- Quartz SAW Stabilized and Filtered "Diff Sine" Technology
- Fundamental-Mode Oscillation at 666.51 MHz
- Voltage Tunable for Phase Lock Loop Operations
- Optical Timing Reference for Forward Error Correction Applications

The output of this device is generated and filtered by narrowband quartz SAW elements at 666.51 MHz . The configuration of this clock is intended to provide a pure signal for optical timing applications in noisy signal environments. The Q/Qbar differential output swing of ± 1 volt about 0 vdc has symmetry better than $\pm 1 \%$ into loads from 40 ohms to 70 ohms; determined by customer application. The long term frequency accuracy is set by an external reference source allowing this device to complete a Phase Lock Loop design without the usual noise and jitter problems associated with PLL's.

Absolute Maximum Ratings

Rating	Value	Units
DC Suppy Voltage	0 to 5.5	VDC
Tune Voltage	0 to 6	VDC
Case Temperature	-55 to 100	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency Absolute Frequency	f_{0}	1, 9		666.51		MHz
Tune Range		2	± 100			ppm
Tune Voltage		1	0		+3	VDC
Tuning Linearity		1,8		$\pm 3 \%$		
Tuning Sensitivity	df/dv	2,10	140		300	ppm/V
Modulation Bandwidth			125	265		kHz
Voltage into $50 \Omega(\mathrm{VSWR} \leq 1.2)$ Operating Load VSWR Symmetry Harmonic Spurious Nonharmonic Spurious	V_{O}	1,3	0.60		1.1	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
		1,3			2:1	
		3, 4, 5	49		51	\%
		3, 4, 6			-30	dBc
		3, 4, 6, 7			-60	dBc
Phase Noise $\mathrm{dBc} / \mathrm{Hz@100Hz}$ offset 1 kHz offset 10 k offset Noise Floor				-75		$\mathrm{dBc} / \mathrm{Hz}$
				-105		$\mathrm{dBc} / \mathrm{Hz}$
				-125		
				-155		
$\begin{array}{ll}Q \text { and } \bar{Q} \text { Jitter } & \text { RMS Jitter } \\ & \text { No Noise on } V_{C C} \\ & 200 \mathrm{mV}_{\text {P-P }} \text { from } 1 \mathrm{MHz} \text { to } 1 / 2 \mathrm{f}_{\mathrm{O}} \text { on }\end{array}$		3, 4, 6, 7		2		PS $\mathrm{P}_{\text {- }}$
		3, 4, 6, 7		12		PS $\mathrm{P}_{\mathrm{P}-\mathrm{P}}$
		3		12		PS $\mathrm{P}_{\text {- }}$
$\begin{aligned} & \text { Input Impedence (Tuning Port) } \\ & \text { Output DC Resistance (between Q \& } \bar{Q} \text {) } \\ & \text { DC Power Supply } \\ & \\ & \\ & \\ & \text { Operating Voltage } \\ & \text { Operating Current } \end{aligned}$			1			$\mathrm{K} \Omega$
		1, 3	50			$\mathrm{K} \Omega$
	V_{CC}	1,3	3.13	3.3, 5.0	5.25	VDC
	I_{CC}	1,3			70	mA
Operating Case TemperatureLid Symbolization (YY=Year, WW=Week)	T_{C}	1, 3	$-40^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
	RFM OP4006B YYWW					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. COCOM CAUTION: Approval by the U.S. Department of Commerce is required prior to export of this device.

Notes:

1. Unless otherwise noted, all specifications include any combination of load VSWR, Vcc, and temperature, with Q and $\overline{\mathrm{Q}}$ terminated into 50 ohm loads to ground (see typical test circuit).
2. Useful tuning range is in excess of what is required over temp, aging, pushing, pulling \& accuracy.
3. The design, manufacturing process, and specifications of this device are subject to change without notice.
4. Only under the nominal conditions of 50Ω load impedance with VSWR ≤ 1.2 and nominal power supplyvoltage.
5. Symmetry is defined as the pulse width (in percent of total period) measured at the 50% points of Q or Q (see timing definitions).
6. Jitter and other spurious outputs induced by externally generated electrical noise on V_{CC} or mechanical vibration are not included in this specification, except where noted. External voltage regulation and careful PCB layout are recommended for optimum performance.
7. Applies to period jitter of Q and Q. Measurements are made with the Tektronix CSA803 signal analyzer with at least 1000 samples.
8. Linearity is a function of the percentage variation from a permitted linear deviation versus the amount of frequency tune range (see linearity definition).
9. One or more of the following United States patents apply: 4,616,197; 4,670,681; 4,760,352.

Dimensio \mathbf{n}	$\mathbf{~ m m}$		Inches	
	MIN	MAX	MIN	MAX
\mathbf{A}	13.46	13.97	0.530	0.550
\mathbf{B}	9.14	9.66	0.360	0.380
\mathbf{C}	1.93 Nominal		0.076 Nominal	
\mathbf{D}	3.56 Nominal		0.141 Nominal	
\mathbf{E}	2.24 Nominal	0.088 Nominal		
F	1.27 Nominal		0.050 Nominal	
\mathbf{G}	2.54 Nominal	0.100 Nominal		
\mathbf{H}	3.05 Nominal	0.120 Nominal		
\mathbf{J}	1.93 Nominal	0.076 Nominal		
\mathbf{K}	5.54 Nominal	0.218 Nominal		
\mathbf{L}	4.32 Nominal	0.170 Nominal		
\mathbf{M}	4.83 Nominal	0.190 Nominal		
\mathbf{N}	0.50 Nominal	0.020 Nominal		

ELECTRICAL CONNECTIONS

Terminal Number	Connection
1	$\mathrm{~V}_{\text {CC }}$
2	Ground
3	Enable/Disable
4	Q Output
5	$\overline{\mathrm{Q}}$ Output
6	Ground
7	
8	TUNE Input
LID	Ground

