

BL8596

LDO mode OVP with Integrated P-MOSFET

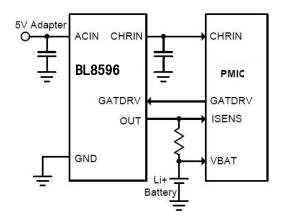
DESCRIPTION

The BL8596 is Li+ charger IC with integrated P-MOSFET. The device is fabricated with advanced CMOS technology to achieve maintaining low static power dissipation over a very broad VCC operating range.

The BL8596 integrates a P-MOSFET and Schottky diode which is normally a discrete device employed for conventional battery charging design of mobile phone system. In addition to that, BL8596 works like a LDO mode to keep CHRIN voltage stable when ACIN goes high. And thus it will not trigger the CHRIN pin over-voltage protection when ACIN voltage increased to as high as 15V.

The BL8596 provides complete Li+ charger protections and saves the external MOSFET and Schottky diode for the charger of cell phone's PMIC. It is available in a DFN2x2-8L package.

The above features and small package make the BL8596 an ideal part for cell phones applications.


FEATURES

- A Built-In P-MOSFET
- LDO mode makes CHRIN voltage stable around 5.5V
- Range of operation input voltage: Max 15V
- Charging current up to 1A
- Environment Temperature: -20°C~85°C

APPLICATIONS

• Cell phone and other portable device

APPLICATION CIRCUIT

ORDERING INFORMATION / PIN CONFIGURATION / MARKING

BL8596CKBTR	BL8596CB6TR	Top Marking
DFN2x2-8L	OUT1 6 VIN CHRIN2 5 GND GATDRV3 4 N C	OB <u>YW</u>

<u>YW</u> means the year and week parts being manufactured, subjected to change. OB is the code of the product; it will not be changed on any part.

ABSOLUTE MAXIMUM RATING (Note1)

Parameter	Symbol	Rate	Unit	
ACIN Input Voltage (ACIN to GND)	V _{ACIN}	-0.3~15	V	
CHRIN to GND Voltage	V _{CHRIN}	-0.3~6	V	
GATDRV to GND Voltage	V _{GATDRV}	-0.3~ V _{CHRIN}	V	
OUT to GND Voltage	V _{OUT}	-0.3~6	V	
Output power limit, lout x (V _{ACIN} -V _{OUT})	P _D	0.75	W	
Maximum Junction Temperature	TJ	150		
Storage Temperature	T _{STG}	-40 to 150	°C	
Maximum Lead Soldering Temperature, 10 Seconds	T _{SDR}	260		

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may destroy the device.

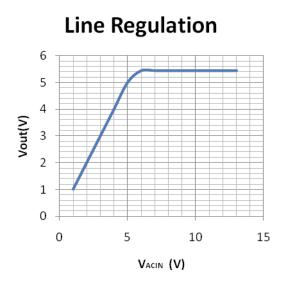
THERMAL RESISTANCE RATING

Parameter	Device	Symbol	Typical	Unit
lunction to Ambient Desistence in Free Air(Note2)	DFN2x2-8	θ_{JA}	80	°C /W
Junction-to-Ambient Resistance in Free Air ^(NOLE2)	SOT23-6	θ_{JA}	235	°C /W

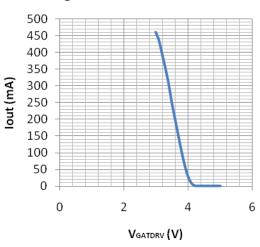
Note 2: θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of DFN2x2-8 is soldered directly on the PCB.

THERMAL CONSIDERATION

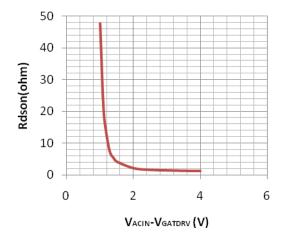
Even though BL8596 can handle charge current larger than 1A, it is also limited by the power dissipation of the package DFN2x2-8L. The DFN2x2 package has a thermal pad exposed, and it should be tightly soldered to bottom PCB with a large coil area to dissipate the heat. In general, to have the BL8596 to work under a safe condition, one should take DFN2x2 power limit as 0.75W, and if the dropout voltage is 1.5V, one is suggested to set the charging current to be less than 500mA.

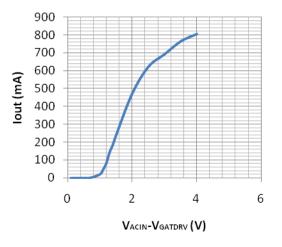

RECOMMENDED OPERATION CONDITIONS

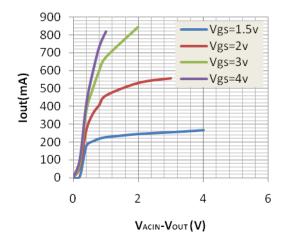
Symbol	Parameter	Range	Unit
V _{ACIN}	ACIN Input Voltage (ACIN to GND)	4.5~10	V
lout	Ooutput Current	0~700	mA
T _A	Ambient Temperature	-40~85	°C
TJ	Junction Temperature	-40~125	°C


ELECTRICAL CHARACTERISTICS

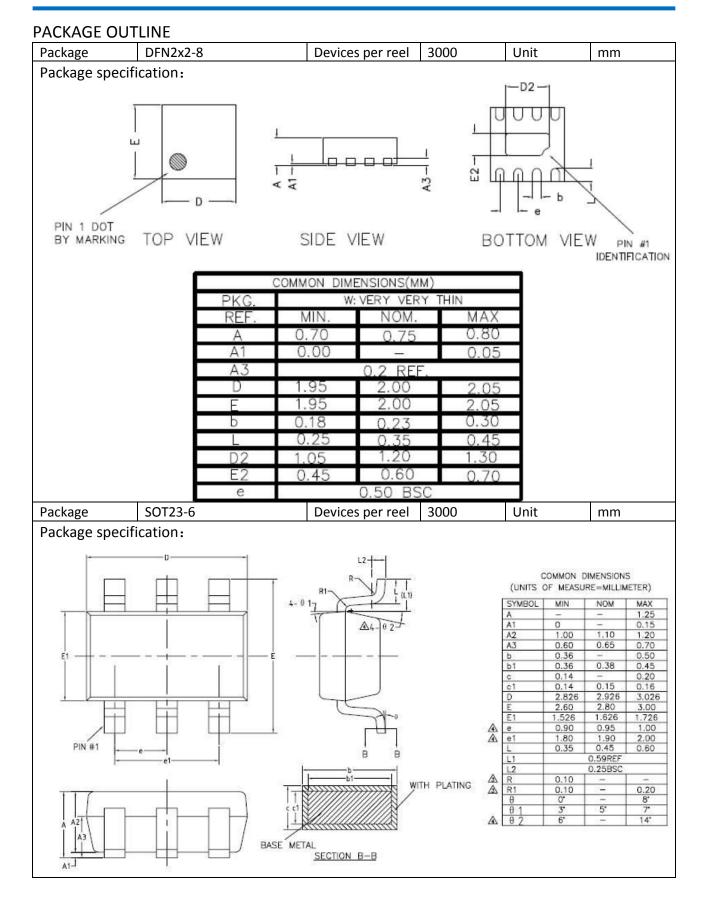
						Tj=25°C
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vth	Threshold Voltage	Ids=-1uA, Vds=Vgs	-1.0	-0.7	-0.4	V
V _{CHRIN2}	CHRIN Voltage	V _{IN} = 6.0 V, I _{CHRIN} =50mA	5.0	5.5	6.0	V
IDss1	off-state leakage	$V_{OUT}=0$, $V_{IN}=10V$, $V_{GATDRV}=V_{CHRIN1}$	-	-	1	uA
IDss2	reverse block leakage	V_{OUT} =5V, V_{IN} =0, V_{GATDRV} = V_{CHRIN1} =0V		2	5	uA
Idson	On –state drain current	V _{IN} =5V, V _{OUT} =4V, V _{GATDRV} =1V	0.9	1.2	1.5	А
Rdson	Vds/ldson	Vs=5V, Vg=1V, Vd=4V	0.5	0.75	1	ohm


TYPICAL PERFORMANCE CHARACTERISTICST=25°C unless specified.


Charger Current Vs VGATDRV



On Resistance


Transfer Character

Output Character

BL8596

