selector referring to
the initial TSS used in the system. This will load the
task register, local descriptor table register, segment
registers and initial general register state. The TR
should point at a valid TSS since any task switch
operation involves saving the current task state.

SYSTEM INTERFACE

The MB80C286 system interface appears in two
forms: a local bus and a system bus. The local bus
consists of address, data, status, and control signals
at the pins of the CPU. A system bus is any buffered
version of the local bus. A system bus may also dif-
fer from the local bus in terms of coding of status
and control lines and/or timing and loading of sig-
nals. The M80C286 family includes several devices
to generate standard system buses such as the
IEEE 796 standard MULTIBUS.

Bus Interface Signals and Timing

The M80C286 microsystem local bus interfaces the
M80C286 to local memory and 1/O components.
The interface has 24 address lines, 16 data lines,
and 8 status and control signals.

The M80C286 CPU, M82C284 clock generator,
M82C288 bus controller, transceivers, and latches
provide a buffered and decoded system bus inter-
face. The M82C284 generates the system clock and
synchronizes READY and RESET. The M82C288
converts bus operation status encoded by the
M80C286 into command and bus control signals.
These components can provide the timing and elec-
trical power drive levels required for most system
bus interfaces including the Multibus.

Physical Memory and 1/0 Interface

A maximum of 16 megabytes of physical memory
can be addressed in protected mode. One mega-
byte can be addressed in real address mode. Memo-
ry is accessible as bytes or words. Words consist of
any two consecutive bytes addressed with the least
significant byte stored in the lowest address.

Byte transfers occur on either half of the 16-bit local
data bus. Even bytes are accessed over D7-Dg
while odd bytes are transferred over D15-Dg. Even-
addressed words are transferred over D15-Dg in
one bus cycle, while odd-addressed word require
two bus operations. The first transfers data on
D15-Dg, and the second transfers data on D7-Dy.
Both byte data transfers occur automatically, trans-
parent to software.

21

M80C286

Two bus signals, Ag and BHE, control transfers over
the lower and upper halves of the data bus. Even
address byte transfers are indicated by Ag LOW and
BHE HIGH. Odd address byte transfers are indicat-
ed by Ag HIGH and BHE LOW. Both Ag and BHE are
LOW for even address word transfers.

The I/0 address space contains 64K addresses in
both modes. The I/0 space is accessible as either
bytes or words, as is memory. Byte wide peripheral
devices may be attached to either the upper or lower
byte of the data bus. Byte-wide 1/0 devices attached
to the upper data byte (D15-Dg) are accessed with
odd /0 addresses. Devices on the lower data byte
are accessed with even 1/0 addresses. An interrupt
controller such as Intel’s 82C59A-2 must be con-
nected to the lower data byte (D;—Dg) for proper
return of the interrupt vector.

Bus Operation

The MB80C286 uses a double frequency system
clock (CLK input) to control bus timing. All signals on
the local bus are measured relative to the system
CLK input. The CPU divides the system clock by 2 to
produce the internal processor clock, which deter-
mines bus state. Each processor clock is composed
of two system clock cycles named phase 1 and
phase 2. The M82C284 clock generator output
(PCLK) identifies the next phase of the processor
clock. (See Figure 21.)

r«———— ONE PROCESSOR CLOCK CYCLE ———#
ONE BUS T STATE
PHASE 1 PHASE 2
OF PROCESSOR*D'd— OF PROCESSOR —=
CLOCK CYCLE CLOCK CYCLE

- ONE SYSTEM
CLK CYCLE

271103-19

Figure 21. System and Processor
Clock Relationships

Six types of bus operations are supported; memory
read, memory write, |/0 read, 1/0 write, interrupt ac-
knowledge, and halt/shutdown. Data can be trans-
ferred at a maximum rate of one word per two proc-
essor clock cycles.

The M80C286 bus has three basic states: idle (T;),
send status (Tg), and perform command (T¢). The
M80C286 CPU also has a fourth local bus state
called hold (Tp). Ty, indicates that the M80C286 has
surrendered control of the local bus to another bus
master in response to a HOLD request.

Each bus state is one processor clock long. Figure
22 shows the four M80C286 local bus states and
allowed transitions.

22

READY o NEW CYCLE
271103-20

Figure 22. M80C286 Bus States

Bus States

The idle (T;) state indicates that no data transfers
are in progress or requested. The first active state
Tg is signaled by status line S1 or SO going LOW
and identifying phase 1 of the processor clock. Dur-
ing Ts, the command encoding, the address, and
data (for a write operation) are available on the
M80C286 output pins. The M82C288 bus controller
decodes the status signals and generates Multibus
compatible read/write command and local trans-
ceiver control signals.

After Tg, the perform command (Tg) state is en-
tered. Memory or I/0 devices respond to the bus
operation during Tg, either transferring read data to
the CPU or accepting write data. Tg states may be
repeated as often as necessary to assure sufficient
time for the memory or 1/0 device to respond. The
READY signal determines whether T is repeated. A
repeated T¢ state is called a wait state.

During hold (Tp), the M80C286 will float* all address,
data, and status output pins enabling another bus
master to use the local bus. The M80C286 HOLD
input signal is used to place the M80C286 into the
Th state. The M80C286 HLDA output signal indi-
cates that the CPU has entered Ty,

Pipelined Addressing

The M80C286 uses a local bus interface with pipe-
lined timing to allow as much time as possible for
data access. Pipelined timing allows a new bus oper-
ation to be initiated every two processor cycles,
while allowing each individual bus operation to last
for three processor cycles.

The timing of the address outputs is pipelined such
that the address of the next bus operation becomes
available during the current bus operation. Or in oth-
er words, the first clock of the next bus operation is
overlapped with the last clock of the current bus op-
eration. Therefore, address decode and routing logic
can operate in advance of the next bus operation.

*NOTE:
See section on bus hold circuitry.

ADVANGE INFORMATION I

M80C286

|“¢———————— READ BUS CYCLE N

T -« —Tg—— 7—>1< -
”) 2 "

PROC CLK

READ BUS CYCLEN -1
|

Ts— Te-—-

P P

I E—

2 PCLK CYCLE TRANSFER

- i —
/
25 CLOCK CYCLE ADDRESS/TO DATA VALID

2 PCLK CYCLE TRANSFER —~

M (ST N YT —
vy —
READY) — Y A

PIPELINING: VALID ADDRESS (N + 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N).

VALID READ
DATA (N)

VALID READ
DATA (N +1)

271103-21

Figure 23. Basic Bus Cycle

External address latches may hold the address sta-
ble for the entire bus operation, and provide addi-
tional AC and DC buffering.

The M80C286 does not maintain the address of the
current bus operation during all T, states. Instead,
the address for the next bus operation may be emit-
ted during phase 2 of any T.. The address remains
valid during phase 1 of the first T to guarantee hold
time, relative to ALE, for the address latch inputs.

Bus Control Signals

The M82C288 bus controller provides control sig-
nals; address latch enable (ALE), Read/Write com-
mands, data transmit/receive (DT/R), and data en-
able (DEN) that control the address latches, data
transceivers, write enable, and output enable for
memory and 1/0 systems.

The Address Latch Enable (ALE) output determines
when the address may be latched. ALE provides at
least one system CLK period of address hold time
from the end of the previous bus operation until the
address for the next bus operation appears at the
latch outputs. This address hold time is required to
support MULTIBUS and common memory systems.

The data bus transceivers are controlled by
M82C288 outputs Data Enable (DEN) and Data
Transmit/Receive (DT/R). DEN enables the data
transceivers; while DT/R controls tranceiver direc-
tion. DEN and DT/R are timed to prevent bus con-
tention between the bus master, data bus transceiv-
ers, and system data bus transceivers.

I ADVANGE INFORMATION

Command Timing Controls

Two system timing customization options, command
extension and command delay, are provided on the
M80C286 local bus.

Command extension allows additional time for exter-
nal devices to respond to a command and is analo-
gous to inserting wait states on the M8086. External
logic can control the duration of any bus operation
such that the operation is only as long as necessary.
The READY input signal can extend any bus opera-
tion for as long as necessary, see Figure 23.

Command delay allows an increase of address or
write data setup time to system bus command active
for any bus operation by delaying when the system
bus command becomes active. Command delay is
controlled by the M82C288 CMDLY input. After Tg,
the bus controller samples CMDLY at each failing
edge of CLK. If CMDLY is HIGH, the M82C288 will
not activate the command signal. When CMDLY is
LOW, the M82C288 will activate the command sig-
nal. After the command becomes active, the CMDLY
input is not sampled.

When a command is delayed, the available re-
sponse time from command active to return read
data or accept write data is less. To customize sys-
tem bus timing, an address decoder can determine
which bus operations require delaying the com-
mand. The CMDLY input does not affect the timing
of ALE, DEN, or DT/R.

23

M80C286

intgl.

“ —————— READBUS CYCLEN 1

READ BUS CYCLEN————————
)

T >l Te e
&1 [3 2 l o1 i 2 'Y

s 1 Tc
i ” B | >

7
VALID ADDR (N-1)

VALID/ADDR N

7D

// XK/

|
— =
o A \) \\7\ \-
[@\J —

271103-22

Figure 24. CMDLY Controls the Leading Edge of Command Signal

Figure 24 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system
CLKs for cycle N-1 and no delay for cycle N, and
example 2 shows delaying the read command one
system CLK for cycle N-1 and one system CLK de-
lay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the M80C286 bus alter-
nates between the status and command states. The
bus status signals become inactive after Tg so that
they may correctly signal the start of the next bus
operation after the completion of the current cycle.
No external indication of T exists on the M80C286
local bus. The bus master and bus controller enter
Tc directly after Tg and continue executing T cycles
until terminated by READY.

READY Operation

The current bus master and M82C288 bus controller
terminate each bus operation simultaneously to
achieve maximum bus operation bandwidth. Both
are informed in advance by READY active (open-
collector output from M82C284) which identifies the
last T¢ cycle of the current bus operation. The bus
master and bus controller must see the same sense

24

of the READY signal, thereby requiring READY be
synchronous to the system clock.

Synchronous Ready

The M82C284 clock generator provides READY
synchronization from both synchronous and asyn-
chronous sources (see Figure 25). The synchronous
ready input (SRDY) of the clock generator is sam-
pled with the falling edge of CLK at the end of phase
1 of each T¢. The state of SRDY is then broadcast to
the bus master and bus controller via the READY
output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to meet the
M82C284 SRDY setup and hold time requirements.
But the M82C284 asynchronous ready input (ARDY)
is designed to accept such signals. The ARDY input
is sampled at the beginning of each Tg cycle by
M82C284 synchronization logic. This provides one
system CLK cycle time to resolve its value before
broadcasting it to the bus master and bus controller.

ADVANGE INFORMATION I

M80C286

<————— MEMORY CYCLEN - 1

MEMORY CYCLE N

Ts »| Tc
1 2 l Ll | 2 &1

CLK

Ts i Tc i Tc
) @1 ! 32

#t 2

PROC CLK I I I L J—I /‘
/ |
A - Ao AL Aoon 7 x«««/ 7 o aoon // NS,

oy WWWWNWWWWNNWN 7877777 NNV

READY

{SEENOTE 1)) \"\ /

NOTES:
1. SRDYEN is active low.

3. ARDYEN is active low.

1 ARRRRRNRRRRRRRRANNNNNNRNNNNNNNNNNNRNRNNNNNO

2. If SRDYEN is high, the state of SRDY will no affect READY.

(SEE NOTE 2))

=
P

(SEE NOTE 3

271103-23

Figure 25. Synchronous and Asynchronous Ready

ARDY or ARDYEN must be HIGH at the end of Tg.
ARDY cannot be used to terminate bus cycle with no
wait states.

Each ready input of the M82C284 has an enable pin
(SRDYEN and ARDYEN) to select whether the cur-
rent bus operation will be terminated by the synchro-
nous or asynchronous ready. Either of the ready in-
puts may terminate a bus operation. These enable
inputs are active low and have the same timing as
their respective ready inputs. Address decode logic
usually selects whether the current bus operation
should be terminated by ARDY or SRDY.

Data Bus Control

Figures 26, 27, and 28 show how the DT/R, DEN,
data bus, and address signals operate for different
combinations of read, write, and idle bus operations.
DT/R goes active (LOW) for a read operation. DT/R
remains HIGH before, during, and between write op-
erations.

I ADVANGE INFORMATION

The data bus is driven with write data during the
second phase of Tg. The delay in write data timing
allows the read data drivers, from a previous read
cycle, sufficient time to enter 3-state OFF* before
the M80C286 CPU begins driving the local data bus
for write operations. Write data will always remain
valid for one system clock past the last T to provide
sufficient hold time for Multibus or other similar
memory or 1/O systems. During write-read or write-
idle sequences the data bus enters 3-state OFF*
during the second phase of the processor cycle after
the last T¢. In a write-write sequence the data bus
does not enter 3-state OFF* between T; and Ts.

Bus Usage

The M80C286 local bus may be used for several
functions: instruction data transfers, data transfers
by other bus masters, instruction fetching, processor
extension data transfers, interrupt acknowledge, and
halt/shutdown. This section describes local bus ac-
tivities which have special signals or requirements.

*NOTE:
See section on bus hold circuitry.

25

M80C286 in‘tel .

«———— READ BUS CYCLE ————»«———— WRITE BUS CYCLE —————»|
|

| 42 " | u2 [B | @2 » | @2

CLK

XK

Az3 - Ao

/
VALID ADDR / x<<<< // VALID AkDDFI

[ty

§0 ST /

/

, / k
/
Dis-Dp— — == = m e — e ————— P / VALID WRITE DATA / 5} ;;;)—
\ \ vaoo X ‘
\ REAO DATA

TN
WRDC / ~_[\ \‘ l
| |) \ \
i
DEN \ L
DT/R \" / ,

271103-24

Figure 26. Back to Back Read-Write Cycles

L WRITE CYCLE READ CYCLE
T Ts + Tc Ts 4*7 Tc *+7 T A—'—'
| 2 I *1 | @2 @ | 2 *1 | 2 1) @2 1 | @R

CLK

Az ~ Ag

D15 — Do

DEN

DTR

271103-25

Figure 27. Back to Back Write-Read Cycles

26 ADVANGE INFORMATION I

]
| n‘tel M80C286
®
WRITE CYCLE N-1 WRITE CYCLE N |
-—T -Ts. — Te Ts | Tc T |
| 02 t | =2 1 | 2 1 (2 I 1 | -2 l 1 | 2 ‘
CLK
e 7/ G ISR 7/, G KT T W@@@
505 / |
/ //)
DisDg - — — — — — = = — = VALI(D’ DATA N >>>}>— 71 -
N \ %
l
DEN e\
VOH
DT/R
271103-26

Figure 28. Back to Back Write-Write Cycles

HOLD and HLDA

HOLD AND HLDA allow another bus master to gain
control of the local bus by placing the M80C286 bus
into the Ty, state. The sequence of events required
to pass control between the M80C286 and another
local bus master are shown in Figure 29.

In this example, the M80C286 is initially in the T,
state as signaled by HLDA being active. Upon leav-
ing Th, as signaled by HLDA going inactive, a write
operation is started. During the write operation an-
other local bus master requests the local bus from
the M80C286 as shown by the HOLD signal. After
completing the write operation, the M80C286 per-
forms one T; bus cycle, to guarantee write data hold
time, then enters Ty, as signaled by HLDA going ac-
tive.

The CMDLY signal and ARDY ready are used to
start and stop the write bus command, respectively.
Note that SRDY must be inactive or disabled by
SRDYEN to guarantee ARDY will terminate the cy-
cle.

HOLD must not be active during the time from the
leading edge of RESET until 34 CLKs following the
trailing edge of RESET.

Lock

The CPU asserts an active lock signal during Inter-
rupt-Acknowledge cycles, the XCHG instruction, and
during some descriptor accesses. Lock is also as-
serted when the LOCK prefix is used. The LOCK

I ADVANGE INFORMATION

prefix may be used with the following ASM-286 as-
sembly instructions; MOVS, INS, and OUTS. For bus
cycles other than Interrupt-Acknowledge cycles,
Lock will be active for the first and subsequent cy-
cles of a series of cycles to be locked. Lock will not
be shown active during the last cycle to be locked.
For the next-to-last cycle, Lock will become inactive
at the end of the first T regardless of the number of
wait-states inserted. For Interrupt-Acknowledge cy-
cles, Lock will be active for each cycle, and will be-
come inactive at the end of the first T for each cy-
cle regardless of the number of wait-states inserted.

Instruction Fetching

The M80C286 Bus Unit (BU) will fetch instructions
ahead of the current instruction being executed. This
activity is called prefetching. It occurs when the local
bus would otherwise be idle and obeys the following
rules:

A prefetch bus operation starts when at least two
bytes of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches
independent of the byte alignment of the code seg-
ment base in physical memory.

The prefetcher will perform only a byte code fetch
operation for control transfers to an instruction be-
ginning on a numerically odd physical address.

Prefetching stops whenever a control transfer or

HLT instruction is decoded by the IU and placed into
the instruction queue.

27

M80C286

In real address mode, the prefetcher may fetch up to
6 bytes beyond the last control transfer or HLT in-
struction in a code segment.

In protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops at
the last physical memory word of the code segment.
Exception 13 will occur if the program attempts to

intgl.

execute beyond the last full instruction in the code
segment.

If the last byte of a code segment appears on an
even physical memory address, the prefetcher will
read the next physical byte of memory (perform a
word code fetch). The value of this byte is ignored
and any attempt to execute it causes exception 13.

BUS HOLD
\ BUS HOLD ACKNOWLEDGE , WRITE CYCLE ACKNOWLEDGE
BUS CYCLE TYPE S

Tn|7~|7u—‘73 O SR S D o
— @1 | o2 1 1 62 | o1 | @2 | #1 | 92 | o1) 2| o1t | e2 | 41 | 02| &1 | 42 | &1 | @2

{SEE NOTE 5.)
HOLD \\ (SEE NOTE 4. (SEE NOTE 6.) &
HLDA /Q /] /
8 __(SEENOTE 1) (SEENOTE 1)
3 L I | W
g
2
An Ay (SEE NOTE 2.)
M e — AANNNNNNAANNNANUNRRARANR VAR N RO S
' L T 7 L 77
COD/INTA
(SEE NOTE 3.)
_ UUANUARANANRARS VRN R
BHE, LOCK — \ vauo IR VI
Dyg —Dgm———m e < VALID) ————————

e LT 707U~

NOT READY NOT READY

M82C284

{SEE NOTE 7.)

R/ N NN)

wowy 7L /I\\\// W A,

DELAY ENABLE {SEE NOTE 7)
wTe AN /
@
b4 VOH
o
a DT/R
H
DEN _.__
ALE J_\
TS STATUS CYCLE
TC - COMMAND CYCLE
271103-27

NOTES:

1. Status lines are not driven by M80C286, yet remain high due to internal pullup resistors during HOLD state. See
section on bus hold circuitry.

2. Address, M/10 and COD/INTA may start floating during any T depending on when internal M80C286 bus arbiter
decides to release bus to external HOLD. The float starts in $2 of Tc. See section on bus hold circuitry.

3. BHE and LOCK may start floating after the end of any T¢ depending on when internal M80C286 bus arbiter decides
to release bus to external HOLD. The float starts in ¢1 of Tg. See section on bus hold circuitry.

4. The minimum HOLD to HLDA time is shown. Maximum is one Ty longer.

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other
machine state (i.e., Interrupts, Waits, Lock, etc.).

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Syn-
chronous ready state is ignored after ready is signaled via the asynchronous input.

Figure 29. MULTIBUS Write Terminated by Asynchronous Ready with Bus Hold
28 ADVANCE INFORMATION

intgl.

Processor Extension Transfers

The processor extension interface uses 1/0 port ad-
dresses 00F8(H), 0OFA(H), and 00FC(H) which are
part of the |1/0 port address range reserved by Intel.
An ESC instruction with Machine Status Word bits
EM = 0 and TS = 0 will perform 1/0 bus operations
to one or more of these I/0 port addresses indepen-
dent of the value of IOPL and CPL.

ESC instructions with memory references enable the
CPU to accept PEREQ inputs for processor exten-
sion operand transfers. The CPU will determine the
operand starting address and read/write status of
the instruction. For each operand transfer, two or
three bus operations are performed, one word trans-
fer with 1/0O port address O0OFA(H) and one or two
bus operations with memory. Three bus operations
are required for each word operand aligned on an
odd byte address.

NOTE:
Odd-aligned numerics instructions should be avoid-
ed when using an M80C286 system running six or
more memory-write wait-states. The M80C286 can
generate an incorrect numerics address if all the
following conditions are met:

— Two floating point (FP) instructions are fetched
and in the M80C286 queue.

— The first FP instruction is any floating point store
except FSTSW AX.

— The second FP instruction is any floating point
store except FSTSW AX.

— The second FP instruction accesses memory.

— The operand of the first instruction is aligned on
an odd memory address.

— More than five wait-states are inserted during ei-
ther of the last two memory write transfers
(transferred as two bytes for odd aligned oper-
ands) of the first instruction.

The second FP instruction operand address will be
incremented by one if these conditions are met.
These conditions are most likely to occur in a multi-
master system. For a hardware solution, contact
your local Intel representative.

Ten or more command delays should not be used
when accessing the numerics coprocessor. Exces-
sive command delays can cause the M80C286 and
M80C287 to lose synchronization.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge se-
quence performed by the M80C286 in response to

I ADVANGE INFORMATION

M80C286

an INTR input. An interrupt acknowledge sequence
consists of two INTA bus operations. The first allows
a master M8259A Programmable Interrupt Control-
ler (PIC) to determine which if any of its slaves
should return the interrupt vector. An eight bit vector
is read on DO-D7 of the M80C286 during the sec-
ond INTA bus operation to select an interrupt han-
dler routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the
M82C288 is used to enable the cascade address
drivers, during INTA bus operations (See Figure 30),
onto the local address bus for distribution to slave
interrupt controllers via the system address bus. The
M80C286 emits the LOCK signal (active LOW) dur-
ing Tg of the first INTA bus operation. A local bus
“hold”” request will not be honored until the end of
the second INTA bus operation.

Three idle processor clocks are provided by the
M80C286 between INTA bus operations to allow for
the minimum INTA to INTA time and CAS (cascade
address) out delay of the M8259A. The second INTA
bus operation must always have at least one extra
T state added via logic controlling READY. This is
needed to meet the M8259A minimum INTA pulse
width.

Local Bus Usage Priorities

The M80C286 local bus is shared among several
internal units and external HOLD requests. In case
of simultaneous requests, their relative priorities are:

(Highest) Any transfers which assert LOCK either
explicitly (via the LOCK instruction prefix)
or implicitly (i.e. some segment descriptor
accesses, interrupt acknowledge se-
quence, or an XCHG with memory).

The second of the two byte bus opera-
tions required for an odd aligned word op-
erand.

The second or third cycle of a processor
extension data transfer.

Local bus request via HOLD input.

Processor extension data operand trans-
fer via PEREQ input.

Data transfer performed by EU as part of
an instruction.

(Lowest) An instruction prefetch request from BU.
The EU will inhibit prefetching two proc-
essor clocks in advance of any data
transfers to minimize waiting by EU for a
prefetch to finish.

29

]
M80C286 In‘tel
®
«————— INTACYCLE | ——— 4————INTACYCLE2 ——»
BUS CYCLE TYPE ‘ Tc s Tc Tc L) l A l n Ts Te } Tc Ti
~— el) o2] oy w2 e e I I3 1L] e | oeg o Vg
CLK
51+ 7
LOCK Vq (SEE NOTE 4) \/;;;;;;”;;;;;;;;;”;;;;;;;;;;;;;L/ \";;i;;;;;;;;(;;
g » (SEE NOTE §.)
SR SRR G S ——
ot - - == = == === =X Y- mmm oo —
{SEENOTE 1)) (SEE NOTE 6)
0w -0 IR N - - Ol --
ON D7-D0
(SEE NOTE 2)) (SEENOTE 3)
READY “““\
- NOT READY READY NOT READY READY
T S I \ —
MCE / \ ’ \
§ ALE ﬂ / \
g
DT/R \ / ;__l
DEN ’ \ l \
271103-28
NOTES:
1. Data is ignored, upper data bus, Dg—D15, should not change state during this time.
2. First INTA cycle should have at least one wait state inserted to meet M8259A minimum INTA pulse width.
3. Second INTA cycle should have at least one wait state inserted to meet M8259A minimum INTA pulse width.
4. LOCK is active for the first INTA cycle to prevent a bus arbiter from releasing the bus between INTA cycles in a multi-
master system. LOCK is also active for the second INTA cycle.
5. Apz—Ap exits 3-state OFF during $2 of the second T¢ in the INTA cycle. See section on bus hold circuitry.
6. Upper data bus should not change state during this time.

Figure 30. Interrupt Acknowledge Sequence

During halt or shutdown, the M80C286 may service

Halt or Shutdown Cycles

The M80C286 externally indicates halt or shutdown
conditions as a bus operation. These conditions oc-
cur due to a HLT instruction or multiple protection
exceptions while attempting to execute one instruc-
tion. A halt or shutdown bus operation is signalled
when S1, S0 and COD/INTA are LOW and M/IO is
HIGH. Ay HIGH indicates halt, and Ay LOW indi-
cates shutdown. The 82288 bus controller does not
issue ALE, nor is READY required to terminate a halt
or shutdown bus operation.

30

PEREQ or HOLD requests. A processor extension
segment overrun exception during shutdown will in-
hibit further service of PEREQ. Either NMI or RESET
will force the M80C286 out of either halt or shut-
down. An INTR, if interrupts are enabled, or a proc-
essor extension segment overrun exception will also
force the M80C286 out of halt.

ADVANGE INFORMATION I

M80C286

POWER DOWN MODE
N

S0,51 \

ADDRESS

M/0,cOD/INTA VALID

—

ADDRESS

DATA

N

VALID

WRITE DATA

—

271103-29

Figure 31. Example Power-Down Sequence

THE POWER-DOWN FEATURE OF
THE M80C286

The M80C286, unlike the HMOS part, can enter into
a power-down mode. By stopping the processor
CLK, the processor will enter a power-down mode.
Once in the power-down mode, all M80C286 outputs
remain static (the same state as before the mode
was entered). The M80C286 D.C. specification Igcs
rates the amount of current drawn by the processor
when in the power-down mode. When the CLK is
reapplied to the processor, it will resume execution
where it was interrupted.

In order to obtain maximum benefits from the power-
down mode, certain precautions should be taken.
When in the power-down mode, all M80C286 out-
puts remain static and any output that is turned on
and remains in a HIGH condition will source current
when loaded. Best low-power performance can be
obtained by first putting the processor in the HOLD
condition (turning off all of the output buffers), and
then stopping the processor CLK in the phase 2
state. In this condition, any output that is loaded will
source only the “Bus Hold Sustaining Current”.

When stopping the processor clock, minimum clock
high and low times cannot be violated (no glitches
on the clock line).

Violating this condition can cause the M80C286 to
erase its internal register states. Note that all inputs
to the M80C286 (CLK, HOLD, PEREQ, RESET,
READY, INTR, NMI, BUSY, and ERROR) should be
at Voo or Vss; any other value will cause the
M80C286 to draw additional current.

I ADVANGE INFORMATION

When coming out of power-down mode, the system
CLK must be started with the same polarity in which
it was stopped. An example power down sequence
is shown in Figure 31.

BUS HOLD CIRCUITRY

To avoid high current conditions caused by floating
inputs to peripheral CMOS devices and eliminate the
need for pull-up/down resistors, “bus-hold” circuitry
has been used on all tri-state M80C286 outputs. See
Table 16 for a list of these pins and Figures 32 and
33 for a complete description of which pins have bus
hold circuitry. These circuits will maintain the last
valid logic state if no driving source is present (i.e.,
an unconnected pin or a driving source which goes
to a high impedance state). To overdrive the “bus
hold” circuits, an external driver must be capable of
supplying the maximum “Bus Hold Overdrive” sink
or source current at valid input voltage levels. Since

this “bus hold” circuitry is active and not a
Pull-Up/Pull-Down
QUTPUT BOND | EXTERNAL
DRIVER rodey PAD PIN
1 1
] 1
]]
]]
]]
]]
H H INPUT
PROTECTION
CIRCUITRY
271103-30

Figure 32. Bus Hold Circuitry Pins 36-51, 66-67

31

M80C286

“resistive” type element, the associated power sup-
ply current is negligible and power dissipation is sig-
nificantly reduced when compared to the use of pas-
sive pull-up resistors.

Table 16. Bus Hold Circuitry on the M80C286

Pin [Polarity Pulled to
Location| when tri-stated

Signal

S1, S0, PEACK, LOCK|4-6, 68 |Hi, See Figure 33

Data Bus (Dp-D1s5) [36-51 |Hi/Lo,
See Figure 32
COD/INTA, M/10 66-67 [Hi/Lo,
See Figure 32
Pull-Up

BOND EXTERNAL
PAD PIN

271103-31

Figure 33. Bus Hold Circuitry Pins 4-6, 68

SYSTEM CONFIGURATIONS

The versatile bus structure of the M80C286 micro-
system, with a full complement of support chips, al-
lows flexible configuration of a wide range of sys-
tems. The basic configuration, shown in Figure 34, is
similar to an M8086 maximum mode system. It in-
cludes the CPU plus an M8259A interrupt controller,
M82C284 clock generator, and the M82C288 Bus
Controller.

As indicated by the dashed lines in Figure 34, the
ability to add processor extensions is an integral fea-
ture of M80C286 microsystems. The processor ex-
tension interface allows external hardware to per-
form special functions and transfer data concurrent
with CPU execution of other instructions. Full system
integrity is maintained because the M80C286 super-
vises all data transfers and instruction execution for
the processor extension.

32

intgl.

The M80C287 NPX can perform numeric calcula-
tions and data transfers concurrently with CPU pro-
gram execution. Numerics code and data have the
same integrity as all other information protected by
the M80C286 protection mechanism.

The M80C286 can overlap chip select decoding and
address propagation during the data transfer for the
previous bus operation. This information is latched
by ALE during the middle of a Tg cycle. The latched
chip select and address information remains stable
during the bus operation while the next cycle’s ad-
dress is being decoded and propagated into the sys-
tem. Decode logic can be implemented with a high
speed PROM or PAL.

The optional decode logic shown in Figure 32 takes
advantage of the overlap between address and data
of the M80C286 bus cycle to generate advanced
memory and |O-select signals. This minimizes sys-
tem performance degradation caused by address
propagation and decode delays. In addition to se-
lecting memory and 1/0, the advanced selects may
be used with configurations supporting local and
system buses to enable the appropriate bus inter-
face for each bus cycle. The COD/INTA and M/IO
signals are applied to the decode logic to distinguish
between interrupt, 1/0, code and data bus cycles.

By adding a bus arbiter, the M80C286 provides a
MULTIBUS system bus interface as shown in Figure
35. The ALE output of the M82C288 for the
MULTIBUS bus is connected to its CMDLY input to
delay the start of commands one system CLK as
required to meet MULTIBUS address and write data
setup times. This arrangement will add at least one
extra T state to each bus operation which uses the
MULTIBUS.

A second M82C288 bus controller and additional
latches and transceivers could be added to the local
bus of Figure 35. This configuration allows the
M80C286 to support an on-board bus for local mem-
ory and peripherals, and the MULTIBUS for system
bus interfacing.

ADVANGE INFORMATION I

M80C286

c€—€0LlLe

Alg

Y¥3IAIZD

snd viva -SNYYyL

10

Z Y

¥3ITT0ULNOD
LdNYY3LNI
V6SZT8A

Lq-0
N3/ds
ay

UM
VANI
INI

Ly - Oy)

10313S dIHO —] SO
oy, % Oswo

3

K

HOLY1

i
o

sna ss3yaavy 2

r———

0q-Stq
ndo
982008N
dvo [<ENEE]
Movid
UINI 1sng
Houu3
ELE} 0s
oy £y s
AQV3Y

VINI/G0D Y10
OI/N j3s3y

- ——————————y

(VNOILdO)

NOISNILX3

¥0SS300¥d
£8Z08N

[,

LR LY Sl

"

'Y

]
]
]
]
1
]
]
1
]
]
+
]
1

oA 0Z

e it td

e
'
1
'
'

le—

-- t

)
YOLVYINID
30010
YRTITEN
N3AQYY f—— 378YN3

AQYY = AQV3d ONASY

N3AQYS [——— 378YN3

[

L ——a

3903 TMONMOY LdNH¥ILNI <
LM O | <

aviy 0 | <

LM AYOWIN <
av3y AMOW3N «

ol/W
¥ITT0¥LNOD
SNg 88TOT8K
¥/1a 310
N3g AQV3Y
0N 1S

0s

ATAWO
an

13534 AQYUS [—— AQV3Y ONAS

A0 143

ol
>

A F YN b
T—{h LI—“I

AQVZY MTod

> LS

» os s
‘X X

]

04

I
o<l |o<] 1353¥
3

Figure 34. Basic M80C286 System Configuration

I ADVANGE INFORMATION

33

M80C286

Vee
[
sys/
RESB BOLK j¢——
RESET INT [¢———
ATWAYS BREQ [
ALWAYS/ ®
9100 L— oG wmuLTiBUs ®
+57% ‘TQLCK BPRO BUS ARBITRATION
B4 BPRN [¢—
51 BUSY [¢—»
READY CBRQ [
> CLK LOCK |¢—
AEN M/i0 |
SLOCK
M82289
BUS ARBITER
Vee
ves A B Rne » MEMORY READ
S e 5 MEMORY WRITE
0 ioRG 1 0 READ
iowe 1 0 WRITE
Xy X1 INTA & INTERRUPT ACKNOWLEDGE
RESET [>0 >0 s 5 Eg ALE ’
si 51 MCE
<+—]PcLk READY READY DEN
= —¢eR oLk LK D1/R
T F/e 1 M82C288 BUS
L H CONTROLLER
= | CMDLY M/i0
1 T
SYNC READY — > SRDY ~ RESET : 1= ¥_
ENABLE —————» SRDVEN i o —
ASYNC READY ——————>{ ARDY i m/10 ¢ ADDRESS BUS
ENABLE =——p] ARDYEN [] CLK Lock OE
M82C284 [| READY | _
cLock i si 27k > LATCH
GENERATOR [- __ ZaN
Vee B S0 BHE
1
] - ~
20KQ i i ERROR Aoz Mo
oy g CS ¢— CHIP SELECT
TR BUSY INTR INT
____L_:_.. PEACK »| iNTA
v | _
[PEREQ CAP __L WR
1 —
T ! \ M80C286 » 7D
g ' cPU :]: S/EN
[' Dy5=Dg =
[= b Dy-Dy IRo = IRz
[)
" 1
v L ! : M8259A
INTERRUPT
I'"""“"'!"'““": CONTROLLER
' M80C287 ',
: PROCESSOR :u ———————
H EXTENSION OE
H (OPTIONAL)
' TRANS= DATA BUS
tececcccccceee—=d sy
I—» DIR
271103-33
Figure 35. MULTIBUS System Bus Interface

L}
I n M80C286
®
T
R R
A A
N N
s S
c c
DATA D,s —Dq £ DATA E
v v —_—
_ E ¥ DATA
DT/R R R
OF OE
A
M82288
BUS
CONTROLLER 8206
> y ECC
DEN
CLK FREQ
D
sy DI DO CBDO
READY 16-0 16-0 CBDI
Mg2C284
—T CLOCK -
GENERATOR
DRAM
\/L y —
CLK
o L7SELE,
1 + 2 < | ‘5
M80C286 READY
CPU || [1 pl MULTIBUS® SELECT
> —» XACK
== = 8207
STATUS S0, $1, M/i0 DRAM MULTIBUS®
CONTROL —— COMMAND
(MRDC, MWTC)
DECODE »
LOCAL _{ >
SELECT
SELECT
MUX
ADDRESS
ADDRESS A,; — Ay, BHE, LOCK
271103-34

Figure 36. M80C286 System Configuration with Dual-Ported Memory

Figure 36 shows the addition of dual ported dynamic
memory between the MULTIBUS system bus and
the M80C286 local bus. The dual port interface is
provided by the 8207 Dual Port DRAM Controller.
The 8207 runs synchronously with the CPU to maxi-
mize throughput for local memory references. It also
arbitrates between requests from the local and sys-
tem buses and performs functions such as refresh,
initialization of RAM, and read/modify/write cycles.
The 8207 combined with the 8206 Error Checking
and Correction memory controller provide for single
bit error correction. The dual-ported memory can be
combined with a standard MULTIBUS system bus
interface to maximize performance and protection in
multiprocessor system configurations.

I ADVANGE INFORMATION

Mechanical Data

The M80C286 pinout for both the Ceramic Quad
Flatpack, CQFP, and Pin Grid Array, PGA, packages
are shown in Figure 37. Vgc and GND connections
must be made to mutiple Vg and Vgg (GND) pins.
Each Vgc and Vgg MUST be connected to the ap-
propriate voltage level. The circuit board should in-
clude Vg and GND planes for power distribution
and all Vgg pins must be connected to the appropri-
ate plane.

Table 17 shows the pin assignments for both the
CQFP and PGA components.

NOTE:

Pins identified as “N.C.” should remain completely
unconnected.

35

M80C286 iN
®
Component Pad Views—As viewed from underside of P.C. Board Views—As viewed from the component
component when mounted on the board. side of the P.C. board.

Ceramic Quad Flatpack

N
60 10 _
Py I m— —— LoCcK
Al2—] —w/io
A ——cop/INTA
Alo—g ——HLDA
A9 C—] [—IHOLD
A8 —] [—— READY
A7C—] —vee
A6 —] ——JPERER
As—j v METAL LID
Ad— —INMI —
A3C—] [—N.C.
RESET—} ——JINTR
Vec =S .
LK== —N.C.
A2—g [—8USY
Al—] ——ERROR
A0 C—] ——CAP
44 26
43 27
52858828-35828252
¥ 568850595853
271103-35
NOTE: Pin Grid Array
N.C. signals must not be connected
>0 Aaooooaoao S&caoooad8yY
o [+4
o o
QO = & M T D O N g g N © N ¥ NN - O
oo o oo ooola u o oo0ooooao
4 N 7 N
BOHODBBD®E (DECRORCREXDACRGA D)
A0 DO |6d GO @D @ @ @ @ @ &9 & 62| ERROR cAP CAP ERROR |2 83 600 @ @ @ @ @ ® B & | no Ao
A2 A |O@ & N.Cc. BUSY BUSY N.C. 636 @] a1 a2
Vee CLK & 6 INTR N.C. N.C. INTR |69 69 & CLK Ve
A3 RESET | 28 @ 69 NMI N.C. N.C. NMI 9 @ | RESET A3
s mleo METAL PEREQ Vs Vss PEREQ @e| a2 as
A7 a6 |@® €| READY Vg Voo READY | € & @®e| ae A7
A msloe HLDA HOLD HOLD HLDA |@ @e| A8 A9
A1 At0 |G @ € €| M/10 cOD/INTA COD/INTA M /10 @) @ | a0 A1
A3 A2 |BBBROEO®E® N.C. LOCK LOCK NC. | ®@@Q@EO®®ORBBB®| A2 A3
(| POB0OROOG / PO Y
i
T PIN NO.T MARK SiEEYger e
< <« « « <« <« 5 =z =z 5 < € € € < <
o o
ESES;VQIBOE \§0|82$82£1‘
< <« <« < < Zz lm @ z <> <« <<
271103-36

Figure 37. M80C286 Pin Configuration

36 ADVANGE INFORMATION

in‘tel . M80C286
Table 17. Pin Cross Reference for M80C286

Signal CQFP PGA Signal CQFP PGA Signal CQFP | PGA
A0 44 34 A23 3 7 LOCK 10 68
A1 45 33 DO 42 36 M/10 11 67
A2 46 32 D1 40 38 COD/INTA 12 66
A3 50 28 D2 38 40 HLDA 13 65
A4 51 27 D3 36 42 HOLD 14 64
A5 52 26 D4 34 44 READY 15 63
A6 53 25 D5 32 46 PEREQ 17 61
A7 54 24 D6 30 48 NMI 19 59
A8 55 23 D7 28 50 INTR 21 57
A9 56 22 D8 41 37 BUSY 24 54
A10 57 21 D9 39 39 ERROR 25 53
A1 58 20 D10 37 41 CAP 26 52
A12 59 19 D11 35 43 Vss 1 9
A13 60 18 D12 33 45 Vss 18 35
Al4 61 17 D13 31 47 Vss 43 60
A15 62 16 D14 29 49 Vee 16 30
A16 63 15 D15 27 51 Vee 48 62
A17 64 14 CLK 47 31 N.C. 7 2
A18 65 13 RESET 49 29 N.C.
A19 66 12 BHE 9 1 N.C. 20 55
A20 67 11 ST 6 4 N.C. 22 56
A21 68 10 S0 5 5 N.C. 23 58
A22 2 8 PEACK 4 6

Table 18. Pin Description

The following pin function descriptions are for the M80C286 microprocessor :

Symbol

Type

Name and Function

CLK

SYSTEM CLOCK provides the fundamental timing for M80C286 systems. It is
divided by two inside the M80C286 to generate the processor clock. The internal
divide-by-two circuitry can be synchronized to an external clock generator by a
LOW to HIGH transition on the RESET input.

D15-Do

1/0

DATA BUS inputs data during memory, |/0, and interrupt acknowledge read
cycles; outputs data during memory and /O write cycles. The data bus is active
HIGH and floats to 3-state OFF* during bus hold acknowledge.

A23-Ag

ADDRESS BUS outputs physical memory and I/0 port addresses. A0 is LOW
when data is to be transferred on pins D7_g. Ao3—A1g are LOW during I/0
transfers. The address bus is active HIGH and floats to 3-state OFF* during bus
hold acknowledge.

o8]
[l

BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus.
D45_g. Eight-bit oriented devices assigned to the upper byte of the data bus would
normally use BHE to condition chip select functions. BHE is active LOW and floats
to 3-state OFF* during bus hold acknowledge.

*See bus hold circuitry section.

I ADVANGE INFORMATION 37

M80C286

intgl.

Table 18. Pin Description (Continued)

Symbol

Type

Name and Function

BHE
(Continued)

BHE and A0 Encodings

alue A0 Value Function

1 Transfer on upper half of data bus (D15-Dg)
0 Byte transfer on lower half of data bus (D7-Dg)
1 1 Will never occur

\'
0 0 Word transfer
0
1

2
g

BUS CYCLE STATUS indicates initiation of a bus cycle and, along with M/10 and COD/
INTA, defines the type of bus cycle. The bus is in a T state whenever one or both are LOW,
S1 and SO are active LOW and float to 3-state OFF* during bus hold acknowledge.

M80C286 Bus Cycle Status Definition

COD/INTA M/10 S1 S0 Bus Cycle Initiated

0 (LOW) Interrupt acknowledge
Will not occur

Will not occur

None; not a status cycle
IF A1 = 1 then halt; else shutdown
Memory data read
Memory data write
None; not a status cycle
Will not occur

1/0 read

1/0 write

None; not a status cycle
Will not occur

Memory instruction read
Will not occur

None; not a status cycle

(HIGH)

AddAa a4 a0 a400000000
-4 4 2000022220000
4100220022002 200
- 020022020+ 0—+0-=0

MEMORY 1/0 SELECT distinguishes memory access from 1/0 access. If HIGH during Tg, a
memory cycle or a halt/shutdown cycle is in progress. If LOW, an /0 cycle or an interrupt
acknowledge cycle is in progress. M/IO floats to 3-state OFF* during bus hold
acknowledge.

COD/INTA

CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory
data read cycles. Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/
INTA floats to 3-state OFF* during bus hold acknowledge. Its timing is the same as M/IO.

LOCK

BUS LOCK indicates that other system bus masters are not to gain control of the system
bus for the current and the following bus cycle. The LOCK signal may be activated explicitly
by the “LOCK” instruction prefix or automatically by M80C286 hardware during memory
XCHG instructions, interrupt acknowledge, or descriptor table access. LOCK is active LOW
and floats to 3-state OFF* during bus hold acknowledge.

BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated
by READY LOW. READY is an active LOW synchronous input requiring setup and hold
times relative to the system clock be met for correct operation. READY is ignored during
bus hold acknowledge.

HOLD
HLDA

BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of the M80C286
local bus. The HOLD input allows another local bus master to request control of the local
bus. When control is granted, the M80C286 will float its bus drivers to 3-state OFF* and
then activate HLDA, thus entering the bus hold acknowledge condition. The local bus will
remain granted to the requesting master until HOLD becomes inactive which results in the
M80C286 deactivating HLDA and regaining control of the local bus. This terminates the bus
hold acknowledge condition. HOLD may be asynchronous to the system clock. These
signals are active HIGH.

INTR

INTERRUPT REQUEST requests the M80C286 to suspend its current program execution
and service a pending external request. Interrupt requests are masked whenever the
interrupt enable bit in the flag word is cleared. When the M80C286 responds to an interrupt
request, it performs two interrupt acknowledge bus cycles to read an 8-bit interrupt vector
that identifies the source of the interrupt. To assure program interruption, INTR must remain
active until the first interrupt acknowledge cycle is completed. INTR is sampled at the
beginning of each processor cycle and must be active HIGH at least two processor cycles
before the current instruction ends in order to interrupt before the next instruction. INTR is
level sensitive, active HIGH, and may be asynchronous to the system clock.

*See bus hold circuitry section.

38

ADVANGE INFORMATION

in‘tel . M80C286

Table 18. Pin Description (Continued)

Symbol Type Name and Function

NMI | NON-MASKABLE INTERRUPT REQUEST interrupts the M80C286 with an
internally supplied vector value of 2. No interrupt acknowledge cycles are
performed. The interrupt enable bit in the M80C286 flag word does not affect
this input. The NMI input is active HIGH, may be asynchronous to the system
clock, and is edge triggered after internal synchronization. For proper
recognition, the input must have been previously LOW for at least four system
clock cycles and remain HIGH for at least four system clock cycles.

PEREQ | PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE
PEACK (0] extend the memory management and protection capabilities of the M80C286
to processor extensions. The PEREQ input requests the M80C286 to perform
a data operand transfer for a processor extension. The PEACK output signals
the processor extension when the requested operand is being transferred.
PEREQ is active HIGH and floats to 3-state OFF* during bus hold
acknowledge. PEACK may be asynchronous to the system clock. PEACK is

active LOW.
BUSY | PROCESSOR EXTENSION BUSY AND ERROR indicate the operating
ERROR | condition of a processor extension to the M80C286. An active BUSY input

stops M80C286 program execution on WAIT and some ESC instructions until
BUSY becomes inactive (HIGH). The M80C286 may be interrupted while
waiting for BUSY to become inactive. An active ERROR input causes the
M80C286 to perform a processor extension interrupt when executing WAIT or
some ESC instructions. These inputs are active LOW and may be
asynchronous to the system clock. These inputs have internal pull-up
resistors.

RESET | SYSTEM RESET clears the internal logic of the M80C286 and is active HIGH.
The M80C286 may be reinitialized at any time with a LOW to HIGH transition
on RESET which remains active for more than 16 system clock cycles. During
RESET active, the output pins of the M80C286 enter the state shown below:

M80C286 Pin State During Reset

Pin Value Pin Names
1 (HIGH) S0, §1, PEACK, A23-A0, BHE, LOCK
0 (LOW) M/10, COD/INTA, HLDA (Note 1)
3-state OFF* D15-Do

Operation of the M80C286 begins after a HIGH to LOW transition on RESET.
The HIGH to LOW transition of RESET must be synchronous to the system
clock. Approximately 38 CLK cycles from the trailing edge of RESET are
required by the M80C286 for internal initialization before the first bus cycle, to
fetch code from the power-on execution address, occurs.

A LOW to HIGH transition of RESET synchronous to the system clock will
end a processor cycle at the second HIGH to LOW transition of the system
clock. The LOW to HIGH transition of RESET may be asynchronous to the
system clock; however, in this case it cannot be predetermined which phase
of the processor clock will occur during the next system clock period.
Synchronous LOW to HIGH transitions of RESET are required only for
systems where the processor clock must be phase synchronous to another

clock.
Vss | SYSTEM GROUND: 0 Volts.
Vco | SYSTEM POWER: + 5 Volt Power Supply.
CAP | SUBSTRATE FILTER CAPACITOR: a 0.047 uF + 20% 12V capacitor can

be connected between this pin and ground for compatibility with the HMOS
M80286. For systems using only an M80C286, this pin can be left floating.

*See bus hold circuitry section.

NOTE:
1. HLDA is only Low if HOLD is inactive (Low).

ADVANGE INFORMATION 39

M80C286

intgl.

Table 19. M80C286 Systems Recommended Pull Up Resistor Values

M80C286 Pin and Name | Pullup Value Purpose
4_3 Pull SO, ST, and PEACK inactive during M80C286 hold periods
5—S0 20 KQ £10%
(Note 1)
6—PEACK
63—READY 9109 +5% Pull READY inactive within required minimum time (C_ = 150 pF,
Ir <7 mA)
NOTE:

1. Pullup resistors are not required for S0 and ST when the corresponding pins on the M82C284 are connected to SO and

S1.

M80286 IN-CIRCUIT EMULATION
CONSIDERATIONS

One of the advantages of using the M80C286 is that
full in-circuit emulation development support is avail-
able thru either the I2ICE 80286 probe for
8 MHz/10 MHz or ICE286 for 12.5 MHz designs. To
utilize these powerful tools it is necessary that the
designer be aware of a few minor parametric and
functional differences between the M80C286 and
the in-circuit emulators. The 12ICE datasheet (I2ICE
Integrated Instrumentation and In-Circuit Emulation
System, order #210469) contains a detailed de-
scription of these design considerations. The
ICE286 Fact Sheet (#280718) and User's Guide
(#452317) contain design considerations for the
80286 12.5 MHz microprocessor. It is recommended
that the appropriate document be reviewed by the
80286 system designer to determine whether or not
these differences affect the design.

PACKAGE THERMAL
SPECIFICATIONS

The M80C286 Microprocessor is specified for opera-
tion when case temperature (Tg) is within the range
of —55°C-+125°C. Case temperature, unlike ambi-
ent temperature, is easily measured in any environ-
ment to determine whether the M80C286 Microproc-
essor is within the specified operating range. The
case temperature should be measured at the center
of the top surface of the component.

The maximum ambient temperature (Tp) allowable
without violating T¢ specifications can be calculated
from the equations shown below. T, is the 80C286
junction temperature. P is the power dissipated by
the M80C286.

40

Ty=Tg + P*0yc
Ta =Ty — P *0ya
Tc=Ta + P *[64a — 04c]

Values for 04 and 0,c are given in Table 20. Table
21 shows the maximum Tp allowable (without ex-
ceeding Tg).

Junction temperature calculations should use an Igg
value that is measured without external resistive
loads. The external resistive loads dissipate addi-
tional power external to the M80C286 and not on
the die. This increases the resistor temperature, not
the die temperature. The full capacitive load (C| =
100 pF) should be applied during the Igc measure-
ment.

Table 20. Thermal Resistances (°C/W)

Package 04c | Ouc
68-Lead PGA 55 30
68-Lead CQFP 11 32

NOTE:

The numbers in Table 20 were calculated using an

Icc of 150 mA, which is representative of the worst

case Igg at Tg = 125°C with the outputs unloaded.

Table 21. Maximum (Ta)

Package Ta (°C)
68-Lead PGA 105

68-Lead CQFP | 108

ADVANGE INFORMATION I

intgl.

ABSOLUTE MAXIMUM RATINGS*

Case Temperature under Bias ... —55°C to +125°C
Storage Temperature —65°Cto+150°C
Voltage on Any Pin with

Respectto Ground.............. —1.0Vto +7V
Power Dissipation.......................... 1.1W

Operating Conditions

M80C286

NOTICE: This data sheet contains information on
products in the sampling and initial production phases
of development. The specifications are subject to
change without notice. Verify with your local Intel
Sales office that you have the latest data sheet be-
fore finalizing a design.

*WARNING: Stressing the device beyond the “Absolute
Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond the
“Operating Conditions” is not recommended and ex-
tended exposure beyond the “Operating Conditions”
may affect device reliability.

Symbol Description Min Max Units
Tc Case Temperature (Instant On) —55 +125 °C
Vece Digital Supply Voltage 4.50 5.50 \Y
D.C. CHARACTERISTICS Over Specified Operating Conditions
Symbol Parameter Min Max Unit Comments
lcc Supply Current 200 mA | C_ = 100 pF (Note 6)
lccs Supply Current (Static) 5 mA | (Note 7)
CcoLk CLK Input Capacitance 20 pF | FREQ = 1 MHz
CiNn Other Input Capacitance 10 pF | FREQ = 1 MHz
Co Input/Output Capacitance 20 pF | FREQ = 1 MHz
Vi Input LOW Voltage —0.5 0.8 V | FREQ = 2 MHz
ViH Input HIGH Voltage 2.0 Vg + 05| V | FREQ = 2MHz
ViLc CLK Input LOW Voltage —0.5 0.8 V | FREQ = 2 MHz
ViHc CLK Input HIGH Voltage 3.8 Voo + 05| V | FREQ = 2MHz
VoL Output LOW Voltage 0.45 V | loL = 2.0 mA, FREQ = 2 MHz
VoH Output HIGH Voltage 3.0 V | logy = —2.0mA, FREQ = 2 MHz
Voc — 0.5 V | loq = —100 pA, FREQ = 2 MHz
I Input Leakage Current +10 wA | ViN = GND or Vgc (Note 6)
ILo Output Leakage Current +10 wA | Vo = GND or Vgc (Note 1)
I Input Sustaining Current on —30 —500 rA | ViN = 0V (Note 1)
BUSY # and ERROR # Pins
IBHL Input Sustaining Current 35 200 wA | VN = 1.0V (Notes 1, 2)
(Bus Hold LOW)
IBHH Input Sustaining Current —50 —400 pA | ViN = 3.0V (Notes 1, 3)
(Bus Hold HIGH)
IBHLO Bus Hold LOW Overdrive 250 rA | (Notes 1, 4)
IBHHO Bus Hold HIGH Overdrive —420 nA | (Notes 1, 5)
NOTES:
1. Tested with the clock stopped.
2. IgyL should be measured after lowering V|y to GND and then raising to 1.0V on the following pins: 36-51, 66, 67.
3. IgyH should be measured after raising V| to Vcc and then lowering to 3.0V on the following pins: 4-6, 36-51, 66-68.
4. An external driver must source at least IgyL o to switch this node from LOW to HIGH.
5. An external driver must sink at least IgyHo to switch this node from HIGH to LOW.
6. Tested with outputs unloaded and at maximum frequency.
7. Tested while clock stopped in phase 2 and inputs at Vg or Vgg with the outputs unloaded.

I ADVANGE INFORMATION

41

M80C286 in‘tel .

A.C. CHARACTERISTICS Over Specified Operating Conditions
A.C. timings are referenced to 1.5V points of signals as illustrated in datasheet waveforms, unless otherwise
noted.

Symbol Parameter 10 MHz Unit Comments
Min Max

1 System Clock (CLK) Period 50 DC ns
2 System Clock (CLK) LOW Time 12 ns at 1.0V
3 System Clock (CLK) HIGH Time 16 ns at 3.6V
17 System Clock (CLK) Rise Time 8 ns 1.0V to 3.6V
18 System Clock (CLK) Fall Time 8 ns 3.6Vto 1.0V
4 Asynchronous Inputs Setup Time 20 ns (Note 1)
5 Asynchronous Inputs Hold Time 20 ns (Note 1)
6 RESET Setup Time 23 ns
7 RESET Hold Time 5 ns
8 Read Data Setup Time 8 ns
9 Read Data Hold Time 8 ns
10 READY Setup Time 26 ns
1 READY Hold Time 25 ns

12a1 Status Active Delay 5 22 ns (Notes 2, 3)

12a2 PEACK Active Delay 5 22 ns (Notes 2, 3)

12b Status/PEACK Inactive Delay 3 30 ns (Notes 2, 3)
13 Address Valid Delay 4 35 ns (Notes 2, 3)
14 Write Data Valid Delay 3 40 ns (Notes 2, 3)
15 Address/Status/Data Float Delay 2 47 ns (Notes 2, 4)
16 HLDA Valid Delay 3 47 ns (Notes 2, 3)
19 Address Valid To Status 27 ns (Notes 2, 3)

Valid Setup Time
NOTES:

1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

2. Delay from 1.0V on the CLK, to 1.5V or float on the output as appropriate for valid or floating condition.

3. Output load: C. = 100 pF.

4. Float condition occurs when output current is less than I o in magnitude.

42 ADVANGE INFORMATION I

in‘tel . M80C286

A.C. CHARACTERISTICS (Continued)

DEVICE
OUTPUT
———— cl’
- 271103-37
NOTE:
AC Test Loading on Outputs
a.0v
CLK INPUT
0.45v

271103-38
NOTE:
AC Drive and Measurement Points—CLK Input
4.0V
CLK INPUT / S /
0.45V
OTHER 24V
DEVICE
INPUT 4oy
DEVICE
OUTPUT
271103-39

NOTE:
AC Setup, Hold and Delay Time Measurement—General

ADVANGE INFORMATION 43

M80C286 in‘tel .

Typical Capacitive Derating Curves

NOM +5
NOM +4 1
NOM +3
NOM +2

NOM +1

OUTPUT VALID DE(LnASY) NOM | ‘ |
50

NOM =14

NOM -2
—&— ADDRESS/DATA

== STATUS

NOM =3 +

NOM =4

LOAD CAPACITANCE (pF)

271103-40
Typical CMOS Level Slew Rates for Address/Data Buffers
SLEW RATE
(ns/V)
—4— RISE TIME (0.4V=3.5V)
2 X =C=FALL TIME (3.5V=0.4V)
i
0 ; : : :
50 75 100 125 150
LOAD CAPACITANCE (pF) 27110841

44 ADVANGE INFORMATION I

in‘tel . M80C286

Typical TTL Level Slew Rates for Address/Data Buffers

SLEW RATE
(ns/V)

—&— RISE TIME (0.8V=2.0V)
24 —O— FALL TIME (2.0V-0.8V)

0 f : : i
50 75 100 125 150

LOAD CAPACITANCE (pF) 271103—42

Typical Igc vs Frequency for Different Output Loads

300
250 /
200 '/u’ —@—OH=-2mA
—O I0H = =400 uA
loc (mA) 150
—B— (OH ==100 uA
100 == I0H unloaded
50
0
' 5 8 10 12 125
FREQUENCY (MHz)
271103-43

I ADVANGE INFORMATION 45

M80C286

A.C. CHARACTERISTICS (Continued)

M82C284 Timing Requirements

intgl.

M82C284-10
Symbol Parameter Unit Comments
Min Max

11 SRDY/SRDYEN Setup Time 17.5 ns

12 SRDY/SRDYEN Hold Time 2 ns

13 ARDY/ARDYEN Setup Time 0 ns (Note 1)

14 ARDY/ARDYEN Hold Time 30 ns (Note 1)

19 PCLK Delay 0 35 ns CL = 75pF
loL = 5mA
lon = —1mA

NOTE:
1. These times are given for testing purposes to assure a predetermined action.
M82C288 Timing Requirements
M82C288-10
Symbol Parameter Unit Comments
Min Max
12 CMDLY Setup Time 15 ns
13 CMDLY Hold Time 1 ns
30 Command Command Inactive 5 20 CL = 300 pF max
Delay . ns loL = 32 mA max
29 from CLK Command Active 3 21 lo = —5 mA max
16 ALE Active Delay 3 16 ns
17 ALE Inactive Delay 19 ns
19 DT/R Read Active Delay 23 ns
22 DT/R Read Inactive Delay 20 ns CL = 150 pF
- loL = 16 mA max
20 DEN Read Active Delay 21 ns lon = —1 mA max
21 DEN Read Inactive Delay 21 ns
23 DEN Write Active Delay 23 ns
24 DEN Write Inactive Delay 3 19 ns

46

ADVANGE INFORMATION I

in‘tel . M80C286

WAVEFORMS

MAJOR CYCLE TIMING

READ CYCLE WRITE CYCLE
ILLUSTRATED WITH ZERO ILLUSTRATED WITH ONE READ
WAIT STATES WAIT STATE (T OR Ts)
BUS CYCLE TYPE Ts Te Ts Te Te
— <—@—>
2, 1 92, (1) 62 (1) 2, 1 2, L]

CLK

VAVE VA VA VA VA VA VA VA VA VE Vi

*@Jf,
j& /

A=
ol = ZS;AO VALID ADDRESS VALID ADDRESS W W VALID IF T
& | M/, coo/INTA
g) | -G |
= BHE, LOCK VALID CONTROL LID CONTROL W

@~

VA
18F @ 18
Dyg-Dp *=e=eescecccccccctoccatoccnad - . VALID WRITE DATA

VALID READ DATA

o ~@
© - - © -
- - @

srov+SRDYEN - NN YL
B ~]

M82C284

@4_
@

PCLK

ALE , ‘,’-
~ B3 ~B3
~i3) @~ 2~
oMDLY
__ = [~® L
o wwTC
§ e <60 (SEE NOTE 1)
z WRDE
~ @9
DT/R
L-@
he ~(@)
J(‘ s ~l&a |-
DEN ; 3&_

271103-44
NOTE:
1. The modified timing is due to the CMDLY signal being active.

I ADVANGE INFORMATION 47

M80C286

WAVEFORMS (Continued)

M80C286 ASYNCHRONOUS
INPUT SIGNAL TIMING

M80C286 RESET INPUT TIMING AND
SUBSEQUENT PROCESSOR CYCLE PHASE

BUS CYCLE TYPE

v fa T
cH * 2
QK_Jrji_/—ﬁk /:1
vCl
PCLK
(SEE NOTE 1.) / } /
—] |.—
INTR,NMI iy -
HOLD,PEREQ
o
— |
sz, TK L
(SEE NOTE 2.)
I
271103-45
NOTES:

1. PCLK indicates which processor cycle phase will oc-
cur on the next CLK. PCLK may not indicate the cor-
rect phase until the first bus cycle is performed.

2. These inputs are asynchronous. The setup and hold
times shown assure recognition for testing purposes.

RESET "

NOTE: 271103-46

1. When RESET meets the setup time shown, the next
CLK will start or repeat ¢2 of a processor cycle.

EXITING AND ENTERING HOLD

NOTES:

is shown.
2. The data bus will be driven as shown if the last cycle

4. For HOLD request set up to HLDA, refer to Figure 29

BUS CYCLE TYPE Ta TEORT, | T Ta
_ *1 62 i ®1 02 81 ¢2
—®
| (SEE NOTE 4.
! LC
B A
(2a)—
51.50 (SEE NOTE 3.) » @, (SEENOTE 3,)
———————————— —r——— 213 et
—| -— IFTg
g LI EEEES
D= = @
8
2 PEACK ———————————— -— LG ‘ ———
IF NPX|TRANSFER
(SEE NOTE 1)
BHE,LOCK ™ @ "7 e > @
A A, (SEE NOTE 5.)
"l -n o K ZERIIOO)
— 'y
S5
COD/INTA (SEE NOTE 2.)
—~ @ ® |~
Dys = D o SEENOTES) VALID SNSOM- e
L cc_IF WRITE
3
i
) PCLK / \ / \
3
= —

1. These signals may not be driven by the M80C286 during the time shown. The worst case in terms of latest float time

3. The M80C286 floats its status pins during Ty. External 20 K resistors keep these signals high (see Table 16).

5. BHE and LOCK are driven at this time but will not become valid until Tg.
6. The data bus will remain in 3-state OFF if a read cycle is performed.

271103-47

before T) in the diagram was a write T¢.

48

ADVANGE INFORMATION

in‘tel . M80C286

WAVEFORMS (Continued)

M80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE
T Ts
Veu “2 el "’
Veu 1/0 READ IF PROC. EXT. TO MEMORY MEMORY WRITE IF PROC. EXT. TO MEMORY

/’ MEMORY READ IF MEMORY TO PROC. EXT. /‘ 1O WRITE IF MEMORY TO PROC. EXT.

mem T\ T L/

MEMORY ADDRESS IF PROC. EXT. TO MEMORY TRANSFER
10 PORT ADDRESS OOFA(H) IF MEMORY TO PROC. EXT. TRANSFER

Az - Ao

wo XX A

CODN — | 2 | 1O PORT ADDRESS OOFA(H) IF PROC. EXT. TO MEMORY TRANSFER
MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER

FEACK — T \ (SEENOTE 1.)

|«——— (SEE NOTE 2.) ——| | @ | —
]

Perea AAIAANIANWRNVWANWNWY Ar'IIIIIII//I/IIIIIII/II/I//IIIIIIIIII////I/II/I//IIIII/III

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 80286 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY CYCLES.

NOTES: 271103-48
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence.

The first bus operation will be either a memory read at operand address or 1/0 read at port address OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is:
3X ® —12a2max. — @ min. The actual, configuration dependent, maximum time is: 3X ® —12a2pax. — @ min. +
AX2X ®.

A is the number of extra Tg states added to either the first or second bus operation of the processor extension data

operand transfer sequence.

INITIAL M80C286 PIN STATE DURING RESET

BUS CYCLE TYPE
Tx Tx Tx

o MJ%WMM (SEE NOTE 2.)
« — (@) f— e (SEE NOTE 1) _’{@;:lG)
RESET // lA ;: AT LEAST { \ \
>7 16 CLK PERIODS i '
i;z_: I‘fﬁamowu]l
e o S5— =0
— 455 UNKNOWN *
COD/INj Z:i UNKNOWN ‘®,1 "@1
LOCK 15 UNKNOWN 4* @
0 e

55
HLDA UNKNOWN
£C

NOTES: 271103-49

system CLK period later.
2. Setup and hold times for RESET | must be met for proper operation, but RESET | may occur during ¢1 or $2.

3. The data bus is only guaranteed to be in 3-state OFF at the time shown.

1. Setup time for RESET T may be violated with the consideration that ¢1 of the processor clock may begin one

I ADVANGE INFORMATION

49

M80C286

BYTE 1 BYTE 2
7 6 5 4321076543210

T [[11

OPCODE d(w|mod| reg rm

A. SHORT OPCODE FORMAT EXAMPLE

BYTE1
7 6 5 4 3 2 1

BYTE 2 BYTE3

] o= I

REGISTER OPERAND/EXTENSION OF OPCODE
b REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

WORD/BYTE OPERATION
DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCYION) CODE

7 654 3 210

[TITTITITITITIIT]

mod| reg rm

LONG qPCODE

B. LONG OPCODE FORMAT EXAMPLE

271103-50

Figure 35. M80C286 Instruction Format Examples

M80C286 INSTRUCTION SET
SUMMARY

Instruction Timing Notes

The instruction clock counts listed below establish
the maximum execution rate of the M80C286. With
no delays in bus cycles, the actual clock count of an
M80C286 program will average 5% more than the
calculated clock count, due to instruction sequences
which execute faster than they can be fetched from
memory.

To calculate elapsed times for instruction se-
quences, multiply the sum of all instruction clock
counts, as listed in the table below, by the processor
clock period. A 10 MHz processor clock has a clock
period of 100 nanoseconds and requires an
M80C286 system clock (CLK input) of 20 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution. Control transfer in-
struction clock counts include all time required to
fetch, decode, and prepare the next instruction for
execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

50

Instruction Set Summary Notes

Addressing displacements selected by the MOD
field are not shown. If necessary they appear after
the instruction fields shown.

Above/below refers to unsigned value

Greater refers to positive signed value

Less refers to less positive (more negative) signed
values

ifd = 1 then toregister; if d = 0 then from register

ifw = 1 then word instruction; if w = 0 then byte
instruction

ifs = 0 then 16-bit immediate data form the oper-
and

ifs =1 then an immediate data byte is sign-ex-

tended to form the 16-bit operand
x don’t care

z used for string primitives for comparison with
ZF FLAG

If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand

* = add one clock if offset calculation requires
summing 3 elements

number of times repeated

number of bytes of code in next instruction

Level (L)—Lexical nesting level of the procedure

n=
m=

ADVANGE INFORMATION I

intgl.

The following comments describe possible excep-
tions, side effects, and allowed usage for instruc-
tions in both operating modes of the M80C286.

REAL ADDRESS MODE ONLY
1. This is a protected mode instruction. Attempted
execution in real address mode will result in an
undefined opcode exception (6).

2. A segment overrun exception (13) will occur if a
word operand reference at offset FFFF(H) is at-
tempted.

3. This instruction may be executed in real address
mode to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt
(9) will occur if the operand exceeds the seg-
ment limit.

EITHER MODE
6. An exception may occur, depending on the value
of the operand.

7. LOCK is automatically asserted regardless of the
presence or absence of the LOCK instruction
prefix.

8. LOCK does not remain active between all oper-
and transfers.

PROTECTED VIRTUAL ADDRESS MODE ONLY
9. A general protection exception (13) will occur if
the memory operand cannot be used due to ei-
ther a segment limit or access rights violation. If
a stack segment limit is violated, a stack seg-
ment overrun exception (12) occurs.

10. For segment load operations, the CPL, RPL, and
DPL must agree with privilege rules to avoid an
exception. The segment must be present to

I ADVANGE INFORMATION

M80C286

avoid a not-present exception (11). If the SS reg-
ister is the destination, and a segment not-pres-
ent violation occurs, a stack exception (12) oc-
curs.

. All segment descriptor accesses in the GDT or

LDT made by this instruction will automatically
assert LOCK to maintain descriptor integrity in
multiprocessor systems.

.JMP, CALL, INT, RET, IRET instructions refer-

ring to another code segment will cause a gener-
al protection exception (13) if any privilege rule is
violated.

. A general protection exception (13) occurs if

CPL # 0.

. A general protection exception (13) occurs if

CPL > IOPL.

. The IF field of the flag word is not updated if CPL

> |OPL. The IOPL field is updated only if
CPL = 0.

. Any violation of privilege rules as applied to the

selector operand do not cause a protection ex-
ception; rather, the instruction does not return a
result and the zero flag is cleared.

. If the starting address of the memory operand

violates a segment limit, or an invalid access is
attempted, a general protection exception (13)
will occur before the ESC instruction is execut-
ed. A stack segment overrun exception (12) will
occur if the stack limit is violated by the oper-
and’s starting address. If a segment limit is vio-
lated during an attempted data transfer then a
processor extension segment overrun exception
(9) occurs.

. The destination of an INT, JMP, CALL, RET or

IRET instruction must be in the defined limit of a
code segment or a general protection exception
(13) will occur.

51

M80C286 iN
®

M80C286 INSTRUCTION SET SUMMARY

CLOCK COUNT COMMENTS
[FUNCTION FORMAT Real PrVirtuaI Real | "\ el

Address Address
Mode Address Mode Address
Mode Mode

DATA TRANSFER
MOV =Move:
Register to Register/Memory | 1000100w | modreg r/m | 2,3* 2,3* 2 9
Register/memory to register | 1000101w | modreg r/m | 2,5* 2,5% 2 9
Immediate to register/memory | 1100011w | mod000 r/m | data | dataifw = 1 2,3* 2,3* 2 9
Immediate to register | 1011w reg | data | dataifw=1 | 2 2
Memory to accumulator | 1010000w | addr-low | addr-high | 5 5 2 9
IAccumulator to memory | 1010001w | addr-low | addr-high | 3 3 2 9
Register/memory to segment register | 10001110 | mod O reg r/m | 2,5* 17,19* 2 9,10,11
ISegment register to register/memory | 10001100 | mod O reg r/m | 2,3* 2,3* 2 9
PUSH=Push:
Memory |11111111|mod110r/m| 5* 5* 2 9
Register 3 3 2 9
[Segment register 3 3 2 9
Immediate | 011010s0 | data dataif s=0 3 3 2 9
PUSHA =Push All 17 17 2)
POP = Pop:
Memory | 10001111 |mod000 r/m 5* 5* 2 9
Register 5 5 2 9
ISegment register (reg#01) 5 20 2 9,10,11
IPOPA = Pop All 19 19 2 9
IXCHG = Exhcange:
Register/memory with register | 1000011w |mod reg r/m 3,5% 3,5% 2,7 79
Register with accumulator 3 3
N=Input from:
Fixed port | 1110010w | port 5 5 14
\Variable port 5 5 14
OUT =Output to:
Fixed port | 1110011w | port 3 3 14
\Variable port 3 3 14
XLAT = Translate byte to AL 5 5 9
LEA=Load EA to register | 10001101 |mod reg r/ml 3* 3*
ILDS =Load pointer to DS | 11000101 |mod reg r/ml (mod+11) 7* 21* 2 9,10,11
LES = Load pointer to ES | 11000100 |mod reg r/ml (mod+1) 7* 21* 2 9,10,11

Shaded areas indicate instructions not available in M8086, 88 microsystems.

52

ADVANGE INFORMATION

]
|n'te| M80C286
®
M80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Pr d Pr d
FUNCTION FORMAT Real Virtual Real Virtual
Address Address
Mode Address Mode Address
Mode Mode
IDATA TRANSFER (Continued)
ILAHF Load AH with flags 2 2
ISAHF = Store AH into flags 2 2
PUSHF = Push flags 3 3 2 9
IPOPF = Pop flags 5 5 2,4 9,15
ARITHMETIC
IADD =Add:
Reg/memory with register to either | 000000dw | modreg r/m | 2,7* 2,7* 2 9
Immediate to register/memory | 100000sw | mod000 r/m | data | dataif sw = 01 3,7* 3,7* 2 9
Immediate to accumulator | 0000010w | data | dataif w=1 | 3 3
IADC = Add with carry:
Reg/memory with register to either | 000100dw | modreg r/m | 2,7* 2,7* 2 9
Immediate to register/memory | 100000sw | mod010 r/m | data | dataif sw = 01 3,7* 3,7* 2 9
Immediate to accumulator | 0001010w | data dataifw=1 | 3 3
NC = Increment:
Register/memory | 1111111w | mod000 r/m | 2,7* 2,7 2 9
Register 2 2
ISUB = Subtract:
Reg/memory and register to either | 001010dw | modreg r/m | 2,7* 2,7* 2 9
Immediate from register/memory | 100000sw | mod101 r/m | data |data ifsw = 01 3,7* 3,7* 2 9
Immediate from accumulator | 0010110w | data | dataifw=1 | 3 3
ISBB = Subtract with borrow:
Reg/memory and register to either | 000110dw | modreg r/m | 2,7* 2,7* 2 9
Immediate from register/memory | 100000sw | mod011 r/m | data | dataif sw=01 3,7* 3,7* 2 9
Immediate from accumulator | 0001110w | data | dataifw=1 | 3 3
DEC =Decrement
Register/memory | 1111111w |mod001 r/m| 2,7 2,7 2 9
Register 2 2
ICMP =Compare
Register/memory with register | 0011101w |mod reg r/ml 2,6* 2,6% 2 9
Register with register/memory | 0011100w |mod reg r/ml 2,7* 2,7* 2 9
Immediate with register/memory | 100000sw |mod 111 r/ml data | data if sw=01 3,6% 3,6 2 9
Immediate with accumulator | 0011110w | data | dataif w=1 | 3 3
INEG = Change sign | 1111011w |mod011 r/ml 2 7* 2 9
IAAA = ASCII adjust for add 3 3
IDAA = Decimal adjust for add 3 3
ADVANGCE INFORMATION 53

M80C286 iN
®
M80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected
IFUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
IARITHMETIC (Continued)
IAAS = ASCII adjust for subtract 3 3
IDAS = Decimal adjust for subtract 00101111 3 3
IMUL = Multiply (unsigned): | 1111011w |mod 100 r/m
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
lemory-Word 24* 24* 2 9
IMUL = Integer multiply (signed): 1111011w [mod101 r/m
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24* 24* 2 9
IMUL = Integer immediate multiply | 011010s1 |mod reg r/ml data dataifs = 0 21,24 21,24 2 9
(signed)
DIV =Divide (unsigned) | 1111011w |mod 110 r/ml
Register-Byte 14 14 6 6
Register-Word 22 22 6 6
Memory-Byte 17* 17* 2,6 6,9
Memory-Word 25* 25* 2,6 6,9
DIV =Integer divide (signed) 1111011w [mod111 r/m
Register-Byte 17 17 6 6
Register-Word 25 25 6 6
Memory-Byte 20* 20* 2,6 6,9
Memory-Word 28* 28* 2,6 6,9
IAAM = ASCI| adjust for multiply | 11010100 | 00001010 | 16 16
IAAD = ASCII adjust for divide | 11010101 | 00001010 | 14 14
ICBW = Convert byte to word 10011000 2 2
ICWD = Convert word to double word 10011001 2 2
LOGIC
[Shift/Rotate Instructions:
Register/Memory by 1 | 1101000w |mod TTT r/ml 2,7 2,7 2 9
Register/Memory by CL | 1101001w |mod TTT r/ml 5+n8+n*|5+n8+n* 2 9
Register/Memory by Count | 1100000w |modT‘I‘I’ r/ml count 5+n,8+n*|5+n,8+n* 2 9
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

Shaded areas indicate instructions not available in M8086, 88 microsystems.

54

ADVANGE INFORMATION

n
|n'te| M80C286
®
M80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
FUNCTION FORMAT Real P'Virtual *| mea FIVirtuaI ’
Address Address
Mode Address Mode Address
Mode Mode
IARITHMETIC (Continued)
IAND = And:
Reg/memory and register to either | 001000dw | modreg r/m | 2,7* 2,7* 2 9
Immediate to register/memory | 1000000w | mod 100 r/m | data | dataifw=1 3,7* 3,7* 2 9
Immediate to accumulator | 0010010w | data | dataif w=1 | 3 3
ITEST = And function to flags, no result:
Register/memory and register | 1000010w | modreg r/m | 2,6% 2,6* 2 9
Immediate data and register/memory | 1111011w | mod000 r/m | data | dataifw=1 3,6% 3,6* 2 9
Immediate data and accumulator | 1010100w | data | dataif w=1 | 3 3
OR=0r:
IReg/memory and register to either | 000010dw | modreg r/m | 2,7* 2,7* 2 9
Immediate to register/memory | 1000000w | mod001 r/m | data | dataifw=1 3,7* 3,7* 2 9
Immediate to accumulator | 0000110w | data | dataif w=1 | 3 3
IXOR =Exclusive or:
Reg/memory and register to either | 001100dw | modreg r/m | 2,7* 2,7* 2 9
Immediate to register/memory | 1000000w | mod110 r/m | data | dataifw = 1 3,7* 3,7* 2 9
Immediate to accumulator | 0011010w | data |data ifw = 1| 3 3
INOT = Invert register/memory | 1111011w | mod010 r/m | 2,7* 2,7* 2 9
ISTRING MANIPULATION:
IMOVS = Move byte/word 5 5 2 9
ICMPS = Compare byte/word 8 8 2 9
ISCAS = Scan byte/word 7 7 2 9
LODS = Load byte/wd to AL/AX 5 5 2 9
ISTOS = Stor byte/wd from AL/A 3 3 2 9
NS = Input byte/wd from DX port 5 5 2 9,14
IOUTS = Output byte/wd to DX port 5 5 2 9,14
Repeated by count in CX
OV5=Move string | 11110011 | 1010010w| 5+4n 5+4n 2 9
MPS = Compare string | 1111001z | 1010011w | 5+9n 5+9n 2,8 8,9
CAS = Scan string | 1111001z | 10101 11w | 5+8n 5+8n 2,8 8,9
0DS = Load string | 11110011 | 1010110w | 5+4n 5+4n 2,8 8,9
TOS = Store string | 11110011 | 1010101w | 4+3n 4+3n 2,8 8,9
NS = Input string | 11110011 | 0110110w | 5+4n 5+4n 2 9,14
UTS = Output string | 11110011 | 0110111w | 5+4n 5+4n 2 9,14
Shaded areas indicate instructions not available in M8086, 88 microsystems.
ADVANCE INFORMATION 55

M80C286 iN
®
M80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
ICONTROL TRANSFER
CALL =Call:
Direct within segment | 11101000 | disp-low | disp-high | 7+m 7+m 2 18
Register/memory | 11111111 |mod01 0 r/ml 7+m,11+m*| 7+m,11+m* 2,8 8,9,18
indirect within segment
Direct intersegment | 10011010 | segment offset | 13+m 26+m 2 11,12,18
Protected Mode Only (Direct intersegment): | segment selector |
Via call gate to same privilege level 41+m 8,11,12,18
Via call gate to different privilege level, no parameters 82+m 8,11,12,18
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18
Via TSS 1774+ m 8,11,12,18
Via task gate 182+m 8,11,12,18
Indirect intersegment 11111111 |mod011 r/m (mod=#11) 16+m 29+m* 2 8,9,11,12,18
Protected Mode Only (Indirect intersegment):
Via call gate to same privilege level 44 +m* 8,9,11,12,18
Via call gate to different privilege level, no parameters 83 +m* 8,9,11,12,18
Via call gate to different privilege level, x parameters 90+4x +m* 8,9,11,12,18
ViaTSS 180+m* 8,9,11,12,18
Via task gate 185+m* 8,9,11,12,18
|JMP = Unconditional jump:
IShort/long | 11101011 | disp-low | 7+m 7+m 18
Direct within segment | 11101001 | disp-low | disp-high | 7+m 7+ m 18
Register/memory indirect within segment | 11111111 | mod 100 r/ml 7+m11+m*| 74+m,11+m* 2 9,18
Direct intersegment | 11101010 | segment offset | 11+m 23+m 11,12,18
Protected Mode Only (Direct intersegment): | segment selector |
Via call gate to same privilege level 38+m 8,11,12,18
Via TSS 175+m 8,11,12,18
Via task gate 180+m 8,11,12,18
Indirect intersegment 11111111 |mod1 01 r/m (mod+#11) 15+ m* 26+m* 2 8,9,11,12,18
Protected Mode Only (Indirect intersegment):
Via call gate to same privilege level 41+m* 8,9,11,12,18
Via TSS 178+m* 8,9,11,12,18
Via task gate 183+m* 8,9,11,12,18
RET = Return from CALL:
\Within segment 11000011 11+m 11+m 2 8,9,18
Within seg adding immed to SP | 11000010 | data-low | data-high | 11+m 11+m 2 8,9,18
Intersegment 11001011 15+m 25+m 2 8,9,11,12,18
Intersegment adding immediate to SP | 11001010 | data-low | data-high | 15+m 2 8,9,11,12,18
Protected Mode Only (RET):
To different privilege level 55+m 9,11,12,18

56

ADVANGE INFORMATION

in‘tel . M80C286

M80C286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
CONTROL TRANSFER (Continued)
JE/JZ=Jump on equal zero | 01110100 | disp | 7+mor3 7+mor3 18
JL/JNGE = Jump on less/not greater or equal | 01111100 | disp | 7+mor3 7+mor3 18
JLE/JNG=Jump on less or equal/not greater | 01111110 | disp | 7+mor3 7+mor3 18
JB/JNAE = Jump on below/not above or equal | 01110010 | disp | 7+mor3 7+mor3 18
JBE/JNA = Jump on below or equal/not above | 01110110 | disp | 7+mor3 7+mor3 18
JP/JPE =Jump on parity/parity even | 01111010 | disp | 7+mor3 7+mor3 18
JO=Jump on overflow | 01110000 | disp | 7 +mor3 7+mor3 18
JS=Jump on sign | 01111000 | disp | 7+ mor3 7+mor3 18
JNE/JNZ = Jump on not equal/not zero | 01110101 | disp | 7+mor3 7+mor3 18
JNL/JGE = Jump on not less/greater or equal | 01111101 | disp | 7+mor3 7+mor3 18
JNLE/JG=Jump on not less or equal/greater | 01111111 | disp | 7+mor3 7+mor3 18
JNB/JAE = Jump on not below/above or equal | 01110011 | disp | 7+mor3 7+mor3 18
JNBE/JA=Jump on not below or equal/above | 01110111 | disp | 7+mor3 7+mor3 18
JNP/JPO = Jump on not par/par odd | 01111011 | disp | 7+mor3 7+mor3 18
JNO = Jump on not overflow | 01110001 | disp | 7+mor3 7+mor3 18
JNS = Jump on not sign | 01111001 | disp | 7 +mor3 7+mor3 18
LOOP = Loop CX times | 11100010 | disp | 8 +mor4 8+mor4 18
LOOPZ/LOOPE = Loop while zero/equal | 11100001 | disp | 8+mor4 8+mor4 18
LOOPNZ/LOOPNE = Loop while not zero/equal | 11100000 | disp | 8+mor4 8+mor4 18
JCXZ=Jump on CX zero | 11100011 | disp | 8 +mor4 8+mor4 18
ENTER = Enter Procedure | 11001000 | data-low | data-high | L | 28 89
=0 11 11

2,8 8,9

L=1 15 15 28 a8
> +4(L — +4(L — g :
L>1 16+4(L — 1) | 16+4(L — 1) 28 8.9
LEAVE = Leave Procedure 11001001 5 5
INT =Interrupt:
Type specified | 11001101 | type | 23+m 2,7,8
Type 3 11001100 23+m 2,78
INTO = Interrupt on overflow 11001110 24 +mor3 2,6,8
(3if no (3ifno
interrupt) interrupt)

Shaded areas indicate instructions not available in M8086, 88 microsystems.

ADVANGE INFORMATION 57

M80C286 |n
®
M80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
ICONTROL TRANSFER (Continued)
IProtected Mode Only:
Via interrupt or trap gate to same privilege level 40+ m 7,8,11,12,18
Via interrupt or trap gate to fit different privilege level 78+ m 7,8,11,12,18
Via Task Gate 167+m 7,8,11,12,18
IRET = Interrupt return 11001111 17+m 31+ m 2,4 8,9,11,12,15,18
Protected Mode Only:
To different privilege level 55+m 8,9,11,12,15,18
To different task (NT=1) 169+m 8,9,11,12,18
IBOUND = Detect value out of range 01100010 [modreg r/m 13* 13* 2,6 6,8,9,11,12,18
(Use INT clock
count if
exception 5)
IPROCESSOR CONTROL
ICLC=Clear carry 11111000 2 2
ICMC = Complement carry 11110101 2 2
ISTC=Set carry 11111001 2 2
ICLD =Clear direction 11111100 2 2
ISTD = Set direction 11111101 2 2
ICLI=Clear interrupt 11111010 3 3 14
ISTI=Set interrupt 11111011 2 2 14
HLT =Halt 11110100 2 2 13
[WAIT = Wait 10011011 3 3
LOCK = Bus lock prefix 11110000 0 0 14
ICTS = Clear task switched flag | 00001111 | 00000110 | 2 2 3 13
[ESC = Processor Extension Escape | 11011TTT | mod LLL r/m | 9-20* 9-20* 58 8,17
(TTT LLL are opcode to processor extension)
EG = Segment Override Prefix 001 reg 110 0 0
ROTECTION CONTROL
GDT = Load global descriptor table register | 00001111 | 00000001 |mod01 0 r/ml 11* 11* 2,3 9,13
GDT = Store global descriptor table register | 00001111 | 00000001 | mod 000 r/ml 11* 11* 2,3 9
IDT = Load interrupt descriptor table register | 00001111 | 00000001 | mod0 11 r/ml 12* 12* 2,3 9,13
IDT = Store interrupt descriptor table register | 00001111 | 00000001 | mod 00 1 r/m| 12* 12* 23 9
LDT = Load local descriptor table register
ficnlicoistedmen oy [00001111] 00000000 [mod010 r/m| 17,19 1 9,11,13
LDT = Store local descriptor table register
il (R EE N ERy [00001111 [00000000 [mod000 w/m| 2,3 1 9

Shaded areas indicate instructions not available in M8086, 88 microsystems.

58

ADVANGE INFORMATION

n
I n M80C286
®
M80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
PROTECTION CONTROL (Continued)
LTR=Local task register
from register/memory [00001111 [00000000 [mod011 w/m | 17,19* 1 9,11,13
STR=Store task register
e ey | 00001111 [00000000 [mod001 wm| 2,3+ 1 9
LMSW = Load machine status word
fcaliccE ey [00001111 [00000001 [mod110 wm | 3,6 3,6 23 9,13
SMSW = Store machine status word | 00001111 | 00000001 | mod100 r/m | 2,3* 2,3* 2,3 9
LAR = Load access rights
{omlregistsr/memmory; [00001111 [00000010 [modreg /m | 14,16* 1 9,11,16
LSL =Load segment limit
(e (R ATETERy | 00001111 [00000011 [modreg m| 14,16 1 9,11,16
ARPL = Adjust requested privilege level: | 01100011 | modreg r/m | 10%,11* 2 8,9
from register/memory
VERR = Verify read access: register/memory | 00001111 | 00000000 | mod100r/m | 14,16* 1 9,11,16
VERR = Verify write access: | 00001111 | 00000000 | mod101r/m | 14,16* 1 9,11,16
Shaded areas indicate instructions not available in M8086, 88 microsystems.
ADVANGCE INFORMATION 59

M80C286

Footnotes

The Effective Address (EA) of the memory operand
is computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

if mod = 00 then DISP = 0*, disp-low and disp-high
are absent

if mod = 01 then DISP = disp-low sign-extended to
16 bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP
if r/m = 001 then EA = (BX) + (DI) + DISP
if r/m = 010 then EA = (BP) + (SI) + DISP

if r/m
if r/m
if r/m
if r/m

if r/m =

011 then EA = (BP) + (DI) + DISP
100 then EA = (SI) + DISP

101 then EA = (DI) + DISP

110 then EA = (BP) + DISP*

111 then EA = (BX) + DISP

intgl.

REG is assigned according to the following table:

16-Bit (w = 1) 8-Bit (w = 0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
101 sl 110 DH
111 DI 111 BH

The physical addresses of all operands addressed
by the BP register are computed using the SS seg-
ment register. The physical addresses of the desti-
nation operands of the string primitive operations
(those addressed by the DI register) are computed
using the ES segment, which may not be overridden.

DISP follows 2nd byte of instruction (before data if
required)
*except if mod = 00 and r/m = 110 then EQ = disp-high: disp-low.

SEGMENT OVERRIDE PREFIX

001reg110

reg is assigned according to the following:

Segment
reg Register
00 ES
01 Cs
10 SS
11 DC

intgl.

INTEL CORPORATION, 2200 Mission College Blvd., Santa Clara, CA 95052; Tel. (408) 765-8080

INTEL CORPORATION (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 696 000

INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511

ADVANGE INFORMATION I

