8x8 High Speed SN74S557
Schottky Multipliers SN54/74S558

Ordering Information

Features/Benefits
PART NUMBER PACKAGE TEMPERATURE
¢ Industry-standard 8x8 multiplier ==
548558 J, (44), (L) Military
e Multiplies two 8-bit numbers; gives 16-bit resuit 745557 745558 N,J, Commercial
o Cascadable; 56x56 fully-parallel multiplication uses only 34 Logic Symbol
multipliers for the most-significant half of the product GI/R,,
nf/ns‘————l

Full 8x8 muitiply in 60ns worst case
X

Three-state outputs for bus operation
Xm

Y Com—

Ym F——>§

Transparent 16-bit latch in 'S557

8x8 [
MULTIPLIER 16 $15-00

Plug-in compatible with original Monolithic Memories’ 67558

15
Description o€ d
Pin Configuration

The ‘S557/'S558 is a high-speed 8x8 combinatorial multiplier \J
which can multiply two eight-bit unsigned or signed twos- Xo E
complement numbers and generate the sixteen-bit unsigned X, E
or signed product. Each input operand X and Y has an
associated Mode control line, Xpq and Yy, respectivelv:When a X2 E
Mode control line is at a Low logic level, the operand is treated X3 E
as an unsigned eight-bit number; whereas, if the Mode control is
ata High logic level, the operand is treated as an eight-bit signed X4 E
twos-complement number. Additional inputs, Rg and Ry, (R, in X
the 'S557) allow the addition of a bit into the multiplier array at 5 E
the appropriate bit positions for rounding signed or unsigned Xg E
fractional numbers. X, E 54/74S558
The 'S557 internally develops proper rounding for either AR 748557(1)
signed or unsigned numbers by combining the rounding input RT) SE
R with Xy, Y, Xpg. and Yy as follows: vee[m

— o o whry [T
Ry =Xm *Ym - R = Unsigned rounding input to 27 adder. v E

0
Rg = (Xp + YMm) R = Signed rounding input to 26 adder. v, E
Sincethe 'S558 has no latches, it does not require the use of pin 11 Y2 E
for the latch enable input G, so Rg and Ry are brought out Y3 E
separately.
Y4 E

The most-significant product bit is available in both true and v
complemented form to assist in expansion to larger signed s E
multipliers. The product outputs are three-state, controlled by A\ E
an assertive-low Output Enable which allows several muiti-
pliers to be connected to a parailel bus or be used in a pipe- Y7 E
lined system. The device uses a single +5V power supply and is e E

packaged in a standard 40-pin DIP.

FFor 748557 Pin 9 is R and Pin 11 is G.

TWX: 910-338-2376 Mono””.ic

2175 Mission College Bivd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374 Memories

11-37

SN/74S557 SN54/74S558

Logic Diagram

8-BIT X INPUT

X INPUT BUFFERS

L x
Yo MODE M
[4 |CONTROL
I me
g8t | || vineuT 8 x 8
v | | |eurrers 75 MULTIPLIER
INPUT || ARRAY
| rgi)
[ROUND
I DECODE
Y7 |-Rut
LATCH ; i $557 ONLY
— e
enasie ST 1 uatcnes
OUTPUT == THREE STATE
ENABLE BUFFERS

N — et
16-BIT PRODUCT

FFor 748557 Pin 9 is R and Pin 11is G.

11-38 Monolithic m Memories

SN/74S557 SN54/74S8558

0 ________________________________

Absolute Maximum Ratings
SUPPIY VORBGE Vo + v e v et et e et e e ettt e et e

Input voltage

Off-state OUIPUL VOIAGE ottt it et e ettt ittt et a e cean e

Storage temperature

Operating Conditions

SYMBOL PARAMETER DEVICE MINM":IE::RYM AX Mcl:l:) M':s:c:;x‘ UNITS
Vee Supply voltage all 45 5 565|475 5 5.25 v
TA Operating free-air temperature all -55 125% 0 75 °C
tsu X;, Yj to G set 'S657 40 ns
th X, Y; to G hold time '§557 0 ns
tw Latch enable pulse width "S657 15 ns

* Case temperature

Electrical Characteristics over Operating Conditions

SYMBOL PARAMETER TEST CONDITIONS MIN TYPT MAX | UNIT
ViL Low-level input voltage 08] V
Vi High-level input voltage 2 v
Vic Input clamp voltage Voo = MIN l} = -18mA -15| Vv
U Low-level input current Voo = MAX Vi = 05v -1 mA
lin High-level input current Voo = MAX Vi =24V 100 wA
h Maximum input current Voo = MAX V| =55V 1| mA
VoL Low-ievel output voltage Ve = MIN loL = 8mA 05 \%
Von | High-level output voltage Voo = MIN loH = —2mA 24
oz Off-state output current Vee = MAX Yo - o 70| A
lozH Vo = 2.4V 100 | pA
los Output short-circuit current* | Voo = MAX Vo = OV -20 -90 | mA
lcc Supply current Voo = MAX 200 280 | mA

* Not more than one output should be shorted at a time and duration ot the shortcircuit should not exceed one second.
t Typicals at 5.0V Vo and 25°C Ty,
Switching Characteristics over Operating Conditions

oo | e [omwce | oo T ey T comeron T
tpp1 | X YitoS7g Al 40 60 40 50| ns
tpp2 | X YitoSi5g All 45 70 45 60| ns
tpps | Xi Y toS1g Al Cu = 30pF 50 75 50 65| ns
tpps | GtoS; 'S557 AL = 5600 20 40 20 35| ns

tpxz | OEtoS; Al | 5e9 test figures 20 40 20 30| ns
tpzx | OEtoS;] 15 40 15 30| ns
Monolithio [l Memories 11-39

SN/748557 SN54/74S558

Timing Waveforms

Setup and Hold Times (’S557)

X, Y, R INPUTS

i (e ,o. o ,m,u,o.o,o‘o’o‘o‘ o’n‘v

NOTE: ! the rising edge of G occurs before (tSUN” 'WMIN) from the inputs
changing, then the applicable propagation delays are tpp, tpp2 and tppg,
(and not tppy). In this case the time at which the results arrive at the outputs
depends on when the inputs change instead of when the rising edge of
G occurs.

N WO (i

Propagation Delay

k)

—_— 3V

ov
oV

OE

Latch-Enable Pulse Width ("S557)

B

v

_—— 15V
L ov

LOW-HIGH-LOW
PULSE

]

3V

____! ——— !.___— 1.5V
L o

HIGH-LOW-HIGH
PULSE

11-40

Test Waveforms

TEST vy OUTPUT WAVEFORM — MEAS. LEVEL
VoH
All tpp 5.0V %st
VoL
for for
f 4 VoH 28v
PHZ | ‘PLZ
tpxz
0.0V | 5.0v VoL 0.0v
for for 28V
tpzH | tpzL ’ VoH
tpzx 1.5V
L 0.0V | 5.0v 0.0v VoL

Test Load

Vx (see table above)

TEST IN916 OR IN3064
POINT*
RL
560}
cL 112002

I

* The “TEST POINT” is driven by the output under test,
and observed by instrumentation.

Definition of Timing Diagram

WAVEFORM

DON'T CARE;
CHANGE PERMITTED
NOT

APPLICABLE

MUST BE STEADY

INPUTS OUTPUTS

CHANGING;
STATE UNKNOWN

CENTER LINE IS
HIGH IMPEDANCE STATE

WILL BE STEADY

Monolithic m Memoriles

SN/748557 SN54/74S558

R —

ROUNDING INPUTS
SUMMARY OF SIGNALS/PINS 'S557
X7-Xg | Multiplicand 8-bit data inputs INPUTS ADDS
Y;-Yg | Multiplier 8-bit data inputs Xm Ym R 27 26
Mode control inputs for each data word; LOW for L L H YES NO
XM: YM| unsigned data and HIGH for twos-complement L H H NO YES
data H L H NO YES
S45-Sp| Product 16-bit output H H H NO YES
Si5 | Inverted MSB for expansion X X L NO NO
Rg. Ry Rounding inputs for signed and unsigned data,
respectively (‘S558 only)
G Transparent latch enable (‘S557 only)
OE Three-state enable for S45-S and SE outputs
Rounding input for signed or unsigned data; .
R combined internally with Xpy, Yy (‘S557 only) §558
INPUTS ADDS USUALLY USED WITH
Ry Rg 27 26 Xm Ym
L L NO NO X X
L H NO YES Ht Ht
H L YES NO L L
H H YES YES * *
Fin mixed mode, one of these could be Low but not both.
*Usually a nonsense operation. See applications section of data sheet.
7458557 FUNCTION TABLE
PRODUCT| LATCH
RESULT | CONTENTS
INPUTS FROM | (INTERNAL OUTPUTS | FUNCTION
ARRAY | TO PART)
OE| G T Q s; MODE CONTROL INPUTS
L MODE
L]t X L Latched INPUT DATA CONTROL
L L X H H OPERATING INPUTS
Li{H L (L)* L MODE X7-Xo Y7-Ygo Xm Ym
L H H (H)* H Transparent
Hi-Z: Latched Unsigned Unsigned Unsigned L L
HL X (L) z Data not Mixed Unsigned |Twos-Comp.| L H
HL X (H) z Changed Twos-Comp.| Unsigned H L
HI|H X (X)* Z Hi-Z Signed Twos-Comp.| Twos-Comp. H H

*i|dentical with product result passing through latch

Monolithic m Memorles 11-41

SN/748557

SN54/748558

]

Functional Description

The 'S557 and "S558 multipliers are 8x8 full-adder Cray arrays
capable of multiplying numbers in unsigned, signed, twos-
complement, or mixed notation. Each 8-bit input operand X and
Y has associated with it a mode control which determines
whether the array treats this number as signed or unsigned. If
the mode control is at High logic level, then the operand is
treated as a twos-compliement number with the most-significant
bit having a negative weight; whereas, if the mode control isata
Low logic fevel, then the operand is treated as an unsigned
number.

The multiplier provides all 16 product bits generated by the
multiplication. For expansion during signed or mixed multipli-
cation the most-significant product bit is available in both true
and complemented form. This allows an adder to be used as a
subtractor in many applications and eliminates the need for
certain SSI circuits.

Two additional inputs to the array, Rg and Ry, aliow the ad-
dition of a bit at the appropriate bit position so as to provide
rounding to the best signed or unsigned fractional eight-bit
result. These inputs can also be used for rounding in larger
multipliers. In the ‘S557, these two inputs are generated inter-
nally from the mode controls and a single R input.

The product outputs of the multiplier are controlled by an
assertive-low Output Enable contral. When this control is at a
Low logic level the multiplier outputs are active, while if the
control is at a High logic level then the outputs are placed in a
high-impedance state. This three-state capability allows
several multipliers to drive a common bus, and also allows
pipelining of muitiplication for higher-speed systems.

Rounding

Multiplication of two n-bit operands results in a 2n-bit prod-
uctt. Therefore, in an n-bit system it is necessary to convert the
double-length product into a single-length product. This can
be accomplished by truncating or rounding. The following ex-
amples illustrate the difference between the two conversion
techniques in decimal arithmetic:

39.2-»39

39.6 39

39.2 + 0.5 = 38.7-»39

39.6 + 0.5 = 40.1 40
Obviously, rounding maintains more precision than truncating,
but it may take one more step to implement. The additional
step involves adding one-half of the weight of the single-length
LSB to the MSB of the discarded part; e.g., in decimal arith-
metic rounding 39.28 to one decimal point is accomplished by
adding 0.05 to the number and truncating the LSB:

39.28 + 0.05 = 39.33-»30.3
The situation in binary arithmetic is quite similar, but two cases
need to be considered: signed and unsigned data represen-
tation. In signed multiplication, the two MSBs of the result are
identical, except when both operands are -1; therefore, the
best single-length product is shifted one position to the right
with respect to the unsigned multiplications. Figure 1 illus-
trates these two cases for the 8x8 multiplier. In the signed case,
adding one-half of the S; weight is accomplished by adding 1
in bit position 6, and in the unsigned case 1 is added to bit posi-
tion 7. Therefore, the "S558 multiplier has two rounding inputs,
Rg and R,. Thus, to get a rounded single-length result, the
appropriate R input is tied to Vo (logic High) and the other
R input is grounded. If a double-tength result is desired, both
R inputs are grounded for the ‘S558, and the single R input
is grounded for the ‘S567.

} Truncating

} Rounding

1in general: multiplication of an M-bit operand by an N-bit operand resuits in an (M + N)-bit product.

BINARY POINT
X |
x:y\- X6 Xs X4 X3 Xz X1 Xo l
X Y?*Ys Y5 Y4 Y3 Y2 Y1 Yo
(a) SIGNED |
MULTIPLICATION S15 514+ 513 S12 S11 S10 Sg Sg S7] S¢ S5 Sq S3 S2 S1 Sg -e————FULL 15-BIT PRODUCT
+ «0 0O 0 0 0 0 0.1 0 0 ©0 0 0 0 -e—ADD1/2THEMSB
* OMITS,5 T WEIGHT OF THE
SINCE S, =S5 *S13+913 S12 S11 S10 S9 Sg s-,I DISCARDED PART
¥* OMIT Sq5
SINCE 814 = S15 BEST &-BIT PRODUCT |
« Xy Xe X5 X4 X3 X2 X1 Xo '
X e« Yy Yg Y5 Y4 Y3 Y2 Yi

(b) UNSIGNED
MULTIPLICATION +S15 S14 $13 S12 S11 S10 So

+ « 0 0 0 0 0 0 (1)

Yo l
Sg l S7 S¢ S5 Sa S3 S2 S1 So e FULL 16-BIT PRODUCT
0 1 0 0 0 0 0 0 0 -—ADD 1/2 THE MSB

*+$15 S$14 S13 S12 S11 S10 S9

+ WEIGHT OF THE
sg DISCARDED PART
b

BEST 8-BIT PRODUCT

NOTES:

ta) In signed (twos-compiement) notation, the MSB of each operand is the sign bit, and the binary point is to the right ot the MSB. The resulting product has a redundant

sign bit and the binary point is to the right of the second MSB of the product.
“1" to bit position SG'

. The best eight-bit product is from S, 4 through 5, and rounding is performed by adding

(b) In unsigned notation the best 8-bit product is the most significant half of the product and is corrected by adding “1” to bit position S7.

Figure 1. Rounding the Result of Binary Fractional Multiplication

11-42 Monolithic Eﬁﬂ Memorles

SN/748557 SN54/74S558
sV —
Signed Expansion adder is the sign extension bit.

The most-significant product bit has both true and comple- Signext = AB + BC + CA = AB+BC + CA,
ment outputs available. When building larger signed muiti- and the sum remains the same.

pliers, the partial products (except at the lower stages) are
signed numbers. These unsigned and sighed partial products 16x16 Twos complement

must be added together to give the correct signed product. Multiplication
Having both the true and complemented form of the most- The 16-bit X operand is broken into two 8-bit operands (X7-Xg
significant product bit available assists in this addition. For and X15-Xg), as is the Y operand. Since the situation is that of a
example, say that two signed partial products must be added cross-product, four partial products are generated as follows:
and MSI adders are used; we then have the situation of adding
together the carry from the previous adder stage plus the addi- A=XL YL
tion of the two negative most-significant partial-product bits. B=X_"YH
The result of adding these variables must be a positive sum C=Xy YL
and a negative carry (borrow). The equations for this are: D=Xy*'YH

S=A@B&C

where the subscript L stands for bits 7-0, (“low or least-signifi-
cant half), and the subscript H stands for bits 15-8.

Expanded twos-complement multiplication requires a sign

Coyr=AB + BC + CA
where C is the carry-in and A and B are the sign bits of the two

partial products.) extension of the B and C partial products. Thus, By5 andCq5
Now an adder produces the equations: need to be extended eight positions to the left (to align with
S=A @& B & C D15). In this approach two more adders are required. But the
Coyt=AB + BC + CA complement of the MSB (S15) on the 'S557/8 can be used to save
Examining these equations, it can be seen that, if the inversions these two adders. Figure 2 shows the implementation of 16x16
of A and B are used, then the most significant sum bit of the signed twos-complement multiplication in this manner.
INPUTS
vce Y158 X{f; vce @ X458 Vce Y{? @ @ Xz0
Y15-0 X15-0 { Y15-0 X15-0 Y15-0 X15-0 X15-0 X15.0
M XM {YM Xm + M XM ’ Ym XM
'$557/8 '$567/8 'S557/8 l 'S557/8
$15-8) $15, S14-1, S0 §15,5141,50] = | S159 S8 Sro | =
& -
g g
Ll
B1s A5 B1a-o A14.0
'$381 + 'S182*
SIGN F15 F1a-7 Fe-0
a J U U
B23-16 A23.16 B15-8 A15-8 B71 Az1 BoAo
'S381 + 'S182* Cin
F23-16 F15-8 Fr-0
S31-24 $23-16 $15-8 $7-0
QUTPUTS

* THESE ARE ADDER BLOCKS USING THE '$381, A4-BIT ALU FUNCTION GENERATOR, TO PERFORM A HIGH-SPEED ADD
OPERATION. THE 'S182 1S ALOOKAHEAD CARRY GENERATOR AND REDUCES THE PROPAGATION DELAY. ALL OF THE
ABOVE PARTS ARE AVAILABLE FROM MONOLITHIC MEMORIES INCORPORATED.

TOTAL MULTIPLY TIME = MULTIPLIER DELAY + ADDER LEVEL 1 DELAY + ADDER LEVEL 2 DELAY = 60+44+64 = 168 nsec
Figure 2. 16x16 Twos-Complement Signed Multiplication

X15 X14 X13 X12 X11 X410 X9 X8 X7 X6 X5 X4 X3 X2 X1 Xo

"Yi5 Y14 Y13 Y12 Y91 Y10 Y9 Ys Y7 Y Y5 Y4 Y3 Y2 Y1 Yo
[B1s Bia B13 B12 B11 Bio By Bg|[B; Bs Bs Ba B3 By B1 Bol

[Dy5 D1g D13 Diz D11 Dip Do Dg|[D7 De Ds Da D3 Dz D1 Do [M15 Ala A13 A1z Al Ao Ag As|[A7 Ae As Aa A3 A2 A1 Ag)
[E15 C1a C13 C12 C11 Co Co _CsJ[C7 Ce C5 Ca €3 C2 C1 Co)

Sa31 S30 S29 S28 S27 S26 S25 S24 S23 S22 S21 S20 S19 518 $17 S16 S15 S14 S13 S12 S11 S10 Sy S S7 S¢ S5 S4 S3 S2 51 So

ROUNDED RESULT
Figure 3. Unsigned Expansions of the 8x8 Multiplier to 16x16 Multiplication

Monolithic m Memories 11-43

SN/74S557 SN54/74S558

e e e]

Applications:
How to Design Superspeed Cray
Multipliers with '558s

Multiplication, as most of us think of it, is performed by repeated
addition and shifting. When we multiply using pencil and paper,
according to the familiar elementary-school method, we first
write down the multiplicand, and then write down the muitiplier
immediately under it and underline the multiplier. Then we take
the least-significant digit of the muitiplier, muitiply that digit by
the entire multiplicand, and record the answer in the top row of
our workspace, underneath the line. Then we repeat, using now
the second-least-significant multiplier digit, and record that
answer below the first one, pushed one digit position (that is,
“shifted”) to the left. This process continues until we run out of
muiltiplier digits (or out of patience), at which point we add up
the constants of the whole diamond-shaped workspace and
record at the bottom an answer which consists of either
m + n - 1 digits or m + n digits, where there are m digits in the
multiplier and n digits in the multiplicand. An example, voila”

by Chuck Hastings

125 (multiplicand)

x107 {muitiplier)

875 (7 x 125)

000 (0 x 125, shifted left one digit position)

125 (1 x 125, shifted left two digit positions)
(

13375

sum of the above)

Figure 4. Decimal Multiplication

The decimal number system has no monopoly on truth —
our ancestors simply happened to have ten fingers at the
time when someone came up with the idea of counting. Binary
numbers, as you know, are more copacetic than are decimal
numbers with digital-logic elements, which like to settie
comfortably into one voltage state (“High) or another ("Low”},
rather than into one of ten different states. So we can repeat the
above example using binary numbers, right? First, we convert
our multiplicand and muitiplier to binary:

12549 = 01111101,
10719 = 01101011,

The subscripts 10 and 2 refer to the “base” or “radix™ of the
number system, 10 for decimal and 2 for binary. (Remember
your New Math?) For sneaky reasons to be revealed soon, I've
used 8-bit binary numbers, which is one bit more than
necessary for my example, and added a leading zero. So, we
multiply:

01111101, = 12544
x011010115 = 1074

GiTTToT
01111101
00000000
01111101
00000000
01111101
01111101
00000000

0011010000111111 = 133751
Figure 5. Binary Multiplication

f've left off the remarks this time, but they're just like the
remarks in the decimal example, at least in principle. Just in
case you doubt this answer, Vil convert it back:

1
2
4
8
16
32

0 (16384)
0 (32768)

13375

OO =2 204 Q0 OOQO = 4 —a = 2
o

Figure 6. Binary-to-Decimal Conversion

Now look carefully at the diamond-shaped array of numbers in
the workspace in Figure 5. Each row is either the multiplicand
017111071, or else all zeroes. The 01111101 rows correspond
to “1” digits in the multiplier, and the all-zero rows to "0” digits in
the multiplier. Life does get simpler in some ways when we
switch to binary numbers: “multiplying a multiplier digit by the
multiplicand” now means just gating a copy of the multiplicand
into that position if the digit is “1,” and not doing so if the digit is
uo

Seymour Cray, the master computer designer from Chippewa
Falls, Wisconsin, whose career has spanned three companies
{Univac, Control Data, and now Cray Research) and many
inventions, first observed some time in the late 1950s that
computers also could actually multiply this way. if one merely
provided enough components. This last qualifying remark; in
those days when even transistors, let alone integrated circuits,
in computers were still a novelty was by no means a trivial one!
To prove his point (and satisfy a government contract), Cray
designed, and Control Data built, a 48x48 muitiplier which
operated in one microsecond, about 1960. This multiptier was
part of a special-purpose array processor for a classified
application, and was so big that a CDC 1604 {then considered a
large-scale processor) served as its input/output controller. In
principte, such a multiplier at that time would have had to
consist of 48 48-bit full adders or.“mills,” each of which received
one input 48-bit number from the outputs of the mill immediately
above it in the array, and the other 48-bit number from a gate
which either allowed the multiplicand to pass through, or eise
supplied an ali-zero 48-bit number. Actually, these mills have to
be somewhat fonger than 48 bits. Anyway, that is at least 2304
full adders, and in 1960 a full-adder circuit normally occupied
one small plug-in circuit card.

A later version of this muitiplier, in the CDC 7600 super-
computer, could produce one 48x48 product out every 275
nanoseconds on a pipelined basis. The pipelining was
asynchronous, and the entire humungous array of adders and
gating logic could have up to three different products rippling
down it at a given instant!

11-44

Monolithic m Memories

SN/748557 SN54/74S558

- —

Back to the 1980s. Monolithic Memories has for several years
produced an 8x8 Cray muitiplier, the 67588, as a single 600-mil
40-pin DIP. After we invented this part, AMD second-sourced it,
and by now it has become an industry standard. We now also
have faster pin-compatible parts, the 54/745558 and 74S557.
Like other West Coast companies 2,000 miles from Wisconsin
and Minnesota where Seymour Cray does his inventing, Mono-
lithic Memories previously used the term “combinatorial multi-
plier” instead of “Cray multiplier” for this type of part. However,
“combinatorial multiplier” has nine extra letters and five extra
syllables, and also inadvertently implies that the technique
involves combinatorial logic rather than arithmetic circuits.
Some West Coast designs, including our 67588, use a modified
internal array with only half as many full-adder circuits and
slightly different interconnections, based on the two-bit “Booth-
multiplication” algorithm (see reference 1), plus the two-bit
“Wallace-tree” or “carry-save adder” technigue (see references 2
and 3). Conceptually, however, the entire chip or system
continues to operate as a Cray multiplier.

The '558, in particular can be thought of as a static logic network
which fits exactly the binary multiplication example of Figure 5.
(See now why | insisted on using 8-bit binary numbers?) There
are no flipflops or latches whatever in the '558 — it is a “flow-
through” device. Its 40 pins are used up as foliows:

Use of Pins Input, Output, Num.ber
or Voltage of Pins
Multiplier | 8
Multiplicand I 8
Double-Length Product O 16
Complement of Most- [¢] 1
Significant Bit of Double-
Length Product
3-State Output Enable I 1
Number-Interpretation- | 2
Mode Control
Rounding Control for Product \ 2
Power and Ground v 2
40

Table 1. Use of Pins in the '558

The two number-interpretation-mode control pins, one for the
multiplier and one for the multiplicand, allow the format for each
of these two 8-bit input numbers to be chosen independently, as
follows:

Control Input Interpretation of 8-bit input Number
L 8-bit unsigned
H 7-bit plus a sign bit

Table 2. Mode Control Input Encoding

The two rounding control pins allow either integer (right-
justified) or fractional (left-justified) interpretation of the 14-bits-
plus-sign double-length product of two 7-bits-plus-sign numbers
for internal rounding of the double-length result to the most
accurate 8-bit number. The control encoding is:

Rg Input Ry Input Effect
L L Disable Rounding
L H Round Unsigned
H L Round Signed
H H Nonsense (see below)

Table 3. Rounding Control Input Encoding

Rounding is normally disabled if the entire 16-bit double-length
product output is to be used. If only an 8-bit subset of this
product is to be used, this subset can be either bits 15-8 for
unsigned rounding as shown in Figure 7, or bits 14-7 for
signed rounding as shown in Figure 8. In either case, a “1” is
forced into the '558's internal adder network at the bit position
indicated by the arrow; adding a “1” into the bit position below
the least-significant bit of the final answer has the effect of
rounding, as you can see after a little thought. Obviously,
forcing a “1” into both of these adder positions at the same time
is a nonsense operation for most applications — it adds a “3”
into the middie of the double-length result.

KEEP DISCARD
J1s 8|7 o
N-siGn ﬁ

BIT FORCE-ADD
A “1" HERE

- SIGNIFICANCE:
MOST LEAST

Figure 7. Unsigned Rounding

DISCARD
y/ KEEP DISCARD
psfrs 7le o]
SIGN BIT /f

COPY OF Tﬁ?i}:gg
SIGN BIT

< SIGNIFICANCE:
MOST LEAST

Figure 8. Signed Rounding

By now you probably have a fairly good idea of what a '558 is,
and would like a few hints as to how to use it, right? First of all,
there is an occasional application in things like video games for
very fast multiplication, either 8x8 or 16x16, controlled by an 8-
bit microprocessor, where there wouid be one '558 per system
(see reference 4). More typically, however, the '558 is a building
block, and several of them are used within one system; in fact,
maybe more than several — “many.” In the usual Silicon-Valley
jargon, we can cascade a number of ‘558 (8x8) Cray-multiplier
chips to create larger Cray multipliers at the systems level.

For the sake of concreteness, I'll discuss the case of 56x56
multipliers, which are appropriate in-floating-point units which
deal with “IBM-long-format” numbers which have a 56-bit
mantissa. Any computer which emulates, or uses the same
floating-point format as, any of the following computers can use
such a muitiplier:

Monolithic m Memorles

11-45

SN/748557 SN54/74S558

O

IBM 360/370

Amdahi 470

Data General Eclipse

Gould/System Engineering SEL 32

Norsk Data 500 (ditferent farmat)
There are two basic approaches: serial-parallel, and fully
parallel. The serial-parallel approach uses seven '558s, and
requires seven full multiply-and-add cycles. On the first cycle,
the least-significant eight bits of the multiplier are multiphed by
the entire mulitiplicand, and this partial product is saved. On the
second cycle, the next-least significant eight bits of the
multiplier are muitiplied by the rnultiplicand, and that product
(shifted eight bit positions to the left) is added into the first
partial product to form the new partial product. And so forth, for
five more cycles. It's almost like our decimal-multiplication
example of Figure 1, except that instead of base-10 decimal
digits we now have base-256 superdigits.

The fully-parallel approach totaily applies Cray's usual design
philosophy (sometimes characterized as “big, fast, and simple”)
at the systems level. [t uses 49 '558s, in seven ranks; the ‘'th rank
performs an operation corresponding to that done during the
‘fth cycle in the serial-parallel implementation. In principle, a
complete mill is used to add the outputs of one rank of '558s to
those of the rank above it. Or, alternatively, these mills can be
laid out in a “tree” arrangement, such as:

A £ F
A4 N/ \ /7
+ + +
/ T~ ga.BIT A’v
MILLS
+ / +

80-BIT
MILLS

96-BIT MILL—_3 |

&

Figure 9. “Tree” Summing Arrarigement of Mills for a 56x56
Cray Multiplier

Each letter stands for one rank of '558s, and each “+" stands for
a mill of the indicated length. More involved “Wallace-tree”
techniques are usually preferable. (See reference 3). If the
least-significant half of the double-length product is never
needed, only 34 'S558s are required. There is one subtlety
which needs to be mentioned. If, conceptually, a '558 looks like
a diamond ~—

MULTIPLICAND
MULTIPLIER
UPPER LOWER
HALF HALF

DOUBLE-LENGTH PRODUCT
Figure 10. A Single '558 in “Diamond” Notation
then, the 8x56 multiplier for the serial-parallel configuration

(which is also one rank of the fully-parallel configuration,
which has seven such ranks) looks like this:

e e .

11-46

8-BIT PORTION
OF 56-81T
MULTIPLICAND

MULTIPLIER

64-BIT PARTIAL
PRODUCT

Figure 11. 8x56 Cray Multiplier in “Diamond” Notation

As you may discover afier a moment's thought, each stanted
double line in Figure 8 calls for addition of the outputs of two
5685 — the eight most significant bits of one, and the eight
least-significant bits of the next one to the left. There must also
be an extra adder (or at least a “half adder”) to propagate the
carries from this addition all the way over to the left end of the
result. The upshot is that an extra 56-bit mill is needed, in
addition to the '558s. The eight least-significant bits of the least-
significant '558 do not have to go through this mill, since they do
not get added to anything else.

One final note: building up a large Cray-multiplier configuration
out of '558s requires a lot of full adders, or else a lot of something
else equivalent to them. Monolithic Memories also makes
745381 (a 4-bit “ALU” or “Arithmetic Logic Unit”) and the
745182 (a carry-bypass circuit which works well with the '381);
and two faster ALUs, the 54/74F381 and the 54/74F382 are in
design. These ALUs and bypasses are excellent building blocks
from which to assemble the mills used for summation within a
rank of '558s, and also the mills used for tree-summation of the
outputs of all ranks. For how to put together one of these mills
using '381s, '382s, and "182s, see reference 1. For how 1o use
PROMs as Wallace trees, see reference 3.

Now you can go ahead, design your Cray multiplier out of '558s,
and start multiplying full-length numbers together in a fraction
of a microsecond. Sound like fun?

References

1. “Doing Your Own Thing in High-Speed Digital Arithmetic,”
Chuck Hastings, Monolithic Memories Conference
Proceedings Reprint CP-102

2. “Real-Time Processing Gains Ground with Fast Digital
Multiplier,” Shlomo Waser and Allen Peterson, Electronics,
September 29, 1977.

3. “Big, Fast and Simple — Algorithms, Architecture, and
Components for High-End Superminis,” Ehud “Udi” Gordon
and Chuck Hastings, 1982 Southcon Professional Program,
Orlando, Florida, March 23-25, 1982, paper no. 21/3.

4. “An 8x8 Multiplier and 8-bit uP Perform 16x16-bit Muli-
plication,” Shai Mor, EDN, November 5, 1979, Monolithic
Memories Article Reprint AR-109.

NOTE: All of these references are available as application notes from
Monolithic Memories Inc.

Monolithic m Memories

