Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT μ PD178002, 178003

8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD178002 and 178003 are 8-bit single-chip CMOS microcontrollers that incorporate hardware for digital tuning systems.

The CPU uses the 78K/0 architecture, which makes it easy to implement high-speed access to internal memory and control of peripheral hardware. Also, the instructions used are the high-speed 78K/0 instructions, suitable for system control.

The peripheral hardware includes an input/output port, 8-bit timer, A/D converter, serial interface, power-on-clear circuits, as well as a pre-scaler for digital tuning, a PLL frequency synthesizer, and a frequency counter.

The μ PD178P018A, one-time PROM or EPROM versions that can be operated in the same supply voltage range as for the mask ROM versions, and various development tools, are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD178003 Subseries User's Manual: U13033E 78K/0 Series User's Manual — Instructions: U12326E

FEATURES

- Program memory (ROM) capacity μPD178002: 16 Kbytes μPD178003: 24 Kbytes
- Data memory (RAM) capacity: 512 bytes
- Instruction cycle: 0.44 μs (4.5 MHz crystal resonator used)
- Selected peripheral hardware of the µPD178018A Subseries

General-purpose I/O ports, A/D converter, serial interface, timer, frequency counter, power-on-clear circuits.

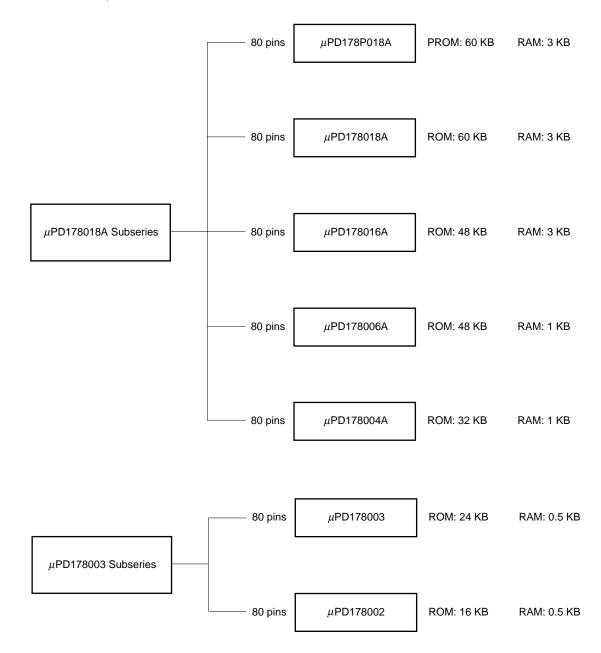
- On-chip hardware for a PLL frequency synthesizer.
 Dual modulus pre-scaler, programmable divider, phase comparator, charge pump.
- Vector interrupt sources: 8
- Supply Voltage: VDD = 4.5 to 5.5 V (during PLL operation)

 V_{DD} = 3.5 to 5.5 V (during CPU operation, when the system clock is fx/2 or lower)

 V_{DD} = 4.5 to 5.5 V (during CPU operation, when the system clock is fx)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS


Car stereo, home stereo systems.

ORDERING INFORMATION

Part Number	Package
μPD178002GC-×××-3B9	80-pin plastic QFP (14 $ imes$ 14 mm, 0.65 mm pitch)
μPD178003GC-×××-3B9	80-pin plastic QFP (14 $ imes$ 14 mm, 0.65 mm pitch)

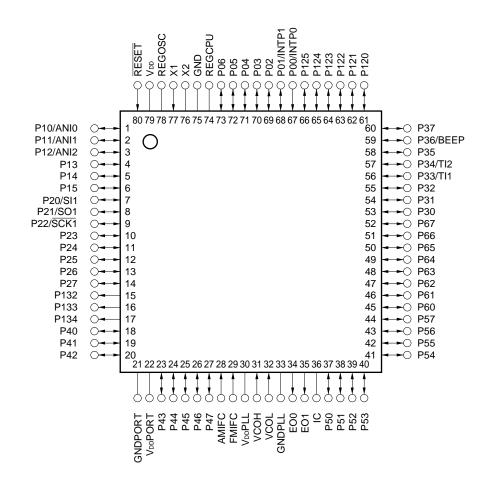
Remark ××× indicates ROM code suffix.

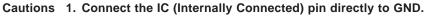
μ PD178003 AND μ PD178018A SUBSERIES LINEUP

 \star

OVERVIEW OF FUNCTIONS

Item	Part Number	μPD178002	μPD178003	
Internal	ROM (ROM configuration)	16 Kbytes (mask ROM)	24 Kbytes (mask ROM)	
memory High-speed RAM		512 bytes		
General-purpose	e registers	8 bits \times 32 registers (8 bits \times 8 registers	s \times 4 banks)	
	ction execution time	0.44 μs/0.88 μs/1.78 μs/3.56 μs/7.11 μs resonator used)		
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 		
I/O port		Total:62CMOS input:1CMOS I/O:54N-ch open-drain I/O:4N-ch open-drain output:3		
A/D converter		8-bit resolution \times 3 channels		
Serial interface		• 3-wire serial I/O mode: 1 channel		
Timer		 Basic timer (timer carry FF (10 Hz)): 8-bit timer/event counter: 	1 channel 2 channels	
Buzzer (BEEP)	output	1.5 kHz, 3 kHz, 6 kHz		
Vectored	Maskable	Internal: 5, external: 2		
interrupt sources	Software	1		
Test input		Internal: 1		
PLL frequency synthesizer	Division mode	Two types Direct division mode (VCOL pin) Pulse swallow mode (VCOH and VCO 	OL pins)	
	Reference frequency	7 types selectable by program (1, 3, 5	, 9, 10, 25, 50 kHz)	
	Charge pump	Error out output: 2		
	Phase comparator	Unlock detectable by program		
Frequency coun	ter	 Frequency measurement AMIFC pin: for 450 kHz count FMIFC pin: for 450 kHz/10.7 MHz count 		
Standby function	ſ	HALT mode STOP mode		
Reset		 Reset by RESET pin Reset by power-on clear circuit (3-value detection) Detection of less than 4.5 V^{Note} (CPU clock: fx) Detection of less than 3.5 V^{Note} (CPU clock: fx/2 or less and on power application) Detection of less than 2.5 V^{Note} (in STOP mode) 		
Supply voltage		 V_{DD} = 4.5 to 5.5 V (with PLL operating) V_{DD} = 3.5 to 5.5 V (with CPU operating, CPU clock: fx/2 or less) V_{DD} = 4.5 to 5.5 V (with CPU operating, CPU clock: fx) 		
Package		• 80-pin plastic QFP (14 × 14 mm, 0.65 mm pitch)		
One-time PROM	1	μPD178P018A		

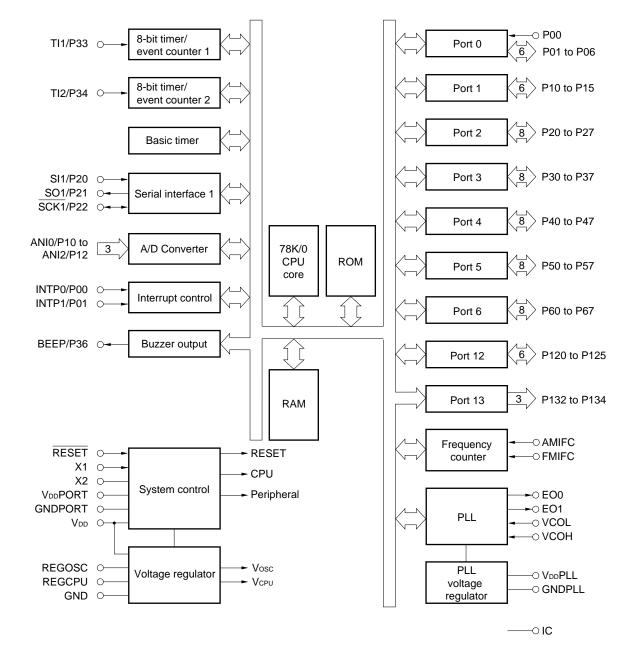

Note These voltage values are maximum values. The reset is actually executed at a voltage lower than these values.


TABLE OF CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	5
2.	BLOCK DIAGRAM	7
3.	PIN FUNCTIONS	-
	3.1 Port Pins	-
	3.2 Non-port Pins3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	
4.	MEMORY SPACE	
	PERIPHERAL HARDWARE FUNCTION FEATURES	
5.	5.1 Ports	
	5.2 Clock Generator	15
	5.3 Timer	
	5.4 Buzzer Output Control Circuit	
	5.5 A/D Converter	
	5.7 PLL Frequency Synthesizer	
	5.8 Frequency Counter	
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS	22
	6.1 Interrupt Functions	
	6.2 Test Function	25
7.	STANDBY FUNCTION	26
8.	RESET FUNCTION	26
9.	INSTRUCTION SET	27
10	. ELECTRICAL SPECIFICATIONS	29
11	. PACKAGE DRAWINGS	38
12	. RECOMMENDED SOLDERING CONDITIONS	39
AF	PPENDIX A. DIFFERENCES AMONG μ PD178003 AND μ PD178018A SUBSERIES	40
AF	PENDIX B. DEVELOPMENT TOOLS	41
AF	PENDIX C. RELATED DOCUMENTS	44

1. PIN CONFIGURATION (TOP VIEW)

80-PIN PLASTIC QFP (14 × 14 mm, 0.65 mm pitch) μPD178002GC-×××-3B9 μPD178003GC-×××-3B9


- 2. Connect VDDPORT and VDDPLL pins to VDD.
- 3. Connect the GNDPORT and GNDPLL pins to GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via a 0.1 μF capacitor.

NE	C
----	---

AMIFC:	AM Intermediate Frequency Counter Input	P60 to P67:	Port 6
★ ANI0 to ANI2:	A/D Converter Input	P120 to P125:	Port 12
BEEP:	Buzzer Output	P132 to P134:	Port 13
EO0, EO1:	Error Out Output	REGCPU :	Regulator for CPU Power Supply
FMIFC:	FM Intermediate Frequency Counter Input	REGOSC :	Regulator for Oscillator
GND:	Ground	RESET:	Reset Input
GNDPLL:	PLL Ground	SCK1:	Serial Clock Input/Output
GNDPORT:	Port Ground	SI1:	Serial Data Input
IC:	Internally Connected	SO1:	Serial Data Output
INTP0, INTP1	: Interrupt Inputs	TI1, TI2:	Timer Clock Input
P00 to P06:	Port 0	VCOL, VCOH:	Local Oscillator Input
P10 to P15:	Port 1	Vdd:	Power Supply
P20 to P27:	Port 2	VDDPLL:	PLL Power Supply
P30 to P37:	Port 3	VDDPORT:	Port Power Supply
P40 to P47:	Port 4	X1, X2:	Crystal Resonator Connection
P50 to P57:	Port 5		

*

2. BLOCK DIAGRAM

Remark The internal ROM capacity varies depending on the product.

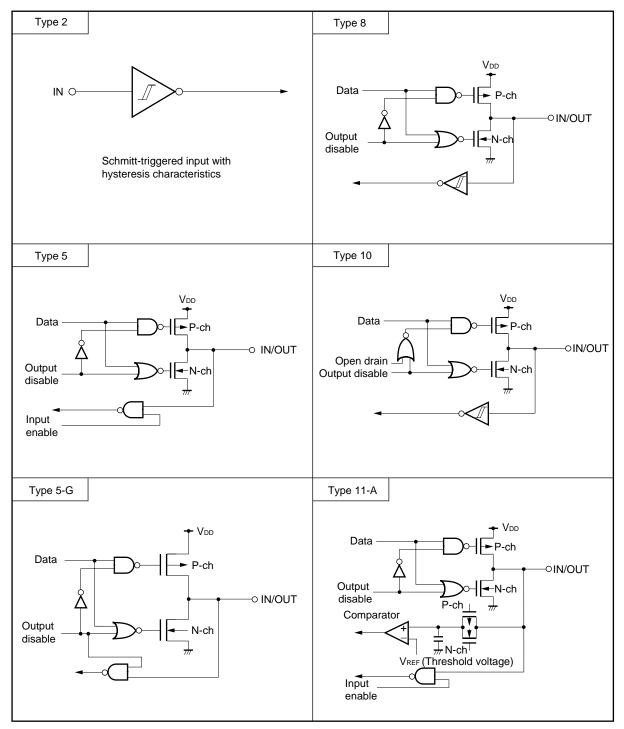
3. PIN FUNCTIONS

3.1 Port Pins

	Pin Name	I/O	Function		After Reset	Alternate Function
ſ	P00	00 Input Port 0		Input only	Input	INTP0
ſ	P01	I/O	7-bit input/output port	Input/output mode can be specified	Input	INTP1
ľ	P02 to P06			in 1-bit units.		_
ľ	P10 to P12	I/O	Port 1		Input	ANI0 to ANI2
ſ	P13 to P15			S-bit input/output port nput/output mode can be specified in 1-bit units.		
ſ	P20	I/O	Port 2		Input	SI1
ľ	P21		8-bit input/output port			SO1
ſ	P22		Input/output mode can be specified ir	1-bit units.		SCK1
ľ	P23 to P27					_
f	P30 to P32	I/O	Port 3		Input	_
F	P33		8-bit input/output port			TI1
f	P34		Input/output mode can be specified ir	1-bit units.		TI2
f	P35					_
ľ	P36					BEEP
t	P37					_
	P40 to P47	I/O	Port 4 8-bit input/output port Input/output mode can be specified ir The test input flag (KRIF) is set to 1 b	8-bit input/output port Input/output mode can be specified in 8-bit units.		
	P50 to P57	I/O	Port 5 8-bit input/output port Input/output mode can be specified ir	n 1-bit units.	Input	_
	P60 to P63	I/O	Port 6 8-bit input/output port	Middle voltage N-ch open-drain input/output port	Input	-
	P64 to P67		Input/output mode can be specified in 1-bit units.	LEDs can be driven directly.		
	P120 to P125	I/O	Port 12 6-bit input/output port Input/output mode can be specified in 1-bit units. Port 13 3-bit output port N-ch open-drain output port.			_
	P132 to P134	Output				_

3.2 Non-port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0, INTP1	Input	External maskable interrupt input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.		P00, P01
SI1	Input	Serial interface serial data input		P20
SO1	Output	Serial interface serial data output	Input	P21
SCK1	I/O	Serial interface serial clock input/output	Input	P22
TI1	Input	External count clock input to 8-bit timer (TM1)	Input	P33
TI2		External count clock input to 8-bit timer (TM2)		P34
BEEP	Output	Buzzer output	Input	P36
ANI0 to ANI5	Input	A/D converter analog input	Input	P10 to P15
EO0, EO1	Output	Error out output from charge pump of the PLL frequency synthesizer	_	_
VCOL	Input	Input Inputs PLL local band frequency (In HF, MF mode)		_
VCOH	Input	Inputs PLL local band frequency (In VHF mode)		_
AMIFC	Input	Inputs AM intermediate frequency counter	_	_
FMIFC	Input	Inputs FM intermediate frequency or AM intermediate frequency counter	_	_
RESET	Input	System reset input	-	_
X1	Input	Connecting crystal resonator for system clock oscillation	_	_
X2	_		_	_
REGOSC	—	Oscillation regulator. Connect to GND via a 0.1 μ F capacitor.	-	_
REGCPU	—	CPU power supply regulator. Connect to GND via a 0.1 μ F capacitor.	_	_
Vdd	_	Positive power supply	_	_
GND	—	Ground	_	_
	—	Positive power supply for port block	_	_
GNDPORT	_	Ground for port block	-	_
VDDPLLNote	_	Positive power supply for PLL	-	_
GNDPLL ^{Note}	-	Ground for PLL	-	-
IC	_	Internally connected. Connect directly to GND or GNDPORT.	-	-


Note Connect a capacitor of about 1000pF between the VDDPLL pin and GNDPLL pin.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins									
	P00/INTP0	2	Input	Connect to GND or GNDPORT.									
	P01/INTP1, P02 to P06	8	I/O	Set in general-purpose input port mode by software and									
	P10/ANI0 to P12/ANI2	11-A		independently connect to VDD, VDDPORT, GND, or GNDPORT									
*	P13 to P15	5		via a resistor.									
	P20/SI1	8											
	P21/SO1	5											
	P22/SCK1	8											
	P23	5											
	P24	8											
	P25 to P27	10											
-	P30 to P32	5											
	P33/TI1, P34/TI2	8											
	P35 P36/BEEP P37	5											
	P40 to P47	5-G											
	P50 to P57	5											
*	P60 to P63	13-G	-										
	P64 to P67	5	-										
	P120 to P125												
	P132 to P134	19	Output	Set to low-level output by software and leave open.									
	EO0, EO1	DTS-EO1		Leave open.									
	VCOL, VCOH	DTS-AMP	Input	Set to pin disabled status by software and leave open.									
	AMIFC, FMIFC	1											
	IC	—		Connect directly to GND or GNDPORT.									

Table 3-1. Types of Pin Input/Output Circuits

Figure 3-1. Pin Input/Output Circuits (1/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

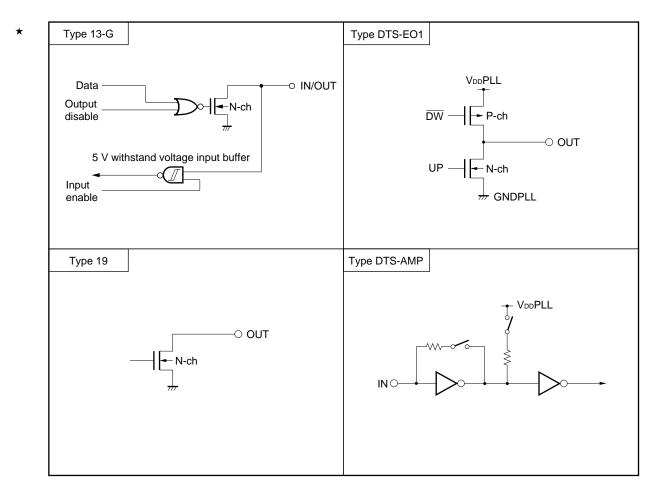


Figure 3-1. Pin Input/Output Circuits (2/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

4. MEMORY SPACE

Figure 4-1 shows the μ PD178002 and 178003 memory map.

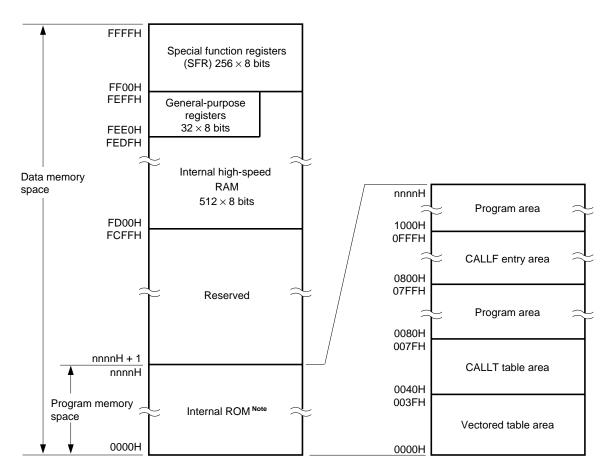


Figure 4-1. Memory Map

Note The internal ROM capacity depends on the product (see the following table).

Part Number	Last Address of Internal ROM nnnnH		
μPD178002	3FFFH		
μPD178003	5FFFH		

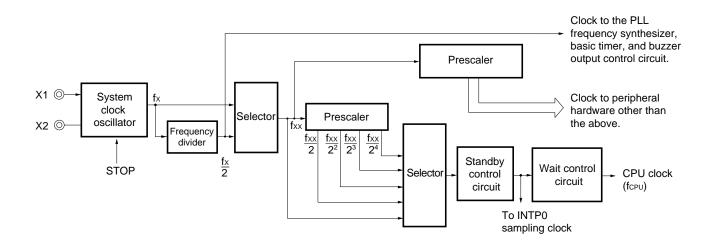
5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Ports

The following four types of I/O ports are available.

•	CMOS input (P00):	1
•	CMOS input/output (P01 to P06, port 1 to port 5, P64 to P67, port 12):	54
•	N-ch open-drain input/output (P60 to P63):	4
•	N-ch open-drain output (Port 13):	3
	Total:	62

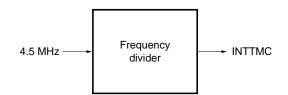
Table 5-1. Port Functions


Name	Pin Name	Function		
Port 0	P00	Input only		
	P01 to P06	Input/output port. Input/output can be specified in 1-bit units.		
Port 1	P10 to P15	Input/output port. Input/output can be specified in 1-bit units.		
Port 2	P20 to P27	Input/output port. Input/output can be specified in 1-bit units.		
Port 3	P30 to P37	Input/output port. Input/output can be specified in 1-bit units.		
Port 4	P40 to P47	out/output port. Input/output can be specified in 8-bit units. The test flag (KRIF) is set to 1 by falling edge detection.		
Port 5	P50 to P57	put/output port. Input/output can be specified in 1-bit units.		
Port 6	P60 to P63	I-ch open-drain input/output port. Input/output can be specified in 1-bit units. EDs can be driven directly.		
	P64 to P67	Input/output port. Input/output can be specified in 1-bit units.		
Port 12	P120 to P125	Input/output port. Input/output can be specified in 1-bit units.		
Port 13	P132 to P134	N-ch open-drain output port.		

5.2 Clock Generator

The instruction execution time can be changed as follows.

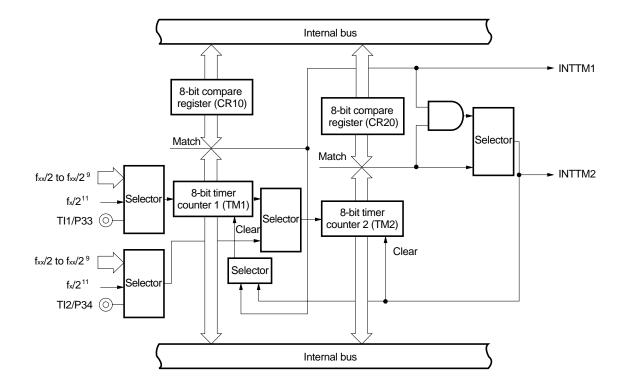
0.44 μ s/0.88 μ s/1.78 μ s/3.56 μ s/7.11 μ s/14.22 μ s (4.5 MHz crystal resonator for system clock.)

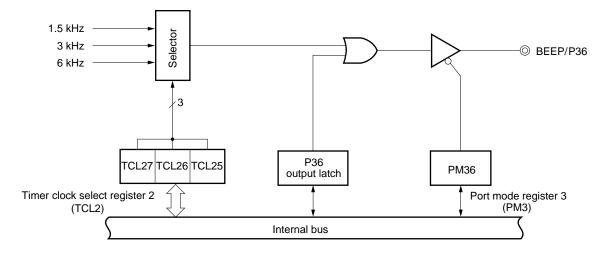


5.3 Timer

Three timer channels are incorporated.

- Basic timer: 1 channel
- 8-bit timer/event counter: 2 channels

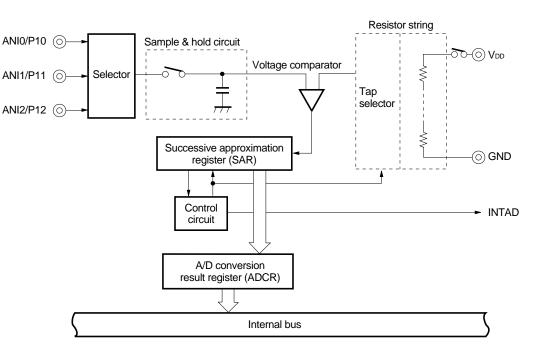



Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter

5.4 Buzzer Output Control Circuit

Clocks with the following frequencies can be output as buzzer (BEEP) output.

• 1.5 kHz/3 kHz/6 kHz (4.5 MHz crystal resonator for system clock)



★ 5.5 A/D Converter

An A/D converter consisting of three 8-bit resolution channels is incorporated. The following two A/D conversion operation start-up methods are available.

- Hardware start
- Software start

5.6 Serial Interfaces

One clocked serial interface channel is incorporated.

Serial interface channel 1 operates in the 3-wire serial I/O mode where MSB/LSB first can be switched.

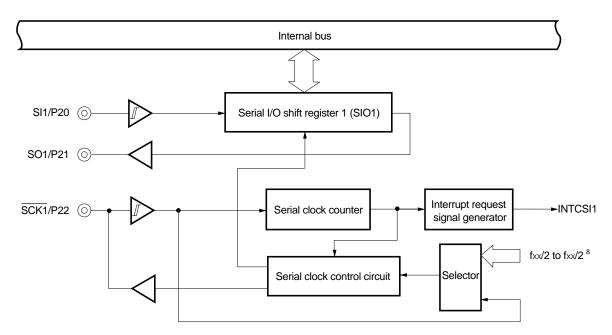


Figure 5-6. Block Diagram of Serial Interface Channel 1

5.7 PLL Frequency Synthesizer

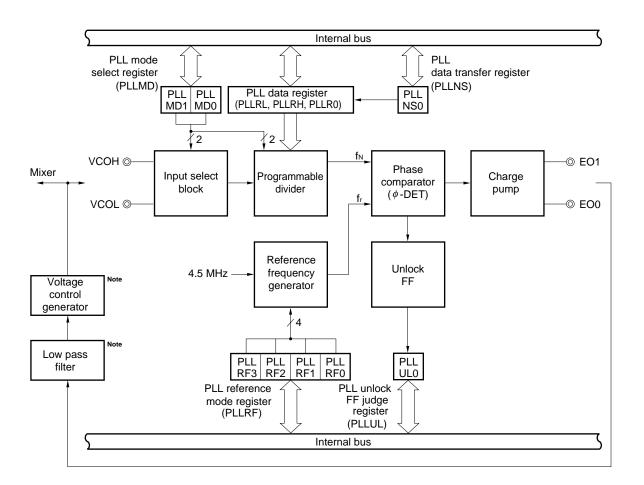


Figure 5-7. Block Diagram of PLL Frequency Synthesizer

Note External circuit

5.8 Frequency Counter

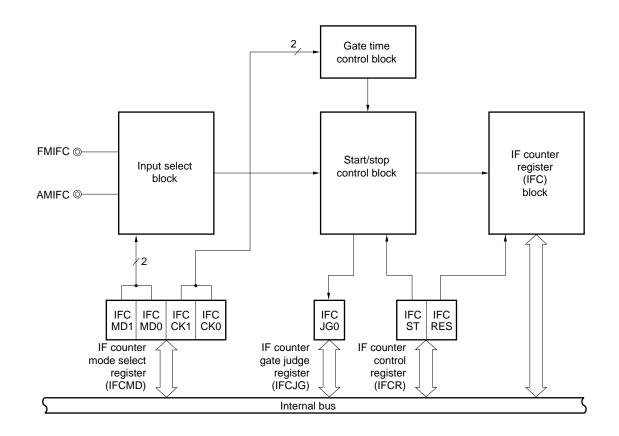


Figure 5-8. Frequency Counter Block Diagram

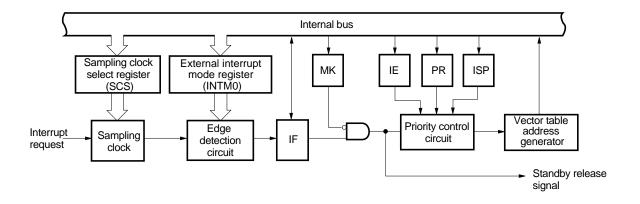
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

A total of 8 interrupt sources are provided, divided into the following two types.

- Maskable: 7
- Software: 1

Interrupt	Note 1 Default	Interrupt Source		Internal/	Vector Table	Basic Configuration
Туре	Priority	Name	Trigger	External	Address	TypeNote 2
Maskable	0	INTP0 Pin input edge detection E		External	0006H	(A)
	1	INTP1			0008H	(B)
	2	INTCSI1	End of serial interface channel 1 transfer	Internal	0016H	(C)
	3	INTTMC	Generation of matching signal of basic timer		0018H	
	4INTTM1Generation of matching signal of 8-bit timer/event counter 15INTTM2Generation of matching signal of 8-bit timer/event counter 2			001CH		
				001EH		
	6	INTAD	End of conversion by A/D converter		0020H	
Software	—	BRK	Execution of BRK instruction	_	003EH	(D)


Table 6-1. Interrupt Source List

Notes 1. The default priority is a priority order when several maskable interrupts are generated at the same time.0 is the highest order and 6 is the lowest order.

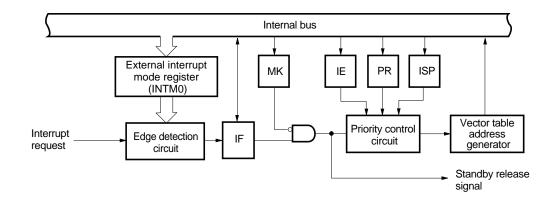
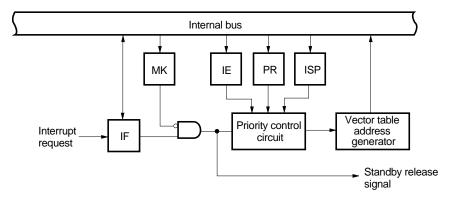

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 6-1.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)

(A) External maskable interrupt (INTP0)



(B) External maskable interrupt (INTP1)

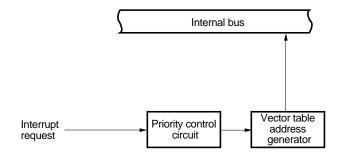
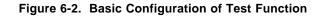


Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(C) Internal maskable interrupt

(D) Software interrupt


- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag

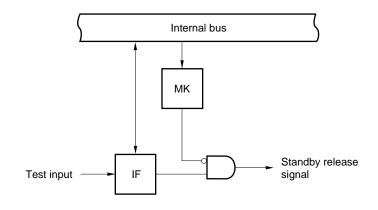
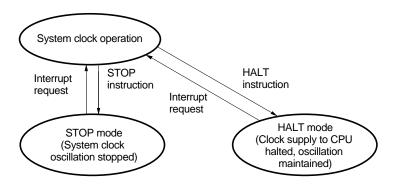

6.2 Test Function

Table 6-2 shows a test function available.

Table 6-2. Test Input Source List

	Test Input Source	Internal/External			
Name					
INTPT4	Port 4 falling edge detection	External			

IF: Test input flag


MK: Test mask flag

7. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

Figure 7-1. Standby Function

8. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by Power On Clear (POC).

9. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B,C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]													
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

*

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
Input voltage	Vi				-0.3 to V _{DD} + 0.3	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Output withstand voltage	VBDS	P132 to P134 N-ch open drain			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P12	Analog input pin		-0.3 to V _{DD} + 0.3	V
Output current, high	Іон	Per pin		-10	mA	
		Total for P01 to F P60 to P67, P120	P06, P30 to P37, P56, P57 D to P125	,	-15	mA
		Total for P10 to F P55, P132 to P13	P15, P20 to P27, P40 to P4 34	47, P50 to	-15	mA
Output current, low	IOL Note	Per pin		Peak value	15	mA
				rms value	7.5	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Recommended Supply Voltage Ranges (T_A = -40 to $+85^{\circ}$ C)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Supply voltage	V _{DD1}	During CPU operation and PLL operation.	4.5		5.5	V
	Vdd2	While the CPU is operating and the PLL is stopped. Cycle time: $T_{CY} \ge 0.89 \ \mu s$	3.5		5.5	V
	Vdd3	While the CPU is operating and the PLL is stopped. Cycle time: $T_{CY} = 0.44 \ \mu s$	4.5		5.5	V

Remark Tcy: Cycle time (minimum instruction execution time)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0.7Vdd		Vdd	V
	VIH2	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0.85Vdd		Vdd	V
	Vінз	P60 to P63 (N-ch open drain)		0.7Vdd		Vdd	V
	VIL1	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0		0.3Vdd	V
	VIL2	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0		0.15Vdd	V
	VIL3	P60 to P63 (N-ch open drain)		0		0.2Vdd	V
Output voltage, high	Vон1		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{IOH} = -1 \text{ mA}$	Vdd - 1.0			V
			$3.5 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V},$ IOH = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1	P50 to P57, P60 to P63	VDD = 4.5 to 5.5 V, IOH = 15 mA		0.4	2.0	V
		P01 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P120 to P125, P132 to P134	VDD = 4.5 to 5.5 V, IOL = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	V_{DD} = 4.5 to 5.5 V, N-ch open drain, pulled-up (R = 1 K Ω)			0.2Vdd	V

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)

(1/3)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

(2/3)

(1/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage	ILIH1	P00 to P06, P10 to P15, P20 to P27,	Vin = Vdd			3	μA
current, high		P30 to P37, P40 to P47, P50 to P57,					
		P64 to P67, P120 to P125, RESET					
	ILIH2	P60 to P63	Vin = Vdd			80	μA
Input leakage		P00 to P06, P10 to P15, P20 to P27,	VIN = 0 V			-3	μA
current, low		P30 to P37, P40 to P47, P50 to P57,					
		P64 to P67, P120 to P125, RESET					
	ILIL2	P60 to P63				-3 ^{Note}	μA
Output leakage	Ісон	P132 to P134	Vout = Vdd			3	μA
current, high							
Output leakage	ILOL	P132 to P134	Vout = 0 V			-3	μA
current, low							
Output off leakage	LOF	EO0, EO1	Vout = Vdd,			±1	μA
current			Vout = 0 V				

Note When an input instruction is executed to P60 to P63, a low-level input leakage current of $-200 \ \mu\text{A}$ (MAX.) flows only for one clock. At times other than this 1-clock interval, a $-3 \ \mu\text{A}$ (MAX.) current flows.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Reference Characteristics (T_A = 25° C, V_{DD} = 5 V)

Parameter Symbol Conditions MIN. TYP. MAX. Unit EO0 VOUT = VDD - 1 V-4 Output current, high ЮН1 mΑ EO1 -1.8 mΑ EO0 Output current, low **I**OL1 Vout = 1 V 6 mΑ EO1 3.5 mΑ

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

(3/3)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Power supply current ^{Note 1}	Idd1	While the CPU is operating and the PLL is stopped	T _{CY} = 0.89 μs ^{Note 2}		2.5	15	mA
	IDD2	fx = 4.5 MHz operation	$T_{CY} = 0.44 \ \mu s^{Note 3}$ V_DD = 4.5 to 5.5 V		4.0	27	mA
	Іддз	While the CPU is operating and the PLL is stopped HALT Mode	Tcy = 0.89 μs ^{Note 2}		0.7	1.5	mA
	Idd4	Pin X1 sine wave input $V_{IN} = V_{DD}$. fx = 4.5 MHz operation	$T_{CY} = 0.44 \ \mu s^{Note 3}$ V _{DD} = 4.5 to 5.5 V		1.0	2.0	mA
Data retention	Vddr1	When the crystal oscillation	Tcy = 0.44 μs	4.5		5.5	V
power supply voltage	Vddr2	is operating	Tcy = 0.89 μs	3.5		5.5	V
	Vddr3	When the crystal oscillation When power off by power or		2.6		5.5	V
Data retention	DDR1	When the crystal oscillation	$T_A = 25^{\circ}C, V_{DD} = 5 V$		2	4	μΑ
power supply current	IDDR2	is stopped			2	30	μΑ

Notes 1. The current flowing to the ports is not included.

- 2. When the processor clock control register (PCC) is set to 00H, and the oscillation mode select register (OSMS) is set to 00H.
- **3.** When PCC is set to 00H and OSMS is set to 01H.

Remarks 1. Tcy: Cycle time (minimum instruction execution time)

2. fx: System clock oscillation frequency.

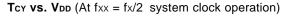
Reference Characteristics ($T_A = 25^{\circ}C$, $V_{DD} = 5 V$)

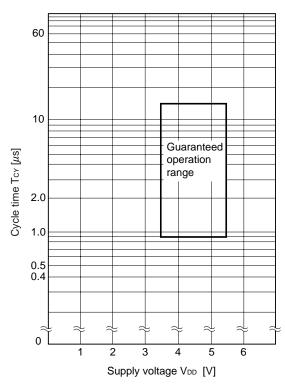
Parameter Symbol Conditions MIN. TYP. MAX. Unit Tcy = 0.44 μs^{Note} 7 Power supply During CPU operation DD5 mΑ current and PLL operation. VCOH pin sine wave input $f_{IN} = 130 \text{ MHz},$ $V_{IN} = 0.15 V_{p-p}$

Note When the processor clock control register (PCC) is set to 00H, and the oscillation mode select register (OSMS) is set to 01H.

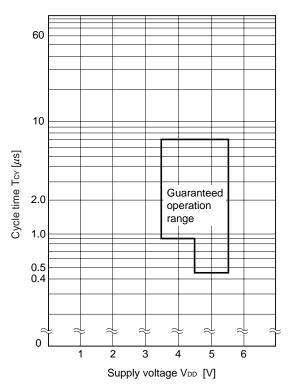
Remark Tcy: Cycle time (minimum instruction execution time)

(2/2)


AC Characteristics


Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	$f_{xx} = f_x/2^{\text{Note 1}}$, $f_x = 4.5 \text{ MH}$	$x = fx/2^{Note 1}$, fx = 4.5 MHz operation			14.22	μs
(Minimum instruction execution time)		$f_{XX} = f_X^{Note 2},$	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0.44		7.11	μs
		fx = 4.5 MHz operation	$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0.89		7.11	μs
TI1, TI2 input	fтı	$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		0		4.5	MHz
frequency		$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		275	kHz	
TI1, TI2 input high-/	tтıн,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				ns
low-level width	t⊤ı∟	$3.5 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$		1.8			μs
Interrupt input high-/	tınтн,	INTP0		8/fsamNote 3			μs
low-level width	t intl	INTP1		10			μs
RESET low level	trsl		10			μs	
width							

(1) Basic operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 3.5$ to 5.5 V)


Notes 1. When the oscillation mode select register (OSMS) is set to 00H.

- 2. When OSMS is set to 01H.
- Selection of fsam = fxx/2^N, fxx/32, fxx/64, fxx/128 is possible with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS) (when N = 0 to 4).
- Remarks 1. fxx: System clock frequency (fx or fx/2)
 - 2. fx: System clock oscillation frequency

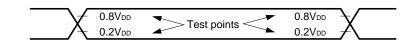
TCY **vs. V**DD (At fxx = fx system clock operation)

- (2) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 3.5 to 5.5 V)
 - (a) Serial interface channel 1

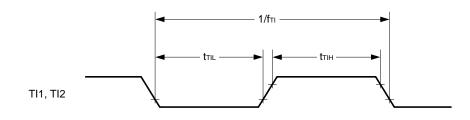
(i) 3-wire serial I/O mode (SCK1 ... internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү1	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
SCK1 high-/low-level width	tкнı,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	tксү9/2 – 50			ns
	t ĸ∟1	$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	tксү9/2 – 100			ns
SI1 setup time (to $\overline{\text{SCK1}}$)	tsik1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
		$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
SI1 hold time (from $\overline{\text{SCK1}}$)	tksi1		400			ns
SO1 output delay time from $\overline{\text{SCK1}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

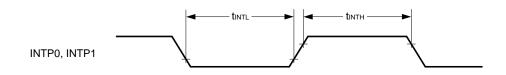
Note C is the load capacitance of the SO1 output line.

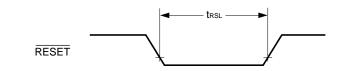

(ii) 3-wire serial I/O mode (SCK1 ... external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү2	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
SCK1 high-/low-level width	tкн2,	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
	tĸl2	$3.5 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	800			ns
SI1 setup time (to SCK1↑)	tsik2		100			ns
SI1 hold time (from $\overline{\text{SCK1}}$)	tksi2		400			ns
SO1 output delay time from $\overline{\text{SCK1}}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns
SCK1 rise/fall time	tr2, tr2				1000	ns

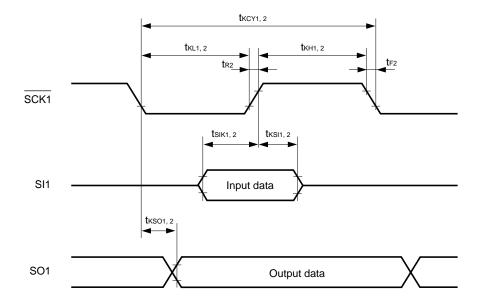

Note C is the load capacitance of the SO1 output line.

NEC


AC Timing Test Points (excluding X1 input)


TI Timing

Interrupt Input Timing



RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

A/D Converter Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

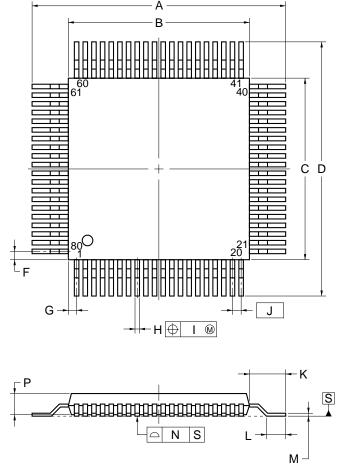
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Conversion overall error					±3.0	LSB
Conversion time	tconv		22.2		44.4	μs
Sampling time	t SAMP		15/fxx			μs
Analog input voltage	Vian		0		Vdd	V

Remarks 1. fxx: System clock frequency (fx/2)

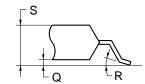
2. fx: System clock oscillation frequency

PLL Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Operating	$\label{eq:operating} Operating \qquad f_{IN1} \qquad VCOL \ pin \ MF \ mode \ Sine \ wave \ input \ V_{IN} = 0.1 \ V_{p-p}$		0.5		3	MHz
frequency	fin2	VCOL pin HF mode Sine wave input $V_{IN} = 0.2 V_{p \cdot p}$	9		55	MHz
f _{IN3} VCOH pin VHF mode Sine wave input $V_{IN} = 0.15 V_{p-p}$		60		160	MHz	


IFC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Operating frequency	fin4	AMIFC pin AMIF count mode Sine wave input $V_{IN} = 0.1 V_{P:P}^{Note}$			0.5	MHz
liequonoy	fin5	FMIFC pin FMIF count mode Sine wave input $V_{IN} = 0.1 V_{PP}^{Note}$			11	MHz
	fing	FMIFC pin AMIF count mode Sine wave input $V_{IN} = 0.1 V_{p \cdot p}^{Note}$	0.4		0.5	MHz


Note The condition of a sine wave input of $V_{IN} = 0.1 V_{p-p}$ is the standard value of this device during standalone operation, so in consideration of the effect of noise, operation of an input amplitude condition of $V_{IN} = 0.15 V_{p-p}$ is recommended.

11. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	
А	17.2±0.4	
В	14.0±0.2	
С	14.0±0.2	
D	17.2±0.4	
F	0.825	
G	0.825	
Н	0.30±0.10	
I	0.13	
J	0.65 (T.P.)	
К	1.6±0.2	
L	0.8±0.2	
М	$0.15\substack{+0.10 \\ -0.05}$	
N	0.10	
Р	2.7±0.1	
Q	0.1±0.1	
R	5°±5°	
S	3.0 MAX.	
	S80GC-65-3B9-6	

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD178002 and 178003 should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E).**

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions

$\label{eq:point} \begin{array}{ll} \mu \mbox{PD178002GC-}{$\times\!\!\times\!\!\times\!\!-\!\!3B9\!\!:} & \mbox{80-pin plastic QFP (14 \times 14 mm, 0.65 mm pitch)} \\ \mu \mbox{PD178003GC-}{$\times\!\!\times\!\!\times\!\!-\!\!3B9\!\!:} & \mbox{80-pin plastic QFP (14 \times 14 mm, 0.65 mm pitch)} \end{array}$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	—

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DIFFERENCES AMONG μ PD178003 AND μ PD178018A SUBSERIES

Product Name µPD178003 Subserie			μPD178018A Subseries		
Items		μPD178003	μPD178006A	μPD178018A	μPD178P018A
ROM		24 Kbytes (Mask ROM)	48 Kbytes (Mask ROM)	60 Kbytes 60 Kbyte (Mask ROM) (One-tim	
RAM High-speed RAM		512 bytes	1024 byte		
	Buffer RAM	Not provided	32 bytes		
	Expanded RAM	Not provided		2048 bytes	
Timer Serial interface		3 channels • Basic timer: 1 channel • 8-bit timer/event counter: 2 channels 1 channel • 3-wire mode:	5 channels • Basic timer: • 8-bit timer/event cou • 8-bit timer: • Watchdog timer: 2 channels • 3-wire/SBI/2-wire/I ² C	1 channel 1 channel	: 1 channel
	averter	1 channel	3-wire serial I/O mode (automatic data transmit/receive fun for up to 32 bytes provided on chip): 1 channel		smit/receive function
			6 channels		
EO1 pin output circuit Buffer type		Not provided Buffer type (high impedance funct	Provided Buffer type (high impedance function supported)		ction supported)

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD178003 Subseries. Also refer to (5) Cautions on using development tools.

(1) Language processing software

RA78K0	Assembler package common to 78K/0 Series
CC78K0	C compiler package common to 78K/0 Series
DF178018	Device file for μ PD178003 and μ PD178018A Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(2) PROM writing tools

PG-1500	PROM programmer
PG-178P018GC	Programmer adapters connected to PG-1500
PA-178P018KK-T	
PG-1500 controller	PG-1500 control program

(3) Debugging tools

*

• When IE-78K0-NS in-circuit emulator is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA ^{Note}	Performance board for enhancing and extending the function of the IE-78K0-NS
IE-70000-98-IF-C	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when using notebook PC of PC-9800 series as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT™-compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Interface adapter required when using a PCI bus incorporated computer as host machine
IE-178018-NS-EM1	Emulation board to emulate μ PD178003, 178018A Subseries
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-3B9 type)
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF178018	Device file for μ PD178003 and μ PD178018A Subseries

Note Under development

• When IE-78001-R-A in-circuit emulator is used

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT-compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Adapter required when using a PCI bus incorporated computer as host machine
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-178018-NS-EM1	Emulation board to emulate μ PD178003, 178018A Subseries
IE-78K0-R-EX1	Emulation probe conversion board required when using IE-178018-NS-EM1 on IE-78001-R-A
IE-178018-R-EM	Emulation board to emulate μ PD178003, 178018A Subseries
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-3B9 type)
EV-9900	Tool used for removing µPD178P018AKK-T from EV-9200GC-80
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0 System simulator common to 78K/0 Series	
DF178018 Device file for µPD178003 and µPD178018A Subseries	
	IE-70000-98-IF-C IE-70000-PC-IF-C IE-78000-PCI-IF IE-78000-R-SV3 IE-178018-NS-EM1 IE-78K0-R-EX1 IE-178018-R-EM EP-78230GC-R EV-9200GC-80 EV-9900 ID78K0 SM78K0

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF178018.
- The RX78K/0 is used in combination with the RA78K0 and the DF178018.
- The NP-80GC is a product made by Naito Densei Machida Mfg. Co., Ltd (TEL +81-44-822-3813). Contact an NEC distributor regarding the purchase of this product.
- For third party development tools, see the Single-chip Microcontroller Development Tools Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT-compatible	SPARCstation [™] [SunOS [™] and Solaris [™]]
Software	[Japanese/English Windows]	NEWS (RISC)™ [NEWS-OS™]
RA78K0	√Note	\checkmark
CC78K0	√Note	\checkmark
PG-1500 controller	√Note	_
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	—
RX78K/0	\sqrt{Note}	\checkmark
MX78K0	\sqrt{Note}	\checkmark

Note DOS-based software

APPENDIX C. RELATED DOCUMENTS

Documents Related to Devices

	Document Name		Document No.	
			English	Japanese
	µPD178P018A Data Sheet		U12642E	U12642J
*	µPD178003 Subseries User's Manual		U13033E	U13033J
	78K/0 Series User's Manual—Instruction		U12326E	U12326J
	78K/0 Series Instruction Set			U10904J
	78K/0 Series Instruction Table	_	_	U10903J
	78K/0 Series Application Note	Basics (II)	U10121E	U10121J

Documents Related to Development Tools (User's Manuals)

	Document Name		Document No.	
			English	Japanese
	RA78K0 Assembler Package	Operation	U11802E	U11802J
		Assembly Language	U11801E	U11801J
		Structured Assembly Language	U11789E	U11789J
	RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
	CC78K0 C Compiler	Operation	U11517E	U11517J
		Language	U11518E	U11518J
	PG-1500 PROM Programmer		U11940E	U11940J
	PG-1500 Controller PC-9800 series (MS-DOS) Based		EEU-1291	EEU-704
	PG-1500 Controller IBM PC series (PC DOS) Based		U10540E	EEU-5008
*	IE-78K0-NS		_	U13731J
	IE-78001-R-A		To be prepared	To be prepared
	IE-78K0-R-EX1		To be prepared	To be prepared
*	IE-178018-NS-EM1		U14012E	U14012J
	IE-178018-R-EM		U10668E	U10668J
	EP-78230		EEU-1515	EEU-985
	SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
	SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
★	ID78K0-NS Integrated Debugger Windows Based	Reference	U12900E	U12900J
	ID78K0 Integrated Debugger EWS Based	Reference	_	U11151J
	ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J
	ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

 \star

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		English	Japanese
78K/0 Series Real-Time OS	Fundamentals	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	U12257E	U12257J

Other Related Documents

Document Name	Document No.	
	English	Japanese
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Microcomputer-Related Products by Third Party		U11416J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845	NEC Electronics H Hong Kong Tel: 2886-9318 Fax: 2886-9022/904
Fax: 408-588-6130 800-729-9288	Fax: 040-2444580	NEC Electronics H
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99	Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860	NEC Electronics Sing United Square, Sing Tel: 65-253-8311 Fax: 65-250-3583
NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820	NEC Electronics Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951
	Fax: 08-63 80 388	NEC do Brasil S.A Electron Devices Div Rodovia Presidente 07210-902-Guarulho

Hong Kong Ltd. 44

Hong Kong Ltd.

ngapore Pte. Ltd. gapore 1130

Taiwan Ltd.

Α. ivision e Dutra, Km 214 os-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.