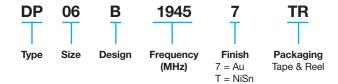
0806 CDMA Diplexer

MLO™ TECHNOLOGY

The 0806 diplexer is a best in class low profile multilayer organic passive device that is based on AVX's patented multilayer organic high density interconnect technology. The MLO™ diplexer uses high dielectric constant and low loss materials to realize high Q passive printed passive elements such as inductors and capacitors in a multilayer stack up. The MLO™ diplexers can support multiple wireless standards such as WCDMA, CDMA, WLAN, and GSM and are less than 0.6mm in thickness. These components are ideally suited for band switching for dual band systems. All diplexers are expansion matched to FR4 thereby resulting in improved reliability over standard Si and ceramic devices.


APPLICATIONS

Multiband applications including WCDMA, WLAN, WiMax, GPS, and cellular bands

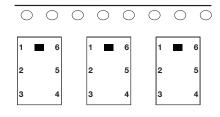
LAND GRID ARRAY ADVANTAGES

- Low Insertion Loss
- Excellent Solderability
- Low Parasitics
- Low Profile

HOW TO ORDER

QUALITY INSPECTION

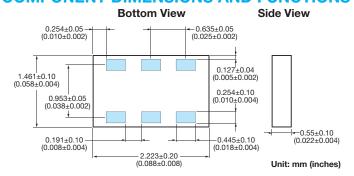
Finished parts are 100% tested for electrical parameters and visual characteristics.


OPERATING TEMPERATURE

-40°C to +85°C

TERMINATION

Finishes available in Ni/Sn, Immersion Sn, Immersion Au and OSP coatings which are compatible with automatic soldering technologies which include reflow, wave soldering, vapor phase and manual.


ORIENTATION IN TAPE

POWER CAPACITY

4.5W Maximum

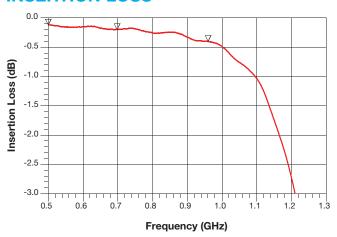
COMPONENT DIMENSIONS AND FUNCTIONS

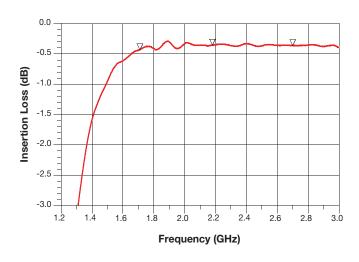
Terminal No.	Terminal Name
1	Low Frequency Port
2	GND
3	High Frequency Port
4	GND
5	Common Port
6	GND

0806 CDMA DIPLEXER SPECIFICATIONS

PART NUMBER: DP06B1945TTR

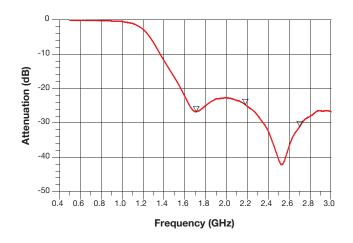
Specification	AVX -MLO™ mm (inches)
Size	2.2 x 1.5 (0.083 x 0.060)
Height	0.55 (0.021)
Volume (mm^3)	1.75
Frequency Range (F1) (MHz)	730 ± 230 MHz
Frequency Range (F2) (MHz)	2200 ± 500 MHz
Insertion Loss (F1, at Fc @ 25°C)	-0.4
Insertion Loss (F1 at Fc) (-40 to 85°C)	- 0.55
Insertion Loss (F2, at Fc @ 25°C)	-0.5
Insertion Loss (F1 at Fc) (-40 to 85°C)	-0.65
Attenuation (F1) at (F2) (dB min)	-22
Attenuation (F2) at (F1) (dB min)	-22
VSWR (Input @ F1)	1.2
VSWR (Input @ F2)	1.6
VSWR (Lowband @ F1)	1.3
VSWR (Highband @ F2)	1.7

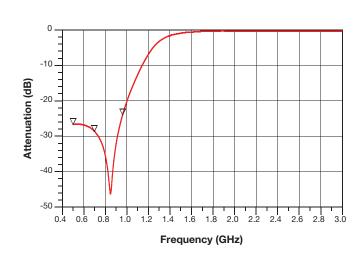




S PARAMETER MEASUREMENTS

INSERTION LOSS


Low Band Insertion Loss


Frequency (GHz)	Insertion Loss (dB)
0.500	0.121
0.698	0.199
0.960	0.400

High Band Insertion Loss

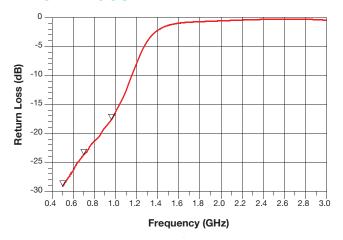
Frequency (GHz)	Insertion Loss (dB)
1.710	0.430
2.180	0.352
2.700	0.360

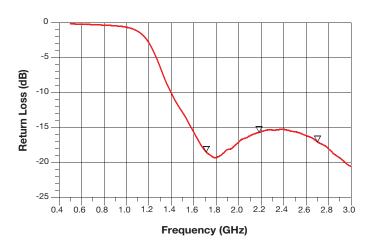
ATTENUATION

Low Band Attenaution

Frequency (GHz)	Attenuation (dB)
1.710	26.726
2.180	24.681
2.700	31.074

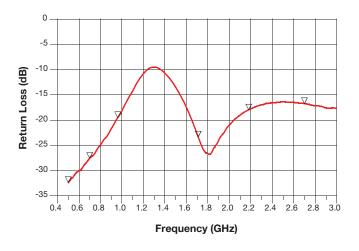
High Band Attenaution


Frequency (GHz)	Attenuation (dB)
0.500	26.671
0.698	28.611
0.960	23.988

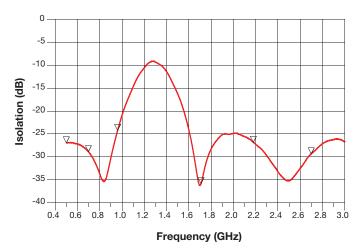


0806 CDMA Diplexer

RETURN LOSS


Low Band Return Loss

Frequency (GHz)	Insertion Loss (dB)
0.500	29.191
0.698	23.723
0.960	17.655


High Band Return Loss

Frequency (GHz)	Insertion Loss (dB)
1.710	18.487
2.180	15.685
2.700	17.037

COMMON RETURN LOSS

ISOLATION

Common Port Return Loss

Frequency (GHz)	Attenuation (dB)
0.500	32.382
0.698	27.566
0.960	19.543
1.710	23.343
2.180	17.958
2.700	16.744

Isolation

Frequency (GHz)	Attenuation (dB)
0.500	26.956
0.698	28.872
0.960	24.238
1.710	35.833
2.180	26.827
2.700	29.338

0806 CDMA Diplexer

AUTOMATED SMT ASSEMBLY

The following section describes the guidelines for automated SMT assembly of MLO™ RF devices which are typically Land Grid Array (LGA) packages or side termination SMT pacages. Control of solder and solder paste volume is critical for surface mount assembly of MLO™ RF devices onto the PCB.

Stencil thickness and aperture openings should be adjusted according to the optimal solder volume. The following are general recommendations for SMT mounting of MLO^{TM} devices onto the PCB.

SMT REFLOW PROFILE

Common IR or convection reflow SMT processes shall be used for the assembly. Standard SMT reflow profiles, for eutectic and Pb free solders, can be used to surface mount the MLO™ devices onto the PCB. In all cases, a temperature gradient of 3°C/sec, or less, should be maintained to prevent warpage of the package and to ensure that all joints reflow properly. Additional soak time and slower preheating time

may be required to improve the out-gassing of solder paste. In addition, the reflow profile depends on the PCB density and the type of solder paste used. Standard no-clean solder paste is generally recommended. If another type of flux is used, complete removal of flux residual may be necessary. Example of a typical lead free reflow profile is shown below.

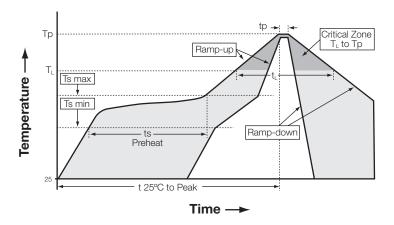


Figure A. Typical Lead Free Profile and Parameters

Profile Parameter	Pb free, Convection, IR/Convection
Ramp-up rate (Tsmax to Tp	3°C/second max.
Preheat temperature (Ts min to Ts max)	150°C to 200°C
Preheat time (ts)	60 – 180 seconds
Time above T _L , 217°C (t _L)	60 – 120 seconds
Peak temperature (Tp)	260°C
Time within 5°C of peak temperature (tp)	10 – 20 seconds
Ramp-down rate	4°C/second max.
Time 25°C to peak temperature	6 minutes max.

