
Continental Device India Limited

An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

PNP SILICON PLANAR EPITAXIAL TRANSISTORS

PN4354 PN4355 PN4356

TO-92 Plastic Package

General Purpose Amplifiers

DESCRIPTION	SYMBOL	4354	4355	4356	UNITS
Collector Emitter Voltage	V_{CEO}	60	60	80	V
Collector Base Voltage	V_{CBO}	60	60	80	V
Emitter Base Voltage	V_{EBO}		5		V
Collector Current - Continuous	I _C		500		mA
Power Dissipation@Ta=25°C	P_{D}		625		mW
Power Dissipation@ Tc=25°C	P_{D}		1.0		mW
Operating And Storage Junction	T_{j},T_{stg}		-55 to +150		°C
Temperature Range					

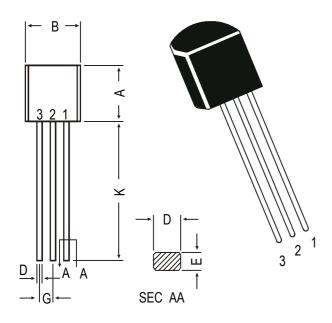
ELECTRICAL CHARACTERISTICS (Ta=25°C Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITION	4354	4355	4356	UNITS
Collector Emitter Voltage	$V_{CEO(sus)^*}$	I_C =10mA, I_B =0 (pulsed)	>60	>60	>80	V
Collector Base Voltage	V_{CBO}	$I_C=10uA, I_E=0$	>60	>60	>80	V
Emitter Base Voltage	V_{EBO}	$I_E=10uA,I_C=0$		>5		V
Collector-Cut off Current	I_{CBO}	$V_{CB} = 50V, I_{E} = 0$			<50	nA
		$Vc_B = 50V, I_E = 0,$				
		Ta =75°C			<5	uA
Emitter Cut off Current	I_{EBO}	$V_{BE} = 4V, I_{C} = 0$			<100	nA
DC Current Gain						
	h _{FE} *	V_{CE} =10 V_{IC} =100 uA	>25	>60	>25	
		$V_{CF}=10V,I_{C}=1mA$	>40	>75	>40	
		$V_{CF} = 10V, I_{C} = 10mA$	50-500	100-400	50-250	
		V_{CE} =10 V , I_{C} =100 m A	>40	>75	>40	
		V _{CF} =10V,I _C =500mA	>30	>75	>30	
		32				
Commom Emitter Small						
Signal Current Gain	l h _{fe} l	I _C =50mA, V _{CE} =10V	1.0-5.0	1.0 - 1.5	1.0 - 5.0	
3	ic	f=100MHz				
Collector Emitter Sat Voltage	V _{CE} (sat)	* I _C =150mA,I _B =15mA	<0.15	<0.15	<0.15	V
_		$I_C=500$ mA, $I_B=50$ mA	<0.5	<0.5	<0.5	V
PN43	355	I _C =1A,I _B =100mA		<1.0		V

PNP SILICON PLANAR EPITAXIAL TRANSISTORS

PN4354 PN4355 PN4356

TO-92 Plastic Package

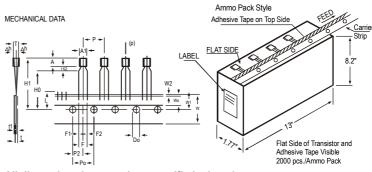

ELECTRICAL CHARACTERISTICS (Ta=25°C Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITION	4354	4355	4356	UNITS
Base Emitter Sat Voltage	$V_{BE(sat)^*}$	I_C =150mA, I_B =15mA	<0.9	<0.9	<0.9	V
		I_C =500mA, I_B =50mA	<1.1	<1.1	<1.1	V
		$I_C=1A,I_B=100mA$		<1.2		V
PN435	5					
	$V_{BE(on)^*}$	I_C =500mA, V_{CE} =0.5V	<1.1	<1.1	<1.1	V
Base Emitter On Voltage		$I_C=1A, V_{CE}=1V$		<1.2		V
PN435	5					

SYMBOL	TEST CONDITION	4354	4355	4356	UNITS
$C_{\sf cb}$	$I_E=0, V_{CB}=10V,$ f=1.0MH ₂	<30	<30	<30	₽F
C_{eb}	$I_C=0, V_{EB}=0.5V,$	<110	<110	<110	₽F
ton	I _C =500mA,I _{B1} =50mA, V _{CC} =30V	<100	<100	<100	РF
toff	I _C =500mA,I _{B1=} I _{B2} =50mA,	<400	<400	<400	ns
	v.CC −200 v	\400	\400	\400	115
NF	$V_{CE} = 10V, I_{C} = 100uA$ $R_{S} = 1K\Omega, f = 1kH_{Z},$ $B_{W} = 1H_{Z}$	<3.0	<3.0	<3.0	dB
	C _{cb} C _{eb} ton	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lllll} C_{cb} & I_{E}\text{=}0, V_{CB}\text{=}10\text{V}, & <30\\ & \text{f=}1.0\text{MH}_{Z} & <110\\ C_{eb} & I_{C}\text{=}0, V_{EB}\text{=}0.5\text{V}, & <110\\ & \text{f=}1.0\text{MH}_{Z} & & <100\\ & V_{CC}\text{=}30\text{V} & & <100\\ & V_{CC}\text{=}30\text{V} & & <100\\ & V_{CC}\text{=}30\text{V} & & <400\\ & & V_{CC}\text{=}30\text{V} & & <400\\ & & V_{CE}\text{=}10\text{V}, I_{C}\text{=}100\text{uA} & <3.0\\ & & R_{S}\text{=}1\text{K}\Omega, \text{f=}1\text{kH}_{Z}, & & <30\\ & & & & & <3.0\\ & & & & & & <30\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & & & & <3.0\\ & & & &$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TO-92 Plastic Package

TO-92 Plastic Package



PIN CONFIGURATION

- 1. COLLECTOR
- 2. BASE
- 3. EMITTER

	DIM	MIN.	MAX.			
	Α	4.32	5.33			
	В	4.45	5.20			
	C	3.18	4.19			
	D	0.41	0.55			
	Е	0.35	0.50			
=	F	5 DEG				
5	G	1.14	1.40			
	Η	1.14	1.53			
	K	12.70	_			

TO-92 Transistors on Tape and Ammo Pack

All dimensions in mm unless specified otherwise

ITEM			SPECIF	ICATIO	N	
ITEM	SYMBOL	MIN.	NOM.	MAX.	TOL .	REMARKS
BODY WIDTH	A1	4.0		4.8		
BODY HEIGHT	A A	4.8		5.2 4.2		
BODY THICKNESS PITCH OF COMPONENT	T P	3.9	12.7	4.2	.,	
FEED HOLE PITCH	Po		12.7		±1 ±0.3	CUMULATIVE PITCH ERROR 1.0 mm/20
FEED HOLE CENTRE TO						PITCH
COMPONENT CENTRE	P2		6.35		±0.4	TO BE MEASURED AT BOTTOM OF CLINCH
DISTANCE BETWEEN OUTER	_		l <u></u>		+0.6	
LEADS	F		5.08	1	-0.2	AT TOD OF DODY
COMPONENT ALIGNMENT TAPE WIDTH	∆h W		0 18	l '	±0.5	AT TOP OF BODY
HOLD-DOWN TAPE WIDTH	Wo		6		±0.3	
HOLE POSITION	W1		9		+0.7 -0.5	
HOLD-DOWN TAPE POSITION	W2		0.5		±0.2	
LEAD WIRE CLINCH HEIGHT	Ho		16		±0.5	
COMPONENT HEIGHT	H1			23.25		
LENGTH OF SNIPPED LEADS FEED HOLE DIAMETER	L Do		4	11.0	±0.2	
TOTAL TAPE THICKNESS	t bo		*	1.2	±0.2	t1 0.3 - 0.6
LEAD - TO - LEAD DISTANCEF1,	F2		2.54	2	+0.4 -0.1	11 0.0 0.0
CLINCH HEIGHT	H2			3		
PULL - OUT FORCE	(P)	6N				

- NOTES

 1. MAXIMUM ALIGNMENT DEVIATION BETWEEN LEADS NOT TO BE GREATER THAN 0.2 mm.
 2. MAXIMUM NON-CUMULATIVE VARIATION BETWEEN TAPE FEED HOLES SHALL NOT EXCEED 1 mm IN 20
- PITCHES.

 3. HOLDDOWN TAPE NOT TO EXCEED BEYOND THE EDGE(S) OF CARRIER TAPE AND THERE SHALL BE NO EXPOSURE OF ADHESIVE.

 4. NO MORE THAN 3 CONSECUTIVE MISSING COMPONENTS ARE PERMITTED.

 5. A TAPE TRAILER, HAVING AT LEAST THREE FEED HOLES ARE REQUIRED AFTER THE LAST COMPONENT.

- 6. SPLICES SHALL NOT INTERFERE WITH THE SPROCKET FEED HOLES.

Packing Detail

PACKAGE	STANDARD PACK		INNER CARTO	N BOX	OUTER CARTON BOX		
	Details	Net Weight/Qty	Size	Qty	Size	Qty	Gr Wt
TO-92 Bulk	1K/polybag	200 gm/1K pcs	3" x 7.5" x 7.5"	5.0K	17" x 15" x 13.5"	80.0K	23 kgs
T0-92 T&A	2K/ammo box	645 gm/2K pcs	12.5" x 8" x 1.8"	2.0K	17" x 15" x 13.5"	32.0K	12.5 kgs

Notes

PN4354 PN4355 PN4356

TO-92 Plastic Package

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119

email@cdil.com, www.cdilsemi.com

PN4354 56REV081001