

ATS266

High Voltage Hall Effect Latch

■ Features

- On-chip Hall sensor
- Operating voltage: 4V~28V
- Internal bandgap regulator allows temperature compensated operations and a wide operating voltage range
- High output sinking capability up to 400mA for driving large load
- Build in protection diode for chip reverse power connecting (Note 1)
- Package: SIP-4L

■ Application

- Dual coils Brush-less DC Motor
- Dual coils Brush-less DC Fan
- Revolution Counting
- Speed Measurement

■ General Description

ATS266 is an integrated Hall sensor with output drivers designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and complementary darlington open-collector drivers for sinking large current loads. An internal bandgap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range.

If a magnetic flux density larger than threshold Bop, DO is turned on (low) and DOB is turned off (high). The output state is held until a magnetic flux density reversal falls below Brp causing DO to be turned off and DOB turned on. ATS266 is rated for operation over temperature range from 0°C to 70 °C and voltage range from 4.0V to 28V. The devices are available in low cost die forms or rugged 4 pin SIP packages.

Note 1. Protection diode only exist at power pin (1,4) output pin (2,3) were not included.

■ Ordering Information

■ Typical Circuit

This datasheet contains new product information. Analog Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.

■ Pin Configuration

Front View

1: VCC

2: DO

3: D0B

4: VSS

Name	P/I/O	Pin #	Description			
VCC	P	1	Positive Power Supply			
DO	0	2	Output Pin			
DOB	0	3	Output Pin			
VSS	P	4	Ground			

■ Absolute Maximum Ratings

- Supply Voltage, Vcc	28V
- Reverse V _{CC} Polarity Voltage, V _{RCC}	
- Magnetic flux density, B	U nlimited
- Output OFF Voltage, Vce	50 V (Note 1)
- Output ON Current, Ic	
Continuous 0.4A	
Hold 0.7A	
Peak (Start Up) 1 A	
- Operating Temperature Range,	
Ta (0 °C to 70 °C)	
- Storage Temperature Range,	
Ts (-65 °C to +150 °C)	
- Package Power Dissipation,	
Pd 600mW	
(Note 1) Output Zener protection voltage.	

■ Block Diagram

■ **Electrical Characteristics** (T=+25°C Vcc=4.0V to 20V)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Vcc	_	4.0	_	28	V
Output Saturation Voltage	Vce(sat)	Vcc=14V, Ic=400mA		1.0	1.5	V
Output Leakage Current	Icex	Vce=14V, Vcc=14V		< 0.1	10	μΑ
Supply Current	Icc	Vcc=20V, Output Open		10	15	mA
Output Rise Time	Tr	Vcc=14V, RL=820Ω, CL=20pF	_	1.0	5	μs
Output Falling Time	tf	Vcc=14V, RL=820Ω, CL=20pF	_	1.0	1.5	μs
Switch Time Differential	Δt	Vcc=14V, RL=820Ω, CL=20pF	_	3.0	10	μs

■ Test Circuit

■ Magnetic Characteristics

Characteristic	Symbol	Ta=-	+25°C	Ta=0 °C	Units	
Characteristic	Symbol	Min	Max	Min	Max	Units
Operate Point	Вор		100		100	G
Release Point	Brp	-100		-100		G
Hysteresis	Bhys	50	200	30	200	G

Magnetic Flux Density in Gauss

Magnetic Flux Density in Gauss

■ Performance Characteristics

Ta (°C)	25	50	60	70	80	85	90	95	100	105	110	115	120
Pd (mW)	600	575	565	555	535	525	515	505	495	475	455	435	415

Note: SIP-4L package

■ Package Information

Active Area Depth

Package Sensor Location

Package Dimension

