
STANFORD MICRODEVICES

Product Description

The Stanford Microdevices' SRF-1016 is a multipurpose demodulator RFIC capable of both quadrature demodulation or direct IF output. This device features switchable gain control, high input P1dB, and excellent I/Q amplitude and phase balance.

The SRF-1016 uses silicon germanium device technology to yield a highly integrated RFIC for use in a variety of system applications. Use of this integrated device over standard discrete implementations can result in lower component count, less PCB space and higher transceiver card yields.

Functional Block Diagram

Advanced Data Sheet

SRF-1016 65 - 300 MHz Silicon Germanium IF Receiver

16 pin TSSOP with Exposed Pad Package Body: 0.20 x 0.17 x 0.04 (inches) 5.0 x 4.4 x 1.0 (mm)

Product Features

- Buffered IF OUT available through I axis
- Gain control in 20dB steps
- ٠ Excellent I/Q amplitude and phase balance
- ٠ High input P1dB

Applications

- Digital and spread spectrum communication systems
- Cellular, PCS, DCS, 3G transceivers
- ٠ ISM band transceivers

Key Specifications

Parameters	Test Conditions (V _{CC} =5.0V, I=150mA, T=25°C)	Unit	Min.	Тур.	Max.
IF/LO Frequency Range		MHz	65	120 to 220	300
Conversion Gain		dB		-5/+15/+35	
Input P1dB		dBm		+10/-10/-30	
I/Q Output Frequency Range		MHz	DC		500
I/Q Output Amplitude Balance		dB	-0.2		0.2
I/Q Output Phase Balance		deg	-2		2

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices. Inc. All worldwi ght 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

Absolute Maximum Ratings

Parameters	Value	Unit
Supply Voltage	6.0	V _{DC}
LO Input	+10	dBm
IF Input	+10	dBm
Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	٥C

Advanced Data Sheet

SRF-1016 SiGe IF Receiver

Test Condition	ons
$\sqrt{a} = \pm 5 \sqrt{a}$	TA - +25°C

$V_S = +5V_{DC}$	TA = +25°C	LO Input = 0dBm, 200MHz			
IF Input	GC1 = 0, GC2 =	: 0; 0dBm			
F=200.1 MHz	GC1 = 1, GC2 =	: 0; -20dBm			
1 -200.1 WHILE	GC1 = 1, GC2 = 1; -40dBm				

Product Specifications – Stuck Mixer (DC on LO Port – gain controlled amplifier)

Parameters	Test Conditions	Unit	Min.	Тур.	Max.	Parameters	Test Conditions	Unit	Min.	Тур.	Max.
Frequency Range		MHz	65	120-220	300	Frequency Range		MHz	65	120-220	300
Return Loss	50ohm reference	dB		20		Return Loss	50ohm reference	dB		20	
Gain		dB		35		Gain		dB		40	
Input P1dB	gain set=high	dBm		-30		Input P1dB	gain set=high	dBm		-26	
Input IP3	ĞC1=GC2=1	dBm		-20		Input IP3	ĞC1=GC2=1	dBm		-16	
Noise Figure		dB		6		Noise Figure		dB		6	
Gain		dB		15		Gain		dB		20	
Input P1dB	gain set=medium GC1=1	dBm		-10		Input P1dB	gain set=medium GC1=1	dBm		-6	
Input IP3	GC2=0	dBm		0		Input IP3	GC2=0	dBm		4	
Noise Figure		dB		10		Noise Figure		dB		9	
Gain		dB		-5		Gain		dB		0	
Input P1dB	gain set=low	dBm		10		Input P1dB	gain set=low	dBm		14	
Input IP3	GC1=GC2=0	dBm		20		Input IP3	GC1=GC2=0	dBm		24	
Noise Figure		dB		30		Noise Figure		dB		30	

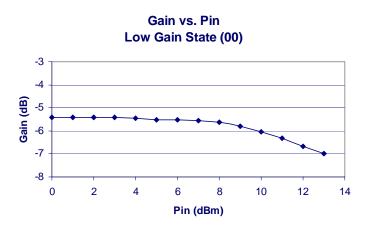
Product Specifications – I/Q Output

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
I/Q Output Frequency Range		MHz	DC		500
I/Q Output Amplitude Balance		dB	-0.2		0.2
I/Q Output Phase Balance		deg	-2		2
I/Q Output Common-mode Voltage		V		2.5	

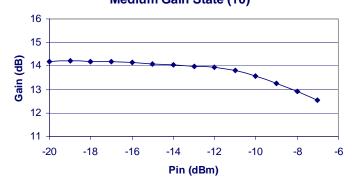
Product Specifications – LO Input

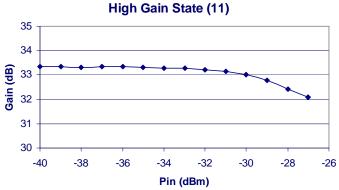
Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
LO Input Level		dBm	-3	0	+3
Return Loss		dB		20	

Product Specifications – Miscellaneous


Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Supply Voltage		V	+4.75	+5.0	+5.25
Supply Current		mA		180	
Thermal Resistance		°C		TBD	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com


Phone: (800) SMI-MMIC


Advanced Data Sheet SRF-1016 SiGe IF Receiver

Gain vs. Pin Medium Gain State (10)

Gain vs. Pin

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC

Advanced Data Sheet SRF-1016 SiGe IF Receiver

Pin Out Description Function Description **Additional Comments** Pin # BBIN Baseband I-axis output (-) self-biasing 1 2 BBIP Baseband I-axis output (+) self-biasing VCC 3 Positive power supply 4 GC2 Gain control input, stage 2 5V CMOS levels 5 GC1 5V CMOS levels Gain control input, stage 1 6 VEE Ground 7 VCC Positive power supply 8 INP IF input (+) self-biasing; AC-couple 9 INN IF input (-) self-biasing; AC-couple 10 VCC Positive power supply VEE 11 Ground LON 12 LO input (-) self-biasing; AC-couple LOP self-biasing; AC-couple 13 LO input (+) VCC 14 Positive power supply 15 BBQN Baseband Q-axis output (-) self-biasing BBQP 16 Baseband Q-axis output (+) self-biasing

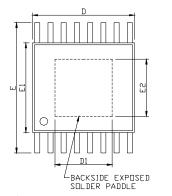
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

http://www.stanfordmicro.com 04/24/01 rev 9.0

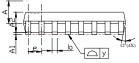
Advanced Data Sheet

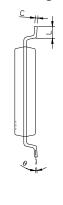
SRF-1016 SiGe IF Receiver


Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SRF-1016	TBD	TBD

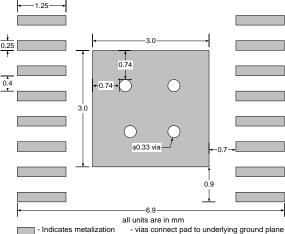
Part Symbolization


The part will be symbolized with a "TBD" marking designator on the top surface of the package.


Package Dimensions

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.

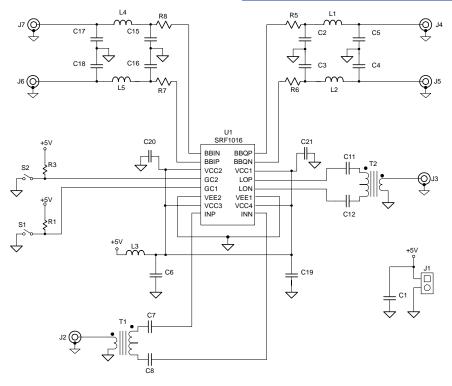


- NOTE 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED
- COPLENANCE TO A TIME OF THE OF T

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIM	ENSIONS IN IN	THES
SIMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
А			1.15			0.045
A1	0.00		0.10	0.000		0.004
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
D1		2.80			0.110	
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
E2		2.80			0.110	
e		0.65			0.026	
L	0.45	0.60	0.75	0.018	0.024	0.030
у			0.10			0.004
θ	0°		8°	0°		8°

Test PCB Pad Layout

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

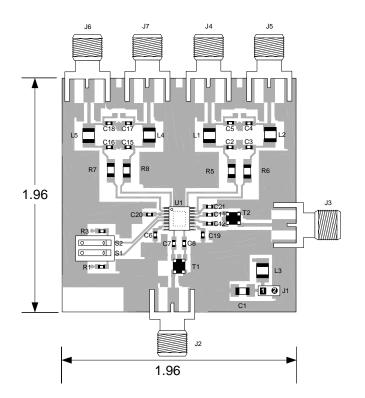

Phone: (800) SMI-MMIC 5

http://www.stanfordmicro.com 04/24/01 rev 9.0

Demo Test Board Schematic

Bill of Materials

Component Designator	Value	Qty	Vendor	Part Number	Description
U1		1	SMDI	SRF-1016	IF receiver
J1		1	Digikey-Sullins	S1312-02-ND	2 pin 0.1" power supply header
J2, J3, J4, J5, J6, J7		6	Johnson Components	142-0701-851	SMA end launch connector
T1, T2		2	Mini-Circuits	TC1-1	Transformer
C1	1uF	1	Venkel	C1206Y5V160-105ZNE	1206 size supply bypass capacitor
S1, S2		1	Grayhill	GH1102-ND	Dual DIP switch
R1, R3	1 kohm	2	Venkel	CR0603-16W-102JT	0603 size pull-up resistor
C6, C19, C20, C21	1nF	4	Venkel	C0603COG500-102JNE	0603 size bypass capacitor
L1, L2, L3, L4, L5	1uH	5	Panasonic	PCD1008TR-ND	1210 size filter inductor
C7, C8, C11, C12	68pF	4	Venkel	C0603COG500-680JNE	0603 size coupling capacitor
R5, R6, R7, R8	0 ohm	4	Venkel	CR1206-8W-000T	1206 size resistor
C2, C3, C4, C5, C15, C16, C17, C18	820pF	8	Venkel	C0603COG500-821JNE	0603 size filter capacitor


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC 6

Advanced Data Sheet SRF-1016 SiGe IF Receiver

Demo Test Board (Fully Assembled PCB)

Note: Dimensions in inches

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC