

LS352 MONOLITHIC DUAL PNP TRANSISTOR

Linear Systems Monolithic Dual PNP Transistor

The LS352 is a monolithic pair of PNP transistors mounted in a single SOT-23 package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching.

The 6 Pin SOT-23 provides ease of manufacturing, and a lower cost assembly option.

(See Packaging Information).

LS352 Features:

- Very high gain
- Tight matching
- Low Output Capacitance

FEATURES								
HIGH GAIN	h _{FE} ≥ 200 @ 10μA-1mA							
TIGHT V _{BE} MATCHING	$ V_{BE1} - V_{BE2} = 0.2 \text{mV TYP}.$							
HIGH ft	275MHz TYP. @ 1mA							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25°C (unless otherwise noted)								
Maximum Temperatures								
Storage Temperature	-65°C to +200°C							
Operating Junction Temperature	-55°C to +150°C							
Maximum Power Dissipation								
Continuous Power Dissipation (One side)	250mW							
Continuous Power Dissipation (Both sides	500mW							
Linear Derating factor (One side)	2.3mW/°C							
Linear Derating factor (Both sides)	4.3mW/°C							
Maximum Currents								
Collector Current	10mA							

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} – V _{BE2}	Base Emitter Voltage Differential		0.2	0.5	mV	$I_C = 10 \mu A, V_{CE} = 5 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential		0.5	2	μV/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
I _{B1} - I _{B2}	Base Current Differential			5	nA	$I_C = 10 \mu A$, $V_{CE} = 5 V$
Δ (I _{B1} – I _{B2}) /°C	Base Current Differential			-0.3	nA/°C	I _C = 10μA, V _{CE} = 5V
	Change with Temperature					T _A = -55°C to +125°C
h _{FE1} /h _{FE2}	DC Current Gain Differentia		5		%	$I_{C} = 10 \mu A$, $V_{CE} = 5 V$

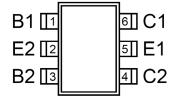
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV_{CBO}	Collector to Base Voltage	60			V	$I_{C} = 10 \mu A$, $I_{E} = 0$
BV_CEO	Collector to Emitter Voltage	60			V	$I_{C} = 10 \mu A, I_{B} = 0$
BV_{EBO}	Emitter-Base Breakdown Voltage	6.2			V	$I_E = 10 \mu A, I_C = 0^2$
BV_{CCO}	Collector to Collector Voltage	100			V	$I_{C} = 10 \mu A, I_{E} = 0$
		200		600		$I_{C} = 10 \mu A, V_{CE} = 5 V$
h _{FE}	DC Current Gain	200		600		I _C = 100μA, V _{CE} = 5V
		200				$I_C = 1$ mA, $V_{CE} = 5$ V
V _{CE} (SAT)	Collector Saturation Voltage			0.5	V	$I_{C} = 1 \text{mA}, I_{B} = 0.1 \text{mA}$
I _{EBO}	Emitter Cutoff Current			0.2	nA	$I_E = 0$, $V_{CB} = 3V$
I _{CBO}	Collector Cutoff Current			0.2	nA	$I_E = 0$, $V_{CB} = 20V$
Сово	Output Capacitance			2	pF	$I_{E} = 0$, $V_{CB} = 5V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	V _{CC} = 0V
I _{C1C2}	Collector to Collector Leakage Current			0.5	nA	V _{CC} = ±45V
f _T	Current Gain Bandwidth Product	200			MHz	$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
NF	Narrow Band Noise Figure			3	dB	I_C = 100μA, V_{CE} = 5V, BW=200Hz, R_G = 10K Ω , f = 1KHz

Notes:

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- $2. \ The \ reverse \ base-to-emitter \ voltage \ must \ never \ exceed \ 6.2 \ volts; the \ reverse \ base-to-emitter \ current \ must \ never \ exceed \ 10 \mu A.$

SOT-23 (Top View)


Available Packages:

LS352 in SOT-23

LS352 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com Web: www.micross.com/distribution.aspx

