
PSD913F2 / 80C32 Design Guide
Application Note 067

By Mark Rootz and Tim Wilkerson

April, 2000
Rev 1.2

 Waferscale Integration Inc.
47280 Kato Road, Fremont, CA 94538

Telephone: (510)-656-5400

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com i

Contents
1 Introduction ... 1
2 Physical Connections .. 4
3 First Design Example – IAP with no Memory Paging ... 5

3.1 Memory Map... 6
3.2 PSDsoft Express Design Entry ... 7

3.2.1 Invoke PSDsoft Express and set up your project.. 7
3.2.2 PSD Pin Definition... 9
3.2.3 System Memory Map: PSD Page Register and Chip Select Definitions... 12
3.2.4 Additional PSD Configuration .. 15
3.2.5 C Code Generation... 16
3.2.6 Merging MCU Firmware ... 16
3.2.7 Programming the PSD ... 18

4 Second Design Example – IAP with Memory Paging .. 20
4.1 Memory Map... 21
4.2 PSDsoft Express Design Entry ... 23

5 Third Design Example – Advanced IAP with Paging & Swapping ... 25
5.1 Memory Map... 25
5.2 PSDsoft Express Design Entry ... 28

6 Conclusion.. 31
7 References .. 31

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 1

1 Introduction

EasyFLASHTM PSD9XXF devices are members of a family of flash-based peripherals for use
with embedded microcontrollers (MCUs). These Programmable System Devices (PSDs) consist
of memory, logic, and I/O. When coupled with a low-cost, ROM-less 80C32 MCU, the PSD
forms a complete embedded flash system that is 100% In-System-Programmable (ISP). There
are many features in the PSD silicon and in the PSDsoft Express development software that
make ISP easy for you, regardless of how much experience you have in embedded flash design.

This document offers three flash 80C32 designs using a PSD913F2 device. The first is a simple
system to get up and running quickly for basic applications, or to check out your prototype
80C32 hardware. The second design illustrates the use memory paging. The third design covers
enhanced features of PSD In-System-Programming, including memory paging and segment
swapping (same design as DK-900 kit available at www.waferscale.com for $99 USD). You can
start with the first design, and migrate to the second and third as your functional requirements
grow. There are other members of the PSD9XXF family, including the PSD913F1 and the
PSD934F2. The PSD913F1 contains some EEPROM, and the PSD934F2 has a larger flash
memory and a larger SRAM than the PSD913F2. See the PSD9XXF data sheet for details. This
application note is applicable to these other PSD9XXF family members, with only slight
variations.

In-System Programming and In-Application re-Programming
Our industry uses the term In-System Programming, or ISP, in a general sense. ISP is applicable
to programmable logic, as well as programmable Non-Volatile Memory (NVM). However, an
additional term will be used in this document: In-Application re-Programming (IAP). There are
subtle yet significant differences between ISP and IAP when microcontrollers are involved. ISP
of memory means that the MCU is off line and not involved while memory is being
programmed. IAP of memory means that the MCU participates in programming memory, which
is important for systems that must be online while updating firmware. Often, ISP is well suited
for manufacturing, while IAP is appropriate for field updates. PSD9XXF devices provide both
ISP and IAP for your system. Keep in mind that IAP can only program the memory sections of
the PSD, not the configuration and programmable logic portions of the PSD. ISP can program all
areas of the PSD.

Problems with IAP
Typically, a host computer downloads firmware into an embedded flash system through a
communication channel that is serviced by the MCU. This channel is usually a UART, but any
communication channel that the 80C32 supports will do (modem, SPI, CAN, J1850, etc.). The
80C32 must execute the code that controls the IAP process from an independent memory array
that is not being erased or programmed. Otherwise, boot code and flash programming algorithms
(IAP loader code) will be unavailable to the 80C32. It is absolutely necessary to use an alternate
memory array (an independent memory that is not being programmed) to store the IAP loader
code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM,
SRAM, FLASH, or EEPROM); each type has advantages and disadvantages. This alternate

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 2

memory may reside external to the MCU or reside on-board the MCU. A top-level view of an
embedded ISP/IAP flash system with external memory is shown in Figure 1.

Figure 1 – Embedded flash system capable of IAP (5 devices)

Another problem, which is specific to the 8051 architecture, is related to the separate “Program”
and “Data” address spaces. The 80C32 cannot write to Program space, but that is where the
flash memory resides that holds 80C32 firmware. How can one program flash memory in-
system if the 80C32 cannot write to program space?

A Common Solution

Without a PSD device, implementing IAP with the 80C32 can be difficult and time consuming.
Philips’ application note AN440 contains a RAM loader program (bootstrap loader). It shows
how to load code into an external RAM over a serial link after power-up and how to switch
execution to that RAM to complete the boot sequence. This method can be a cumbersome and
error-prone exercise, which is difficult to debug and vulnerable to power outages.

To overcome the issue of Program versus Data space, a common practice is to combine the two
address spaces, which reduces the total address space of the 80C32 by 50%.

A Better, Integrated Solution

Figure 2 shows a two-chip solution using an EasyFLASH PSD913F2. This system has ample
main flash memory, a second smaller flash memory to hold the IAP loader code and general
data, and more SRAM. All three of these memories can operate independently and concurrently;
meaning the MCU can operate from one memory while erasing/writing the other. The PSD takes
care of reclassifying memory as “Program” or “Data” space dynamically with a built-in register
that the 80C32 can access at runtime. This easy method allows IAP without having to combine
Program and Data spaces, as is commonly done. This system also has programmable logic,
expanded I/O, and design security. The two-chip solution is 100% programmable in the factory
or in the field.

Communication
Channel

Alternate Memory
for IAP Loader Code

Main Flash Memory
128K Bytes

Embedded System

Host
Computer

System SRAM
2K Bytes

System
I/O

80C32

CPLD

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 3

Figure 2 – Embedded flash system capable of IAP and ISP (2 devices)

By design, the IAP method just described requires MCU participation to exercise a
communication channel to implement a download to the main flash memory. The PSD9XXF
also offers an alternative method (ISP) to program the PSD using a built-in IEEE-1149.1 JTAG
interface requiring no MCU participation. This means that a completely blank PSD can be
soldered into place and the entire chip can be programmed in-system using Waferscale’s
FlashLINKTM JTAG cable and PSDsoft Express development software. No 80C32 firmware
needs to be written, just plug in the FlashLINKTM cable to your PC parallel port and begin
programming memory, logic, and configuration. This is a powerful feature of the PSD9XXF that
allows immediate development of application code in your lab, smart manufacturing techniques,
and easy field updates.

The FlashLINKTM cable and PSDsoft Express are available from our website,
www.waferscale.com. The FlashLINKTM is $59 USD (credit cards are accepted) and PSDsoft
Express is free.

Let’s take a quick look inside the EasyFLASHTM PSD913F2, as shown in Figure 3. There are
three independent memory arrays that are selected on a segment basis when the proper MCU
address is decoded in the Decode PLD. The page register participates in memory decoding,
which greatly simplifies memory paging. The MCU address, data, and control signals have
access to most areas of the chip. The GPLD has 19 combinatorial logic outputs for external
device chip-selects or general logic. There are 27 I/O pins. A power management scheme can
selectively shut down parts of the chip and tailor special power saving mechanisms on-the-fly.
The security feature can block access to all areas of the chip from a device programmer/reader.
Finally, the self-contained JTAG-ISP controller allows programming of all areas of the chip.

Communication
Channel

Embedded System

Host
Computer

System
I/O

PSD913F2

* 128K Bytes Flash
* 32K Bytes Flash
* 2K Bytes SRAM
* Programmable Logic
* I/O

JTAG
ISP

80C32

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 4

Figure 3 – Top Level Block Diagram of PSD913F2

2 Physical Connections

Connect your 80C32 to the PSD, as shown in Figure 4. A 52-pin PLCC package is used in this
example. These same connections can be used for all three design examples in this document.
All members of the PSD9XX family share the same pinout.

This example design uses an LCD module, an external LCD chip-select, six MCU controlled I/O
signals (two of which control the LCD), and a six-pin JTAG-ISP interface. There are 13 unused
PSD I/O pins shown (should use pullups to Vcc with 100K resistor or tie to GND if not used in
your design).

M
C

U
 A

D
D

R
/D

A
T

A
M

C
U

C
O

N
T

R
O

L

PAGE
REG

DECODE
PLD

GPLD
19 Combinatorial

LogicOutputs

128K Byte
Main FLASH
8 segments

32K Byte
Secondary FLASH

4 segments

2K Byte SRAM

I/O
 P

O
R

T
A

I/O
 P

O
R

T
B

I/O
 P

O
R

T
C

I/O
 P

O
R

T
D

POWER
MNGT

D
E

V
IC

E
S

E
C

U
R

IT
Y

JTAG-ISP
CONTROLLER

MCU ADDR/DATA/CNTL BUS

P
LD

 B
U

S

I/O
 B

U
S

PSD913F2

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 5

Figure 4 – Physical Connections, 80C32 and PSD913F2

3 First Design Example – IAP with no Memory Paging

The first design example will outline the steps to get a flash 80C32 system up and running
quickly. No memory paging is used. Program space and data space for main flash memory is
combined because of the small amount of memory used in this simple design. You will see a
memory map and the necessary design entry in the PSDsoft Express software development
environment. A PSD913F2 is used in this example, but the other members of the EasyFLASHTM

family may be used instead, with minor changes. See the PSD9XXF data sheet for a comparison
of family members.

TD O

TSTA T

AD1

TMS

AD2

AD6

TERR\

AD3

AD0

AD7

AD4

TD I

AD5

TC K

RWLCD

MC UIO2
MC UIO3

RESET\

CSLCD

MC UIO1

MC UIO0

RSLC D

A14

A12

A15

A9

A13

WR\

AS

A8

A10
A11

PSEN\
RD\

U2

PSD913F2 -15 J (52 p in PLCC)

30
31
32

33
34
35
36

37

39

40
41
42
43

44
45

29
28
27

25
24
23
22

21

7

6
5
4
3

2
52
5146

20

19
18
17
14

13
12
11

47

50
49

10

9
848

ADIO0
ADIO1
ADIO2

ADIO3
ADIO4
ADIO5
ADIO6

ADIO7

ADIO8

ADIO9
ADIO10
ADIO11
ADIO12

ADIO13
ADIO14

PA0
PA1
PA2

PA3
PA4
PA5
PA6

PA7

PB0

PB1
PB2
PB3
PB4

PB5
PB6
PB7ADIO15

PC0

PC1
PC2
PC3
PC4

PC5
PC6
PC7

CNTL0

CNTL1
CNTL2

PD0

PD1
PD2RESET

U1

EA

XTAL1

XTAL2

RST

INT0
INT1

T0

T1

P1.0
P1.1

P1.2
P1.3
P1.4
P1.5

P1.6
P1.7

AD0
AD1
AD2

AD3
AD4
AD5
AD6

AD7

A8

A9
A10
A11
A12

A13
A14
A15

RD
PSE N

ALE

TXD
RXD

WR

RESET

INT0\
INT1\

RESET\

DAT A BU S

2 X 16 LCD
 M ODULE

JTAG-ISP

CONNECTOR

RS
R/W

E

MCU I/ O
SIGNALS

xx MHz

UART
PORT

SPARE I/O

80C32

RES ET

CSLC D

PSD

AD 7-AD0

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 6

3.1 Memory Map

We are using a PSD913F2, which provides 128 Kbytes of main flash memory, 32 Kbytes of
secondary flash memory, and 2 Kbytes SRAM. However, for this first simple example we will
only use 32 Kbytes of main flash memory, 32 Kbytes of secondary flash memory, and 2 Kbytes
of SRAM. See the 80C32 system memory map in Figure 5.

Figure 5 – Memory Map for First Design – IAP with no Memory Paging

The nomenclature fs0, fs1, csboot0-csboot3, rs0, and csiop in Figure 5 refer to the individual
internal memory segments of the PSD. The main PSD flash memory has a total of eight 16 Kbyte
segments (fs0-fs7). The secondary PSD flash memory has a total of four 8 Kbyte segments
(csboot0-csboot3). The 2 Kbyte PSD SRAM has a single segment (rs0). The internal PSD
control registers lie in a 256-byte address space named csiop. There is also an external memory
chip-select in this example, cslcd, that is used for the LCD module. These PSD memory elements
are placed at the desired locations within the system memory map by pointing and clicking
choices within PSDsoft Express software.

FFFF

0000

4000

8000

C000

2000

80C32 Regs/SRAM

Program Space Data Space

fs0

fs1

6000

fs0

fs1

1FFF

3FFF

5FFF

7FFF

BFFF

0000 - 00FF
0200 - 02FFcsiop, PSD cntl regs
0300 - 03FF
0400 - 1FFF

cslcd, ext LCD chip sel

2000 - 27FF

nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

2800

8000
7FFF

C000
BFFF

FFFF

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

csboot3
8K bytes PSD

Secondary Flash

csboot2
8K bytes PSD

Secondary Flash

csboot1
8K bytes PSD

Secondary Flash

csboot0
8K bytes PSD

Secondary Flash

IAP loader code
gets programmed
here by JTAG-ISP

or conventional
programmer tool.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 7

With the memory arrangement of Figure 5, the 80C32 may perform IAP by executing from the
secondary flash segments (csboot0 – csboot3) while erasing and programming the main flash
segments (fs0 and fs1). The secondary flash memory is initially programmed though JTAG-ISP
or other programming devices with firmware containing the following:

• 80C32 reset vector and initialization routines
• 80C32 interrupt vectors and service routines
• I/O management routines
• IAP loader code.

At power-on or after reset, the 80C32 boots from secondary flash memory, runs a checksum of
the main flash memory, programs and verifies main flash via the UART if necessary, then
execution jumps to main flash memory.

Notice that the portion of the memory map assigned to the secondary PSD flash memory
(csboot0 – csboot3) is quite large, 32 Kbytes. Usually, IAP loader code will fit within less than 8
Kbytes of memory. You may want to designate less secondary flash memory and more main
flash memory in your initial design. However, you’ll see how all of the large secondary memory
in this design is used very efficiently as you proceed on to the second and third designs in this
document.

The segments of main PSD flash memory (fs0 and fs1) reside in both Program space and Data
space simultaneously while the secondary PSD flash memory segments (csboot0 – csboot3)
reside in Program space only, as seen in the memory map of Figure 5. This is done to allow the
80C32 to write to Program storage during IAP. Otherwise, the 80C32 cannot write code to flash
memory if it resided in Program space only. PSD silicon architecture and PSDsoft Express allow
this kind of flexibility. You will see how to designate the initial configuration of Program space
and Data space and you will learn in the second and third designs how to make the 80C32
change the definition of Program space and Data space on the fly for advanced IAP techniques.

3.2 PSDsoft Express Design Entry

Highlights of the design entry will be given here. The steps are simple and navigation through
PSDsoft Express is easy. Invoke PSDsoft Express and follow along if you wish.

3.2.1 Invoke PSDsoft Express and set up your project.

• Start PSDsoft Express.
• Create a new project.
• Select your project folder and name the project (in this example, name the project

‘simple32’ in the folder PSDexpress\my_project).
• Select an MCU. In this example, we’re using a Philips 80C32.
• Select a PSD913F2 and a 52-pin PLCC package.
• Select the main PSD flash memory to reside in both Program and Data space.
• Select the secondary PSD flash memory to reside in Program space only.

Based on these selections, at power-up and after reset, the main PSD flash memory will reside in
both Program and Data space simultaneously, while the secondary PSD flash memory will reside
in Program space only. This simple combination allows IAP.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 8

This is what the screen should look like after you’ve made the selections:

Click OK. Now you will be asked if you want to use the Design Assistant or a pre-defined
template. Choose Design Assistant. This exercise in the Design Assistant will help you become
familiar with the design flow. In the future, you may choose to use a template which will make
many of the choices for you, based on your selection of MCU and PSD.

Always reference the main flow diagram shown below to help you navigate through the design
process. Clicking on individual boxes within the flow diagram will invoke a process. A box
shadowed in red identifies the next process that needs to be completed. PSDsoft Express will
automatically invoke the next required process only the first time though a design. When you
reenter an existing design, you must choose the next process that you wish to enter from the
design flow diagram. If you invoke a process that invalidates other processes downstream, the
gray boxes indicate which processes must be invoked again, and the red shadow indicates which
process to invoke first.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 9

3.2.2 PSD Pin Definition

Next you will see the Pin Definition Screen which allows you to define each PSD pin function
on a point and click basis. Notice that all of the PSD pins that connect to the 80C32 are already
defined for you. You need only define the remaining pins. For this example, we’ll configure the
PSD to use:

• Two pins on Port A to drive control signals to the LCD module.
• Four pins on Port B as general purpose MCU I/O.
• One pin on Port B as a chip-select output for the LCD module.
• Six pins on Port C as JTAG interface signals for ISP.

Click on pin pa0, type in signal name of “rwlcd”, click on ‘MCU I/O’ in the ‘Other’ category,
then ‘Add’ or ‘Update’. This will produce an output controlled by MCU firmware at run-time,
which controls the LCD module read/write input. The 80C32 will control this output signal by
writing PSD control registers at run-time. These PSD control registers reside at various address
offsets from the base address designated as “csiop”. In a later section of this document you will
see how to place csiop in your system memory map. The signal rwlcd should be routed to the
LCD module on the circuit board as shown in the schematic of Figure 4.

This is what the screen should now look like:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 10

Now click pa1, name the signal “rslcd”, click ‘MCU I/O mode’ in the ‘Other’ category, and click
‘Add’ or ‘Update’. This will produce another output controlled by MCU firmware at run-time,
which controls the LCD module register select input. This scheme to control the LCD module
allows a fast MCU to run with a slow LCD module. The screen should now look like this:

Now click pb0, name the signal “mcuio0”, click ‘MCU I/O mode’ in the ‘Other’ category, and
click ‘Add’ or ‘Update’. Repeat for pins pb1, pb2, and pb3, giving names mcuio1, mcuio2, and
mcuio3 respectively. This creates four I/O pins on port B that can be set, cleared, and read by the
80C32 accessing PSD control registers at runtime (register base address at “csiop”). The screen
should have the following look:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 11

Next click pin pb7, name it “cslcd”, choose ‘External chip-select – Active-Hi’. Click ‘Add’ or
‘Update’. This designates pin pb7 as a chip-select output for the LCD module. See below:

Finally, set up six pins on Port C for JTAG-ISP. Four standard JTAG pins are defined by default
(tms, tck, tdi, tdo). For this example, add two more JTAG signals, tstat and terr, to speed the ISP
process (see App Note 54 to learn why it is faster with six pins). Click on pin pc3, choose
‘Dedicated JTAG – TSTAT’ then click ‘Add’ or ‘Update’. The signal name is automatically
filled in. Also, the signal TERR on pin pc4 is automatically added since tstat and terr must be
used as a pair. The screen should now look like this:

That’s all there is to it. Click ‘View’ to see a summary, click ‘Next>>’ to exit the Pin Definition.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 12

3.2.3 System Memory Map: PSD Page Register and Chip Select Definitions.

Now that the PSD pins are defined, you will need to define the system memory map. This is
accomplished by defining all the chip-selects in the system (both internal to the PSD and external
chip-selects), and also defining the function of the PSD page register.

The three memories inside the PSD are individually selected segment-by-segment when MCU
addresses are presented to the Decode PLD (DPLD). Each internal PSD memory segment has its
own individual chip-select signal name. For example, the main PSD flash memory has eight
individual chip-selects (one for each sector) named fs0 – fs7. See the PSD9XXF data sheet for
details. Each PSD memory segment must be defined in PSDsoft Express if it is to be accessed by
the MCU.

For this example, we must define the internal PSD memory segment chip-selects: fs0, fs1,
csboot0 - csboot3, rs0, and csiop to match the memory map of Figure 5. The external chip-select
for the LCD module, cslcd, must also be defined, as shown in Figure 5.

In many 80C32 system designs, memory paging is used to address more than 64 Kbytes of
address space. However, for this simple design, no paging is used so no PSD page register bits
need to be defined.

The following Page Register Definition screen should be present on your monitor, just click
‘Next >>’ since we are not using memory paging in this first design example.

Now define the internal and external chip-selects. Start with the internal chip-select for PSD
SRAM, which is “rs0”. Then enter start and stop MCU addresses to match the memory map of
Figure 5. Additional signal qualifiers (80C32 control signals psen, rd, wr, ale) are NOT needed

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 13

for internal PSD memory chip-selects as this is taken care of in silicon. The screen should look
like the following:

Next, define the chip-select for the base address of the internal PSD control registers by clicking
on “csiop” in the left side of the screen. Enter the address range as shown:

 Continue to define internal PSD memory chip-selects for the main flash memory segments fs0
and fs1, and then the secondary flash memory segments csboot0 – csboot3. Use Figure 5 as a
guide for address ranges. Again, no signal qualifiers are needed for internal PSD memory chip-
selects. This is what the screen should look like for each chip-select:

fs0:

fs1:

csiop:

rs0:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 14

csboot0:

csboot2:

csboot1:

csboot3:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 15

Finally, define the external chip-select for the LCD module, “cslcd’. This chip-select is different
for two reasons. First, it is an external chip-select that does not activate any memory element
inside the PSD because the signal “cslcd” is output on a PSD I/O pin. And second, this chip-
select requires qualifiers, meaning that this logic signal is true only for a given MCU address
range AND only when one of two other another signals are active.

In this design, “cslcd” is true only when the MCU presents an address in the range of 0300 to
03FF hex AND when either the 80C32 control signal “_rd” is true, OR when 80C32 signal
“_wr” is true. To create this logic, enter information as shown in the screen below. Since both
signals, “_rd” and “_wr”, are active low as they leave the 80C32, the logical NOT operator (!) is
used when they are specified as qualifiers.

Signal qualifiers may be added by setting the cursor where you want the signal name to go then
just double click on the signal name in the list of qualifiers.

Click ‘Done’.

3.2.4 Additional PSD Configuration

Now you should see the main flow diagram again. Click on the box ‘Additional PSD
Configuration’. This is where you may choose to set the security bit to prevent a device
programmer from examining or copying the contents of the PSD. You can also click through the
other sheets on this screen to set the JTAG USERCODE value and set sector protection on PSD
Non-Volatile memory segments.

cslcd:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 16

3.2.5 C Code Generation

You can take advantage of the low level C code drivers that are generated by PSDsoft Express
for accessing memory elements within the PSD by clicking on the ‘C code Generation’ box in
the design flow window. ANSI C code functions and headers are generated for you to paste into
your 80C32 C compiler environment. Just tailor the code to meet your system needs and
compile. C code generation can be performed anytime after a project is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the
header files and the C source file to be written, and name the C source file. Select the categories
of functions that you would like to include, then click “Generate”. Three files will be written to
your specified folder(s):

• <your_specified_name>.c ….ANSI-C source for all of the selected functions
• psd913F2.h ANSI-C ……..header file to define particular PSD registers
• map913F2.h ANSI-C …….header file to define locations of system memory

elements (Main and Secondary Flash, PSD registers, etc.).

Notice that you do not have a choice to rename the two generated header files. This is because
those header files are specified by name within the generated C function source file. If you edit
the names of the generated header files, be sure to edit the generated C function source file to
match the new header file names.

The three generated files may now be tailored and integrated into your 80C32 compiler
environment. The file psd913F2.h contains a #define statement for each individual C function
within the <your_specified_name>.c file. Edit psd913F2.h and simply remove the comment
delimiters (//) from the #define statement for each generated C function that you would like to be
compiled with the rest of your C source code.

There are also coded examples available. Click on the ‘Coded Examples’ tab at the top of the C
Code Generation screen. This sheet contains several examples that you may use as a basis for
building your own C code application. These are complete projects (main, functions, and
headers) targeted toward a particular MCU. You may copy these files to some folder to browse
them for ideas, or cut and paste sections from the examples into your own MCU cross-compiler
environment.

3.2.6 Merging MCU Firmware

Now that all PSD pins and internal configuration settings have been defined, PSDsoft Express
will create a single object file (*.obj) that is a composite of your 80C32 firmware and the PSD
configuration. FlashLINKTM, PSDpro, and third party programmers can use this object file to
program a PSD device. PSDsoft Express will create simple32.obj for this design example.

During this merging process, PSDsoft Express will input firmware files from your 80C32
compiler/linker in S-record or Intel HEX format. It will map the content of these files into the
physical memory segments of the PSD according to the choices you made in the ‘Chip Select
Equations’ screen. This mapping process translates the absolute system addresses inside 80C32
firmware files into physical internal PSD addresses that are used by a programmer to program

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 17

the PSD. This address translation process is transparent. All you need to do is type (or browse)
the file names that were generated from your 80C32 linker into the appropriate boxes and
PSDsoft Express does the rest. You can specify a single file name for more than one PSD chip-
select, or a different file name for each PSD chip-select. It depends on how your 80C32 linker
has created your firmware file(s). For each PSD chip-select in which you have specified a
firmware file name, PSDsoft Express will extract firmware from that file only between the
specified start and stop addresses, and ignore firmware outside of the start and stop addresses.

Click on ‘Merge MCU Firmware’ in the main flow diagram. First you will notice that PSDsoft
Express will “Fit” your PSD configuration to the silicon architecture of the PSD. After the fitting
process is complete, you’ll see this screen:

In the left column are individual PSD memory segment chip-selects (FS0, FS1, etc). The next
column shows the logic equations for selection of each internal PSD memory segment. These
equations reflect the choices that you made while defining PSD internal chip-select equations in
an earlier step. In the middle of the screen are hexadecimal start and stop addresses that PSDsoft
Express has filled in for you based on your chip-select equations. On the right are fields to enter
(browse) the MCU firmware files.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 18

Select ‘Intel Hex Record’ for ‘Record Type’ as shown. Now scroll down to the bottom until you
see CSBOOT0. Use the ‘Browse’ button and select the firmware file,
PSDexpress\examples\isp_8032.hex. Now do the same for CSBOOT1. The screen should look
like this:

This specification places firmware in secondary PSD flash memory segments csboot0 and
csboot1. PSDsoft Express will extract any firmware that lies inside the file isp_8032.hex
between MCU addresses 0000 and 1FFF and place it in PSD memory segment csboot0. It will
also extract any firmware that lies inside the file isp_8032.hex between MCU addresses 2000
and 3FFF and place it in PSD memory segment csboot1. Click OK to generate the composite
object file, simple32.obj.

Note: The file isp_hc32.hex will run on the DK900 development board from Waferscale, and
display some messages on the LCD screen to indicate a successful ISP session. For your own
prototype project, create a simple firmware file that configures your system hardware and
performs rudimentary tasks to check out your new hardware. In this design example, there are 32
Kbytes available in secondary flash memory segments csboot0 – csboot3, which is more than
enough for this simple boot and test code. After your new hardware is proven, you can add more
code to the boot area to for advanced tasks, including IAP of main PSD flash memory.

3.2.7 Programming the PSD

The simple32.obj file can be programmed into the PSD by one of three ways:
• The Waferscale FlashLINKTM JTAG cable, which connects to the PC parallel port.
• The Waferscale PSDpro device programmer, which also uses the PC parallel port.
• Third-party programmers, from Stag, Needhams, and others. See our web site at

www.waferscale.com for compatible third-party programmers.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 19

3.2.7.1 Programming with FlashLINKTM

Connect the FlashLINKTM JTAG-ISP cable to your PC parallel port. Click the ‘JTAG-ISP’ box
in the design flow window. You should see the following screen:

This window enables you to perform JTAG-ISP operations and also offers a loop back test for
your FlashLINKTM cable. If this is your first use, test your FlashLINKTM cable and PC parallel
port by clicking the ‘HW Setup’ button, then click ‘LoopTest’ button and follow the directions.

Now let’s define our JTAG-ISP environment. For this example project, PSDsoft Express should
have filled in the folder and filename of the object file to program, the PSD device, and the
JTAG-ISP operation, as shown in the screen above. For this design example, we have chosen to
use all six JTAG-ISP pins (instead of four). Be sure to indicate “6 pins” as shown above to
achieve minimum JTAG-ISP programming times (refer to Application Note 54 for details on six
pins vs. four)

To begin programming, connect the JTAG cable to the target system, power-up the target
system, and click ‘Execute’ on the JTAG screen. The Log window at the bottom of the JTAG
screen shows the progress. Programming should just take a few seconds.

There are optional choices available when the ‘Properties..” button is clicked. One choice
includes setting the state of all non-JTAG PSD I/O pins during JTAG-ISP operations (make them
inputs or outputs). The default state of all non-JTAG PSD I/O pins is “input”, which is fine for
this design example. The other choice allows you to specify a USERCODE value to compare
before any JTAG-ISP operation starts. This is typically used in a manufacturing environment
(see on-screen description for details).

After JTAG-ISP operations are completed, you can save the JTAG setup for this programming
session to a file for later use. To do so, click on the ‘Save’ button. To restore the setup of a
different previous session, click the ‘Browse..’ button.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 20

3.2.7.2 Programming with PSDpro
Connect the PSDpro device programmer to your PC parallel port per the installation instructions.
Click on the ‘Conventional Programmer’ box in the design flow window. You will see this:

If this is the first use of the PSDpro, you’ll need to designate the PSDpro as the device connected
to your parallel port. To do this, click the “SET H” icon button at the top of the “Conventional
Programming” screen and choose the PSDpro. Then click on the ‘H TEST’ icon to perform a test
of the PSDpro and the PC parallel port. After testing, place a PSD913F2 into the socket of the
PSDpro and click on the ‘Program’ icon (the simple32.obj file is automatically loaded when this
process is invoked). The messaging of PSDsoft will inform you when programming is complete.

Note: This window is also helpful even if you do not have a PSDpro device programmer. Use this
window to see where the “Merge MCU Firmware” utility has placed 80C32 firmware within
physical memory of the PSD. For this design example, click on the secondary PSD flash memory
icon “Fb” in the tool bar to see the 80C32 reset vector at absolute MCU addresses 0001h and
0002h, which translates to direct physical PSD addresses 20001h and 20002h respectively. To see
how all of your 80C32 absolute addresses translated into direct physical PSD memory addresses,
veiw the report that PSDsoft generates under ‘Reports’ from the main toolbar, then select
‘Address Translation Report’. Within the report, the ‘start’ and ‘stop’ addresses are the absolute
MCU system addresses that you have specified. The addresses shown in square brackets are the
direct physical addresses used by a device programmer to access the memory elements of the
PSD in a linear fashion (a special device programming mode that the MCU cannot access).

4 Second Design Example – IAP with Memory Paging

This second design example builds upon the first by adding memory paging which allows the
80C32 to access all of the memory resident on the PSD913F2. The physical connections between
the 80C32 and PSD913F2 do not change, but the memory map, PSD page register definition, and
some PSD chip-select equations do change. A PSD913F2 is still used in this example, but the

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 21

other members of the EasyFLASHTM family may be used instead with minor changes. See the
PSD9XXF data sheet for a comparison of family members.

4.1 Memory Map

The PSD913F2 provides 128 Kbytes of main flash memory, 32 Kbytes of secondary flash
memory, and 2 Kbytes SRAM. In this second design, we’ll use all of this memory. Since the
80C32 cannot address more than 64 Kbytes of address space directly, we will use paging (or
banking) to access all 162 Kbytes of memory. The PSD has a built-in page register for this
purpose. Many MCU cross-compilers support paging today.

Figures 6 and 7 represent the system memory maps for this design. These maps have paged
memory in the upper address range of 8000 to FFFF hex, and common memory in the lower
range of 0000 to 7FFF hex. In Data space, the 80C32 has access to system SRAM and I/O
regardless of what memory page is active. In Program space, the firmware in the secondary PSD
flash memory (csboot0 – csboot3) is available to the 80C32 regardless of what memory page is
active. This common Program area holds the following:

• 80C32 reset vector and initialization routines
• 80C32 interrupt vectors and service routines
• I/O and memory page management routines
• SRAM variables and SRAM stack
• IAP loader code
• Anything else that must be accessible no matter what memory page is selected.

Figure 6 represents the system memory map at power-up and after reset. This map is also valid
during IAP. Notice that all of the main PSD flash memory is initially in Data space so that the
80C32 can write to it during IAP. Also notice that all of the secondary PSD flash memory is
initially in Program space so the 80C32 can execute code from it during IAP. The choice for this
initial placement of memory in Program or Data space is made within PSDsoft Express (‘Define
MCU and PSD’ in flow diagram).

Figure 7 represents the system memory map after IAP is complete. All of main PSD flash
memory has moved to Program space. The PSD has a control register (named the VM register)
that allows the 80C32 to change the definition of Program space and Data space at run-time for
IAP purposes. This VM register is accessed at an address offset from the base address, “csiop”.

Sequence of events for IAP:
• Fig 6 - at power on or after reset, the 80C32 boots from secondary PSD flash memory
• Fig 6 - 80C32 runs a checksum of the main PSD flash memory in Data space
• Fig 6 - If needed, 80C32 programs and verifies main PSD flash in Data space via the UART
• Fig 6 - 80C32 writes 06 hex to the VM register to place main PSD flash into Program space
• Fig 7 – main flash has moved to program space as a result of writing 06 hex to VM register
• Fig 7 - 80C32 can now execute application code from either main or secondary PSD flash

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 22

Figure 6 – Memory Map at Boot-Up or Reset and During IAP.
PSD VM register initially 12 hex, Main PSD flash in Data space

Figure 7 – Memory Map just after 80C32 wites 06 hex to PSD VM register .
IAP complete, main PSD flash moves to Program space

FFFF

0000

4000

8000

2000

80C32 Regs/SRAM

Program Space Data Space

fs0

fs1

6000

1FFF

3FFF

5FFF

7FFF

csiop, PSD cntl r egs

cslcd, ext LCD chip sel
nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

csboot3
8K bytes PSD

Secondary Flash

csboot2
8K bytes PSD

Secondary Flash

csboot1
8K bytes PSD

Secondary Flash

csboot0
8K bytes PSD

Secondary Flash

IAP lo ader co de
gets progra mmed
here by JTA G-I SP

or conventional
pro gra mmer tool.

80C32 Regs/SRAM

fs6

fs7

0000 - 00FF
0200 - 02FFcsiop, PSD cntl r egs
0300 - 03FF
0400 - 1FFF

cslcd, ext LCD chip sel

2000 - 27FF

nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

2800

8000
7FFF

C000
BFFF

FFFF

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

80C32 Regs/SRAM

fs2

fs3

csiop, PSD cntl r egs

cslcd, ext LCD chip sel
nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

80C32 Regs/SRAM

fs4

fs5

csiop, PSD cntl regs

cslcd, ext LCD chip sel
nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

nothing mapped

Common
 Memory

Across All
Data Pages

Page X Page 0 Page 1 Page 2 Page 3

FFFF

0000

4000

8000

2000

Program Space Data Space

6000

1FFF

3FFF

5FFF

7FFF
csb oot3

8K byte s PSD
Secondary Fla sh

csb oot2
8K byte s PSD

Secondary Fla sh

csb oot1
8K byte s PSD

Secondary Fla sh

csb oot0
8K byte s PSD

Secondary Fla sh
80C32 Regs/SRAM 0000 - 00FF

0200 - 02FFcsiop, PSD cntl re gs
0300 - 03FF
0400 - 1FFF

cslc d, ext L CD chip se l

2000 - 27FF

noth in g ma pped

rs0, 2 K byte s PSD SRAM

noth in g ma pped

2800

C000
BF FF

FFFF

Common
 Memory

Across All
Program

Pages

Page 0 Page 1 Page 2 Page 3 Page X

csboot3
8K b yte s PSD

Seco ndary Fla sh

csboot2
8K b yte s PSD

Seco ndary Fla sh

csboot1
8K b yte s PSD

Seco ndary Fla sh

csboot0
8K b yte s PSD

Seco ndary Fla sh

csboot3
8K b yte s PSD

Seco ndary Fla sh

csboot2
8K b yte s PSD

Seco ndary Fla sh

csboot1
8K b yte s PSD

Seco ndary Fla sh

csboot0
8K b yte s PSD

Seco ndary Fla sh

csboot3
8K b ytes PSD

Seco ndary Fla sh

csboot2
8K b ytes PSD

Seco ndary Fla sh

csboot1
8K b ytes PSD

Seco ndary Fla sh

csboot0
8K b ytes PSD

Seco ndary Fla sh

fs6

fs7
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

fs0

fs1

fs2

fs3

fs4

fs5
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 23

Your system design may require that you operate application code completely from main PSD
flash memory after IAP is complete. This means swapping the secondary PSD flash memory
(containing IAP loader code) out of Program space, and replacing it with main PSD flash
memory (containing application code). This is explained in the third design example.

4.2 PSDsoft Express Design Entry

To implement the memory map with paging techniques shown in Figures 6 and 7, invoke
PSDsoft Express, open the project “simple32” from the first design example. Now pull down the
menu ‘Project’ from the top of the screen, and select ‘Save As’. For this second design example,
save the first project under the new name “page32”.

Click on the ‘Define PSD and MCU’ box in the design flow diagram. Change the settings for
initial placement of Program and Data space in Step 3 as shown here, then click OK:

Now click on the Pin Definition box in the design flow diagram. Click OK to get to the Page
Register Definition screen since no pin assignment needs to be changed for this second design.

There are a total of four memory pages used in Figures 6 and 7, so you will need to define two
PSD page register bits for paging (22 = 4). To do so, click on pgr0 and pgr1 as shown below,
then click ‘Next>>’.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 24

The chip-select equations for PSD SRAM (rs0), PSD control registers (csiop), and the external
LCD module (cslcd) do not change from the first design example. Only chip-selects for main
PSD flash memory will change because they are now paged in this design. Define the internal
PSD main flash memory chip-select signals to implement the memory map of Figures 6 and 7.
The following illustrates how the chip-selects will look when you enter their definitions:

Continue defining fs4 and fs5 on memory page 2, and fs6 and fs7 on memory page 3. The chip-
selects for csboot0 through csboot3 did not change from the first design example because no
page number was specified in their definition. This means they will appear to the 80C32 on any
memory page as indicated in Figures 6 and 7. Click ‘Done’ to get the main flow diagram.

Click the ‘Merge MCU Firmware’ box in the design flow diagram. You will see an informational
dialog box pop up that indicates memory paging is used and that the firmware file(s) you specify
should be set up to handle paging. Click OK, since for this design example the firmware that
would run the IAP process is not paged. It resides in csboot0 and csboot1 of the PSD and is
active on all pages (independent of what memory page is selected).

Click the “More Info” button in Step 1 of the Merge Firmware screen if your future 80C32 system design
will execute code from different pages, and that code will be programmed into the PSD with a device
programmer (for example, you specify filename(s) in this screen that go to PSD memory segments that are
paged).

fs0:

fs1:

fs2:

fs3:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 25

Now specify the name of the 80C32 firmware file to place into the secondary flash memory
segments csboot0 and csboot1. This can be any file that you create to implement IAP with
paging. No firmware filename needs to be designated for the main PSD flash segments (fs0 –
fs7) since they will be programmed by the 80C32 during IAP. Click OK in the merging screen to
create a composite object file for programming. Program the PSD913F2 as in section 3.2.7.

5 Third Design Example – Advanced IAP with Paging & Swapping

The third design example adds enhanced IAP features. The physical connections between the
80C32 and PSD913F2 do not change, but the memory map, PSD page register definition, and
some PSD chip-select definitions do change. This enhanced design gets the most out of the 64
Kbyte address space that the 80C32 can access directly. This means swapping the IAP loader
code out of Program space after IAP is complete, and replacing it with application code, leaving
the maximum amount of address space available for the application. Swapping out the IAP
loader code not only frees up address space for application code, it also allows the software
designer the option of having two sets of interrupt vectors and associated service routines; one
set during IAP, and a different set after IAP during the normal application. In addition, this
swapping technique allows the IAP loader code itself to be programmed in the field while the
80C32 operates out of main PSD flash memory. Additionally, this design allows half of the
secondary PSD flash memory to be used for IAP loader code, and the other half for general data.

To actually use this third design, purchase the DK-900 kit from www.waferscale.com for $99 USD. It
includes all hardware and firmware, and also a PC Windows program to implement IAP with a UART.

5.1 Memory Map

The memory map is a sequence of four steps shown in Figures 8 through 11. Figure 8 is the
memory map at system power-on or system reset. The swap bit is defined as one of the eight
internal PSD page register bits. The swap bit is an example of how page register bits can be
implemented for uses other than memory paging. Here’s the sequence after power-up or reset:
• Fig 8: 80C32 boots from secondary flash memory (csboot0/csboot1) at address 0000
• Fig 8: 80C32 performs a checksum of main flash memory while it resides in Data space
• Fig 8: 80C32 downloads to main flash from host computer if needed and validate contents
• Fig 8: 80C32 writes 06 hex to PSD VM register
• Fig 9: Main Flash memory has moved to Program space because of 06 hex in VM register
• Fig 9: 80C32 sets swap bit to logic one (writes to PSD page register)
• Fig 10: Secondary flash memory has moved out of MCU address range 0000 to 7FFF and

main flash memory has moved into its place because of the swap bit. This swapping action is
implemented by qualifying the chip-selects with the swap signal.

• Fig 10: 80C32 writes 0C hex to PSD VM register
• Fig 11: Secondary flash memory has moved to Data space because of 0C hex in VM register.
Figure 11 shows the final memory map. At this point, the 80C32 can download new IAP loader
code to csboot0/csboot1 if needed. Another one of the eight PSD page register bits is used for
logic in this design, named unlock. The 80C32 must first set the unlock bit to logic one before
updating IAP loader code. All page register bits are cleared to zero at power-up or at reset.

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 26

Figure 8 – Memory Map at Boot-Up or Reset and During IAP.
PSD VM register = 12 hex, swap = 0, unlock = 0

Figure 9 –Memory Map just after 80C32 writes 06 hex to PSD VM register.
Main PSD flash moves to Program space, swap = 0, unlock = 0

FFFF

0000

4000

2000

80C32 Regs/SRAM

Program Space Data Space

fs0

fs1

1FFF

3FFF

csiop, PSD cntl r egs

cslcd, ext LCD chip sel
nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

csboot1
8K bytes PSD

Secondary Flash

csboot0
8K bytes PSD

Secondary Flash

IAP lo ader co de
gets progra mmed
here by JTA G-I SP

or conventional
pro gra mmer tool.

80C32 Regs/SRAM

fs6

fs7

0000 - 00FF
0200 - 02FFcsiop, PSD cntl r egs
0300 - 03FF
0400 - 1FFF

cslcd, ext LCD chip sel

2000 - 27FF

nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

2800

8000
7FFF

C000
BFFF

FFFF

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

80C32 Regs/SRAM

fs2

fs3

csiop, PSD cntl r egs

cslcd, ext LCD chip sel
nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

16K bytes PSD
Main Flash

16K bytes PSD
Main Flash

80C32 Regs/SRAM

fs4

fs5

csiop, PSD cntl regs

cslcd, ext LCD chip sel
nothing mapped

rs0 , 2K bytes PSD SRAM

nothing mapped

16K bytes PSD
Main Flash

16K bytes PSD
Main Flashnothing mapped

Common
 Memory

Across All
Data Pages

Page X Page 0 Page 1 Page 2 Page 3

FFFF

0000

4000

8000

2000

Program Space Data Space

1FFF

3FFF

7FFF

csb oot1
8K byte s PSD

Secondary Fla sh

csb oot0
8K byte s PSD

Secondary Fla sh
80C32 Regs/SRAM 0000 - 00FF

0200 - 02FFcsiop, PSD cntl re gs
0300 - 03FF
0400 - 1FFF

cslc d, ext L CD chip se l

2000 - 27FF

noth in g ma pped

rs0, 2 K byte s PSD SRAM

noth in g ma pped

2800

C000
BF FF

FFFF

Common
 Memory

Across All
Program

Pages

Page 0 Page 1 Page 2 Page 3 Page X

csboot1
8K b yte s PSD

Seco ndary Fla sh

csboot0
8K b yte s PSD

Seco ndary Fla sh

csboot1
8K b yte s PSD

Seco ndary Fla sh

csboot0
8K b yte s PSD

Seco ndary Fla sh

csboot1
8K b ytes PSD

Seco ndary Fla sh

csboot0
8K b ytes PSD

Seco ndary Fla sh

fs6

fs7
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

fs0

fs1

fs2

fs3

fs4

fs5
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

noth in g ma pped noth in g ma pped noth in g ma pped noth in g ma pped

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 27

Figure 10 – Memory Map just after 80C32 sets swap = 1.
IAP loader code is swapped away, main PSD flash takes its place.VM reg = 12, unlock = 0

Figure 11 – Memory Map just after 80C32 writes 0C hex to PSD VM register.
Secondary PSD flash memory moves to Data space. swap = 1, unlock = 0

FFFF

0000

4000

8000

Program Space Data Space

3FFF

7FFF

80C32 Regs/SRAM 0000 - 00FF
0200 - 02FFcsiop, PSD c ntl r egs
0300 - 03FF
0400 - 1FFF

cslc d, ext L CD c hip s el

2000 - 27FF

noth in g m apped

rs0 , 2 K b yte s PSD SRAM

noth in g m apped

2800

C000
BF FF

FFFF

Common
 Memory

Across All
Program

Pages

Page 0 Page 1 Page 2 Page 3 Page X

fs0

fs1
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

fs0

fs1
16K b ytes PSD

Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

fs0

fs1
16K b ytes PSD

Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

fs0

fs1
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

csboot3
8K b yte s PSD

Secondary Flash

csboot2
8K b yte s PSD

Secondary Flash

csboot1
Appears if U NLOCK = 1

csboot0
Appears if U NLOCK = 1

noth in g m apped

fs2

fs3

fs4

fs5

fs6

fs7
16K b ytes PSD

Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

DF FF

E000

BF FF

C000

9FFF

A000

DF FF

8000

FFFF

0000

4000

8000

Program Space Data Space

3FFF

7FFF

80C32 Regs/SRAM 0000 - 00FF
0200 - 02FFcsiop, PSD cntl re gs
0300 - 03FF
0400 - 1FFF

cslc d, ext L CD chip se l

2000 - 27FF

noth in g ma pped

rs0, 2 K byte s PSD SRAM

noth in g ma pped

2800

C000
BF FF

FFFF

Common
 Memory

Across All
Program

Pages

Page 0 Page 1 Page 2 Page 3 Page X

csb oot3
8K byte s PSD

Secondary Fla sh

csb oot2
8K byte s PSD

Secondary Fla sh

fs0

fs1
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

fs0

fs1
16K b ytes PSD

Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

fs0

fs1
16K b ytes PSD

Ma in Fla sh

16K b ytes PSD
Ma in Fla sh

fs0

fs1
16K b yte s PSD

Ma in Fla sh

16K b yte s PSD
Ma in Fla sh

csboot3
8K b yte s PSD

Seco ndary Fla sh

csboot2
8K b yte s PSD

Seco ndary Fla sh

csboot3
8K b yte s PSD

Seco ndary Fla sh

csboot2
8K b yte s PSD

Seco ndary Fla sh

csboot3
8K b ytes PSD

Seco ndary Fla sh

csboot2
8K b ytes PSD

Seco ndary Fla sh

E000

DF FF

csb oot1
8K byte s PSD

Secondary Fla sh

csb oot0
8K byte s PSD

Secondary Fla sh

csboot1
8K b yte s PSD

Seco ndary Fla sh

csboot0
8K b yte s PSD

Seco ndary Fla sh

csboot1
8K b yte s PSD

Seco ndary Fla sh

csboot0
8K b yte s PSD

Seco ndary Fla sh

csboot1
8K b ytes PSD

Seco ndary Fla sh

csboot0
8K b ytes PSD

Seco ndary Fla sh

A000

9FFF

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 28

In this final configuration, the 80C32 has available:
• 32 Kbytes of main flash memory in the common area (0000h-7FFFh)
• 96 Kbytes of main flash across three pages of upper memory (8000h-FFFFh)
• 2 Kbytes of SRAM in addition to the SRAM that resides on the 80C32
• 16 Kbytes of secondary flash for general data storage
• 16 Kbytes of secondary flash for IAP loader code.

Each time this 80C32 system gets reset or goes through a power-on cycle, the PSD presents the
memory map of Figure 8 to the MCU, and the boot sequence is repeated.

Note: When the 80C32 is executing code from the secondary PSD flash memory (csboot0 and
csboot1), and then it sets the swap bit, it is very important that the 80C32 firmware linker has set
up “synchronized” code in the segment of main PSD flash memory that replaces the secondary
PSD flash memory. This is necessary to create seamless MCU operation during the actual swap
of memory since the 80C32 is completely unaware that there is a swap going on. It just continues
to fetch opcodes and operands during the memory swap. This requires that the operands and
opcodes in main PSD flash that follow the MCU instructions that actually set the swap bit in the
secondary PSD flash, are continuos. This means that the remainder of the instructions to complete
setting the swap bit is present in main PSD flash memory so there is continuos operation
throughout the memory swapping process. To see example 80C32 code for this, go to the main
flow diagram, then ‘Generate C Code’, then ‘Coded Examples’, then ‘DK-900’.

5.2 PSDsoft Express Design Entry

To implement the advanced memory maps of Figures 8 - 11, invoke PSDsoft Express, open the
project “page32” from the second design example. Now pull down the menu ‘Project’ from the
top of the screen, and select ‘Save As’. For this third design example, save the second project
under the new name “advanc32”. Now click on the ‘Pin Definition’ box in the design flow
diagram. Click “OK” to get to the ‘Page Register Definition’ screen since no pin assignment
needs to be changed for this third design.

You will need to define two additional PSD page register bits to be used for logic. The two page
register bits that were used for memory paging in the second design example stay just as they
are. Define page register bits for logic as shown below, labeling one bit “swap” and the other bit
“unlock”:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 29

Click ‘Next >>’.

The chip-select equations for PSD SRAM (rs0), PSD control registers (csiop), and the external
LCD module (cslcd), and most of the internal PSD memory segments do not change from the
second design example. Only chip-selects for main PSD flash memory segments fs0 and fs1, and
the secondary PSD flash memory segments csboot0 – csboot3 need to change for this third
design because they are affected by memory swapping.

These internal memory chip-selects must be qualified with the page register bit “swap” as shown
below. The secondary PSD memory segments, csboot0 and csboot1, must be additionally
qualified by “unlock” to prevent the MCU from inadvertently writing to IAP boot and loader
code. The following illustrates how the chip-selects will look when you enter their definition:

fs0:

fs1:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 30

csboot0:

csboot1:

csboot2:

csboot3:

 WSI Inc. - Fremont CA - 800-832-6974 - waferscale.com 31

Notice that these PSD physical memory segments can appear in more that one MCU address
space depending on the memory page and the “swap” and “unlock” qualifiers. Now the memory
maps of Figures 8 - 11 have been implemented. Click ‘Done’ and you should see the main flow
diagram.

Click the “Merge MCU Firmware” box in the design flow diagram. You will see an
informational dialog box pop up that indicates memory paging is used and that the firmware
file(s) you specify should be set up to handle paging. Click OK, since for this design example
the firmware that would run the IAP process example is not paged. When the MCU is executing
IAP code, it resides in csboot0 and csboot1 of the PSD and is active on all pages (independent of
what memory page is selected).

Click the “More Info” button in Step 1 of the Merge Firmware screen if your future 80C32 system design
will execute code from different pages, and that code will be programmed into the PSD with a device
programmer (for example, you specify filename(s) in this screen that go to PSD memory segments that are
paged).

Now specify the name of the 80C32 firmware file to place into the secondary flash memory
segments csboot0 and csboot1. This can be any firmware file that you create to implement IAP
with paging and swapping.

If you have purchased the DK-900 kit you can use its firmware for IAP. The DK-900 kit also includes a PC
Windows program (Win95, Win8, Win NT) called PSDload that will download (IAP) the PSD913F over a
serial (RS-232) cable. It works directly with the memory map of this third design example. The DK-900 is
$99 USD and can be purchased from www.waferscale.com with a credit card.

No firmware filename needs to be designated for the main PSD flash segments (fs0 – fs7) since
they will be programmed by the 80C32 during IAP. Click “OK” in the merging screen to create a
composite object file for programming. You are now ready to program your PSD913F2. See
section 3.2.7.

6 Conclusion

These examples are just three of an endless number of ways to configure the EasyFLASHTM PSD
for your system. Concurrent memories with a built-in programmable decoder at the segment
level offer excellent flexibility. Also, as you have seen with the swap and unlock bits, the page
register bits do not have to be used just for paging through memory. The ability to enhance your
system does not require any physical connection changes, as everything is configured internal to
the PSD. And finally, the JTAG channel can be used for ISP anytime, and anywhere, with no
participation from the MCU. All of these features are cross-checked under the PSDsoft Express
development environment to minimize your effort to design a flash 80C32 system capable of ISP
and IAP.

7 References

1) PSD9XXF Family Data Sheet
2) Application Note AN054 for detailed use of the JTAG channel

