DIGITRON SEMICONDUCTORS

3N211-3N213

DUAL-GATE VHF AMPLIFIER N-CHANNEL - DEPLETION

MAXIMUM RATINGS

Rating	Symbol	3N211 3N212	3N213	Unit
Drain Source Voltage	V _{DS}	27 35		Vdc
Drain Gate Voltage	V _{DG1} V _{DG2}	35 35	40 40	Vdc
Drain Current	I _D	50		mAdc
Gate Current	I_{G1} I_{G2}	±10 ±10		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	360 2.4		mW mW/°C
Total Device Dissipation @ T _c = 25°C Derate above 25°C	P _D	1.2 8.0		Watt mW/°C
Lead Temperature, 1/16" from Seated Surface for 10 seconds	TL	300		°C
Junction Temperature Range	Tı	-65 to +175		°C
Storage Temperature Range	T _{stg}	-65 to +175		°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ unless otherwise noted)

Characteristics		Symbol	Min	Мах	Unit	
OFF CHARACTERISTICS						
Drain Source Breakdown Voltage ⁽¹⁾ ($I_D = 10 \ \mu Adc, V_{G1S} = V_{G2S} = -4.0 \ Vdc$)	3N211, 3N212 3N213	V _{(BR)DSX}	25 30	-	Vdc	
Instantaneous Drain Source Breakdown Voltage ($I_D = 10 \ \mu Adc, V_{G1S} = V_{G2S} = -4.0 \ Vdc$)	3N211, 3N212 3N213	V _{(BR)DSX}	27 35	-	Vdc	
Gate 1 – Source Breakdown Voltage ⁽²⁾ ($I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0$)		V _{(BR)G1S0}	±6.0	-	Vdc	
Gate 2 – Source Breakdown Voltage ⁽²⁾ ($I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0$)		V _{(BR)G2SO}	±6.0	-	Vdc	
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0)$ $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$		I _{G1SS}	-	±10 -10	nAdc µAdc	
		I _{G2SS}	-	±10 -10	nAdc µAdc	
Gate 1 to Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 20 \mu \text{ Adc})$	3N211, 3N213 3N212	$V_{G1S(off)}$	-0.5 -0.5	-5.5 -4.0	Vdc	
Gate 2 Source to Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 20 \mu \text{Adc})$	3N211 3N212, 3N213	$V_{G2S(off)}$	-0.2 -0.2	-2.5 -4.0	Vdc	
ON CHARACTERISTICS						
Zero Gate Voltage Drain Current $^{(3)}$ (V _{DS} = 15 Vdc, V _{G1S} = 0, V _{G2S} = 4.0 Vdc)		\mathbf{I}_{DSS}	6.0	40	mAdc	
SMALL SIGNAL CHARACTERISTICS						
Forward Transfer Admittance $^{(4)}$ (V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, V _{G1S} = 0, f = 1.0 kHz)	3N211, 3N212 3N213	yfs	17 15	40 35	mmhos	
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 1.0 \text{ mAdc}, f = 1.0 \text{ MHz})$		C _{rss}	0.005	0.05	pF	
FUNCTIONAL CHARACTERISTICS						
Noise Figure $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$ $(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211 3N211, 3N213	NF	-	3.5 4.0	dB	

sales@digitroncorp.com www.digitroncorp.com

DIGITRON SEMICONDUCTORS

3N211-3N213

DUAL-GATE VHF AMPLIFIER N-CHANNEL - DEPLETION

ELECTRICAL CHARACTERISTICS (T_A = 25° unless otherwise noted)

Characteristics		Symbol	Min	Max	Unit
FUNCTIONAL CHARACTERISTICS (con't)					
Common Source Power Gain		G _{ps}			
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$	3N211		24	35	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211		29	37	dB
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N213		27	35	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$	3N212	Gc ⁽⁶⁾	21	28	
Bandwidth		BW			
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$	3N211		5.0	12	MU-
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$	3N212		4.0	7.0	MUL
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211, 3N213		3.5	6.0	
Gain Control Gate Supply Voltage ⁽⁵⁾		V _{gg(gc)}			
$(V_{DD} = 18 \text{ Vdc}, \Delta \text{ Gps} = -30 \text{ dB}, \text{ f} = 200 \text{ MHz})$	3N211		-	-2.0	Vdc
$(V_{DD} = 24 \text{ Vdc}, \Delta \text{ Gps} = -30 \text{ dB}, \text{ f} = 45 \text{ MHz})$	3N211, 3N213		-	±1.0	

Measured after five seconds of applied voltage. (1)

(2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly.

Pulse test: Pulse width = $300\mu s$, Duty cycle $\leq 2.0\%$. (3)

This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground. (4)

 Δ Gps is defined as the change in G_{ps} from the value at V_{GG} = 7.0 Volts (3N211) and V_{GG} = 6.0 Volts (3N213). Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_c. (5) (6)

Dim	Inches		Millimeters		
	Min	Max	Min	Max	
Α	-	0.230	-	5.840	
В	-	0.195	-	4.950	
С	-	0.210	-	5.330	
D	-	0.021	-	0.530	
Е	-	0.030	-	0.760	
F	-	0.019	-	0.480	
G	0.100 BSC		2.540 BSC		
Н	-	0.046	-	1.170	
J	-	0.0480	-	1.220	
K	0.500	-	12.700	-	
L	0.250	-	6.350	-	
М	45°C BSC		45°C BSC		
N	0.050 BSC		1.270 BSC		
Р	-	0.050	-	1.270	

Available Non-RoHS (standard) or RoHS compliant (add PBF suffix). Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.