

AM3459P

These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

- Low r_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature SO-8 Surface Mount Package Saves Board Space
- High power and current handling capability
- Extended VGS range (±25) for battery pack applications

PRODUCT SUMMARY			
V _{DS} (V)	(V) $r_{DS(on)}(\Omega)$ $I_D(A)$		
-60	$0.310 @ V_{GS} = -10V$	2.1	
	$0.465 @ V_{GS} = -4.5V$	1.7	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	-60	V	
Gate-Source Voltage		V _{GS}	±20		
Continuous Drain Current ^a	$T_A=25^{\circ}C$	I.	2.1		
Continuous Drain Current	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	ID	1.7	А	
Pulsed Drain Current ^b		I _{DM}	±15		
Continuous Source Current (Diode Conduction) ^a		Is	-1.7	А	
	$T_A=25^{\circ}C$	D _n	2.0	W	
Power Dissipation ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	тD	1.3		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Units	
	t <= 5 sec	$R_{\theta JA}$	62.5	°C/W	
Maximum Junction-to-Ambient ^a			110	°C/W	

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

AM3459P

SPECIFICATIONS (T _A = 25° C UNLESS OTHERWISE NOTED)							
Davamatar	Chl		Limits			TI	
Parameter	Symbol	Test Conditions		Тур	Max	Unit	
Static							
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \text{ uA}$	-1				
Gate-Body Leakage	IGSS	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA	
Zara Cata Valtaga Drain Current	IDSS	$V_{DS} = -48 V$, $V_{GS} = 0 V$			-1	11.4	
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10	uA	
On-State Drain Current ^A	ID(on)	$V_{DS} = -5 V, V_{GS} = -10 V$	-20			Α	
		$V_{GS} = -10 \text{ V}, I_D = -2.1 \text{ A}$			310	mΩ	
Drain-Source On-Resistance ^A	rDS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -1.7 \text{ A}$			465		
Forward Tranconductance ^A	gís	$V_{DS} = -15 \text{ V}, I_D = -2.1 \text{ A}$		8		S	
Diode Forward Voltage	Vsd	$I_S = -2.5 A, V_{GS} = 0 V$			-1.2	V	
Dynamic ^b							
Total Gate Charge	Qg	$M_{\rm e} = 20 M M_{\rm e} = 45 M$		18			
Gate-Source Charge	Qgs	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = -4.5 \text{ V},$ $I_D = -2.1 \text{ A}$		5		nC	
Gate-Drain Charge	Qgd	ID2.1 A		2			
Turn-On Delay Time	t _{d(on)}			8			
Rise Time	tr	$V_{DD} = -30 V, R_L = 30 \Omega$, $ID = -1 A$,		10			
Turn-Off Delay Time	td(off)	$VGEN = -10 V, RG = 6\Omega$		35		nS	
Fall-Time	tf			12			

Notes

- a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.
- b. Guaranteed by design, not subject to production testing.