AN5013K ## TV Electronic Channel Selection Circuit ### Outline The AN5013K is an integrated circuit designed for electronic tuner by the preset volume method. #### Features - Can drive LED directly (Vsat=75mV typ., I_K=15mA) - Capable of tuning 14 channels - Breakdown voltage of output terminal: 50V - Low power consumption (V_{cc}=5V, I_{cc}=13mA typ.) ### Block Diagram ## Pin | Pin No. | Pin Name | Pin No. | Pin Name | |---------|------------------------|---------|------------------------| | 1 | GND | 13 | Selection Output (K10) | | 2 | NC | 14 | Selection Output (K9) | | 3 | Supply Voltage (Vcc) | 15 | Selection Output (K8) | | 4 | NC | 16 | Selection Output (K7) | | 5 | NC | 17 | Selection Output (K6) | | 6 | NC | 18 | Selection Output (K5) | | 7 | NC | 19 | Selection Output (K4) | | 8 | NC | 20 | Selection Output (K3) | | 9 | Selection Output (K14) | 21 | Selection Output (K2) | | 10 | Selection Output (K13) | 22 | Selection Output (K1) | | 11 | Selection Output (K12) | 23 | Channel Down (Ch.D) | | 12 | Selection Output (K11) | 24 | Channel Up (Ch.U) | # ■ Absolute Maximum Ratings (Ta=25°C) | Item | Symbol | Rating | Unit | |---|-------------------|--------------------|------| | Supply Voltage | Vcc | 6 | V | | Torminal Voltage | $V_{9\sim 22-1}$ | 0 ~ 50 | V | | Supply Voltage Terminal Voltage Supply Current Terminal Current Power Dissipation Operating Ambient Temperature | $V_{23,24-1}$ | 0 ∼V _{cc} | V | | Supply Current | I _{cc} | 22 | mA | | Terminal Current | I _{8~22} | 0 ~ 30 | mA | | Power Dissipation | P _D | 150 | mW | | Operating Ambient Temperature | T_{por} | -20~+70 | С | | Storage Temperature | T_{stg} | -55~+150 | C N | # ■ Electrical Characteristics (Ta=25°C) | Item | Symbol | Test
Circuit | Condition | min. | typ. | max. | Unit | |----------------------------------|-----------------------|-----------------|--|------|------|------|------| | Supply Current | Itot* | ·V), (| $V_{cc}=5V$ | 7.0 | 13.0 | 18.0 | mΑ | | Tuning Output Saturation Voltage | V _{OL(K)} * | 1,60 | $V_{cc}=4V$ $I_{0L}=15mA$ | die |) . | 150 | mV | | Tuning Output
Leak Current | I _{OH(K)} * | 6.0. | $V_{\text{CC}}=4V$ $V_{\text{OH}}=50V$ | 5 | | 5 | μΑ | | CH.UP DOWN Input Current | I _{IH(CH)} * | | $V_{cc}=5V$ $V_{23.24-1}=4V$ | 50 | | 450 | μΑ | | CH.UP/DOWN
Leak Current | I _{IL(CH)} * | | $V_{cc}=5V$ $V_{IL}=0V$ | - 5 | | | μΑ | | CH.UP/DOWN Pulse Width | I _I | 1 | V _{cc} =5V | | | 20 | μs | | Initializing Pulse Width | I_2 | 1 | V _{cc} =5V | | | 100 | μs | ## Test Conditions | Item | Symbol | Test Pin | Pin No. | | | | | | | | | | | | | | T | | | | | | | | | | | |-------------------------------------|----------------------|----------------------|---------|---|----|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|--------------|------------|------------|--------------| | nem | | No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Note | | Supply Current | Itot | I ₃ | OV | | 57 | 57 | 57 | \vdash | | Tuning Output
Saturation Voltage | V _{OL} (K) | V ₂₂ | ov | | 57 | | | | | | | | | | | | | | | | | | | 3.3kΩ
50V | to
③ | to
③ | For
K:1ch | | Tuning Output
Leak Current | Іон(К) | I ₂₂ | OV | | 57 | | | | | | | | | | | | | | | | | | | 100kΩ
50V | to
③ | ! | For
K:1ch | | CH.UP/DOWN
Input Curret | I _{IH} (CH) | I _{23,24} | ΟV | | 57 | 4V | 4٧ | | | CH.UP/DOWN
Leak Current | I _{IL} (CH) | V _{23,24-1} | OV | | 57 | | | | | | | | | | | | | | - | | | | | | I0kΩ
OV | 10kQ
OV | | ### Test Circuit 1 (I₁, I₂) \bigcirc SW1 and SW2 at the side A are initialized in a pulse of 100 μ s. ("Initialize" in this case denotes that 1 channel is output when CHU and CHD become Low level at the same time.) ②SW1 at the side B is in CHD operation in a pulse of 30 μ s. ("CHD operation" in this case denotes that a channel is Down when CHD becomes Low level.) ③SW2 at the side B is in CHU operation in a pulse of 20 μs. ("CHU operation" in this case denotes that a channel is Up when CHU becomes Low level.) ### Application Circuit # Request for your special attention and precautions in using the technical information and semiconductors described in this book - (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed. - (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book. - (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). - Consult our sales staff in advance for information on the following applications: - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. - · Any applications other than the standard applications intended. - (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. - (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. - (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages. - (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company. 20080805