

November 2013

FDD850N10LD BoostPak (N-Channel PowerTrench[®] MOSFET + Diode) 100 V, 15.3 A, 75 mΩ

Features

- $R_{DS(on)}$ = 61 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 12 A
- R_{DS(on)} = 64 mΩ (Typ.) @ V_{GS} = 5.0 V, I_D = 12 A
- Low Gate Charge (Typ. 22.2 nC)
- Low C_{rss} (Typ. 42 pF)
- · Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

The NP diode is hyperfast rectifier with low forward voltage drop and excellent switching performance.

3

ž

-0 4,5

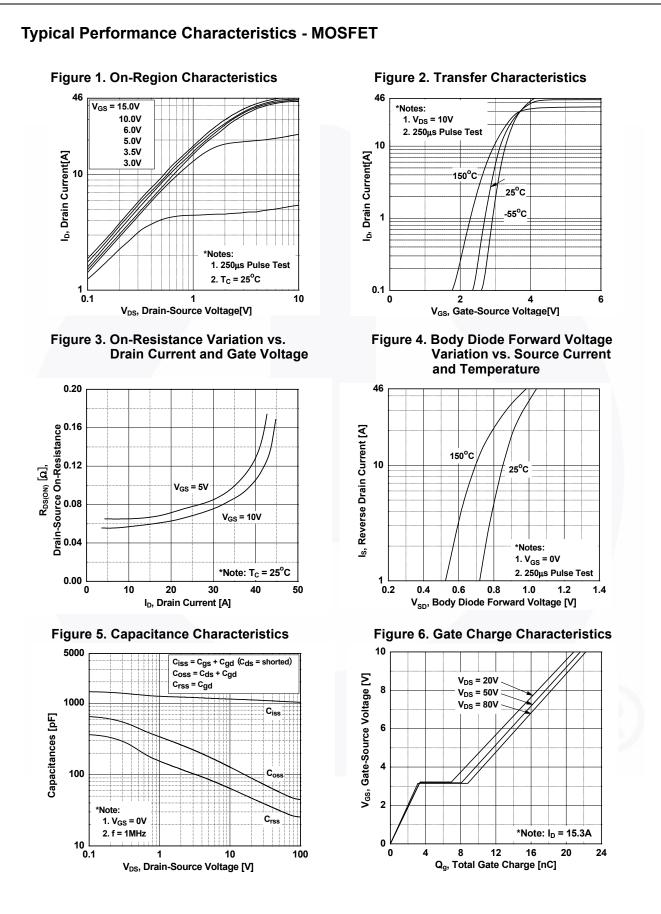
Applications

- LED Monitor Backlight
- LED TV Backlight
- LED Lighting
- Consumer Appliances, DC-DC converter (Step up & Step down)

10

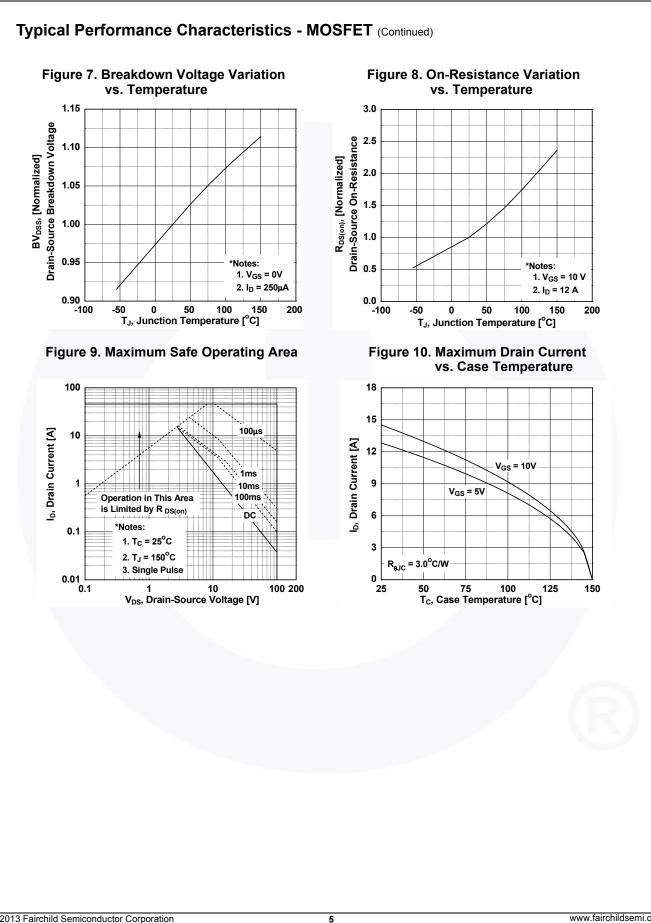
Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter	FDD850N10LD	Unit	
V _{DSS}	Drain to Source Voltage	100	V		
V _{GSS}	Gate to Source Voltage		±20	V	
b Durin Original	Drain Current	- Continuous (T _C = 25 ^o C)	15.3	Α	
I _D	Drain Current	- Continuous (T _C = 100 ^o C)	9.7		
I _{DM}	Drain Current	- Pulsed (Note 1)	46	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			mJ	
dv/dt	Peak Diode Recovery	6.0	V/ns		
P _D Power Dissipation		(T _C = 25°C)	42	W	
		- Derate Above 25°C	0.33	W/ºC	
I _F (AV)	Diode Average Rectifie	5	А		
I _{FSM}	Diode Non-repetitive P	50	А		
T _J , T _{STG}	Operating and Storage	-55 to +150	°C		
TL	Maximum Lead Tempe	rature for Soldering, 1/8" from Case for 5 Seconds	300	°C	

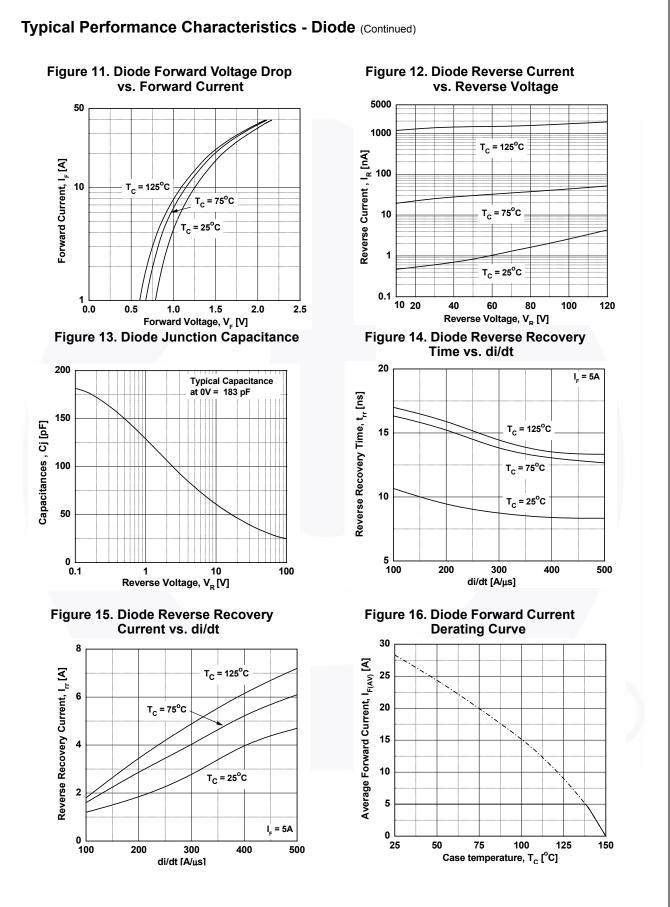

Thermal Characteristics

Symbol	Parameter	FDD850N10LD	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case for MOSFET, Max.	3.0	
$R_{\theta JC}$	Thermal Resistance, Junction to Case for Diode, Max.	2.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	87	

i art ituli	nber	Top Mark	Package	ckage Packing Method Reel Size		Tape Width		Qua	ntity
· · · · · · · · · · · · · · · · · · ·		TO-252 5	• •			6 mm	2500 units		
Electrica	I Char	acteristics of f	the MOSF	ET T _C = 25°C unless	s otherwise not	ed.			
Symbol		Parameter		Test Conditions			Тур.	Max.	Unit
Off Charac	teristic	S							
BV _{DSS}	Drain to	Source Breakdown Vo	oltage	I _D = 250 μA, V _{GS} = 0 V	/	100	-	-	V
ΔBV _{DSS} /ΔT _J	Breakdown Voltage Temperature Coefficient		ure	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C			0.1	-	V/ºC
I _{DSS}	Zero Ga	ate Voltage Drain Curre	nt	V_{DS} = 80 V, V_{GS} = 0 V		-	-	1	μA
055	2010 00	Zero Gate Voltage Drain Current		$V_{DS} = 80 V, T_{C} = 125^{\circ}$		-	-	500	μΑ
I _{GSS}	Gate to Body Leakage Current		t	V_{GS} = ±20 V, V_{DS} = 0 V	V	-	-	±100	nA
On Charac	teristics	5							
V _{GS(th)}	Gate Th	nreshold Voltage		V _{GS} = V _{DS} , I _D = 250 μ.	A	1.0	-	2.5	V
	Static Drain to Source On Resistance Forward Transconductance			V _{GS} = 10 V, I _D = 12 A		-	61	75	
R _{DS(on)}			istance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 12 \text{ A}$			64	96	mΩ
9 _{FS}				V _{DS} = 10 V, I _D = 15.3 A			31	-	S
Dynamic C	haracte	eristics					1		
C _{iss}	Input Capacitance			-	1100	1465	pF		
C _{oss}		Capacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		-	80	105	pF
C _{rss}		e Transfer Capacitance	•			-	42	-	pF
Q _{g(tot)}		ate Charge at 10V		V _{DS} = 80 V, I _D = 15.3 A (Note 4)		-	22.2	28.9	nC
Q _{q(tot)}	Total Ga	ate Charge at 5V				-	12.3	16.0	nC
Q _{gs}		Source Gate Charge				-	3.0	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge				-	5.7	-	nC
ESR	Equivalent Series Resistance (G-S)		(G-S)	f = 1 MHz			1.75	-	Ω
Switching	Charac	teristics							
t _{d(on)}	1	Delay Time					17	44	ns
t _r		Rise Time		V_{DD} = 50 V, I _D = 15.3 A, V _{GS} = 5 V, R _G = 4.7 Ω			21	52	ns
t _{d(off)}		f Delay Time				-	27	64	ns
t _f		f Fall Time	,			-	8	26	ns
	re Dior	le Characteristic	6		. ,				
I _s	rce Diode Characteristics			ode Forward Current			-	15.3	A
I _{SM}	Maximum Pulsed Drain to Source Diode F			Forward Current			-	46	Α
V _{SD}	Drain to Source Diode Forward Voltage		d Voltage	V _{GS} = 0 V, I _{SD} = 12 A		-	-	1.3	V
t _{rr}	Reverse	Recovery Time		$V_{GS} = 0 V, I_{SD} = 15.3 A, V_{DS} = 80 V,$		-	38	-	ns
Q _{rr}	Reverse Recovery Charge			$dI_F/dt = 100 A/\mu s$		-	50	-	nC

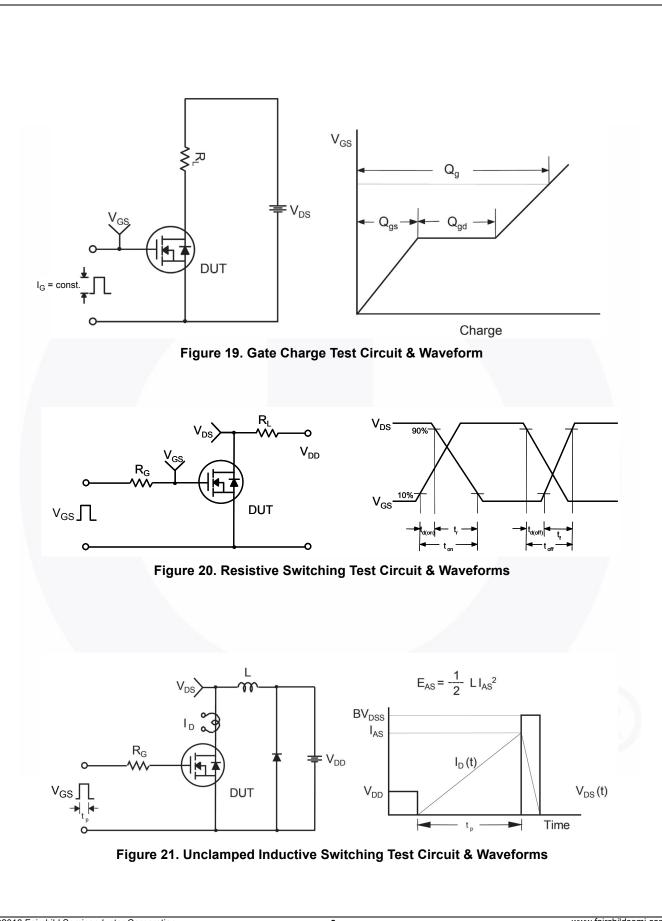

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit	
V _R	DC Blocking Voltage	I _R = 250 μA	150	-	-	V	
V _{FM}	Maximum Instantaneous Forward Voltage	I _F = 5 A	T _C = 25°C	-	-	2.5	v
			T _C = 125°C	-	0.9	-	
I _{RM}	Maximum Instantaneous Reverse Current @ rated VR		T _C = 25°C	-	-	50	
		Ly Taleu VR	T _C = 125°C	-	-	1000	uA
+	Diada Bayaraa Basayary Tima	I _F = 5 A, dI/dt = 200 A/μs	T _C = 25°C	-	10.7	22	ns
۲r	Diode Reverse Recovery Time		T _C = 125°C	-	14.5	-	
1	Diode Peak Reverse Recovery Current		T _C = 25°C	-	2.2	5	A
l rr	Didde Fear Reverse Recovery Current		T _C = 125°C	-	3.4	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	11.7	-	nC
	Didde Reverse Recovery Charge		T _C = 125°C	-	24.7	-	
W _{AVL}	Avalanche Energy (L = 40 mH)		10	-	-	mJ	

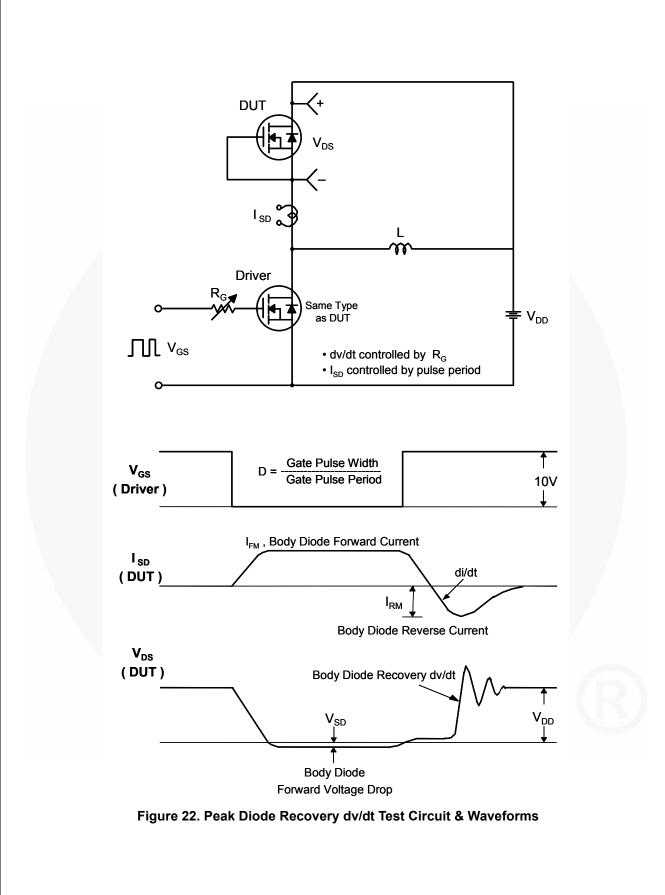
Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted.



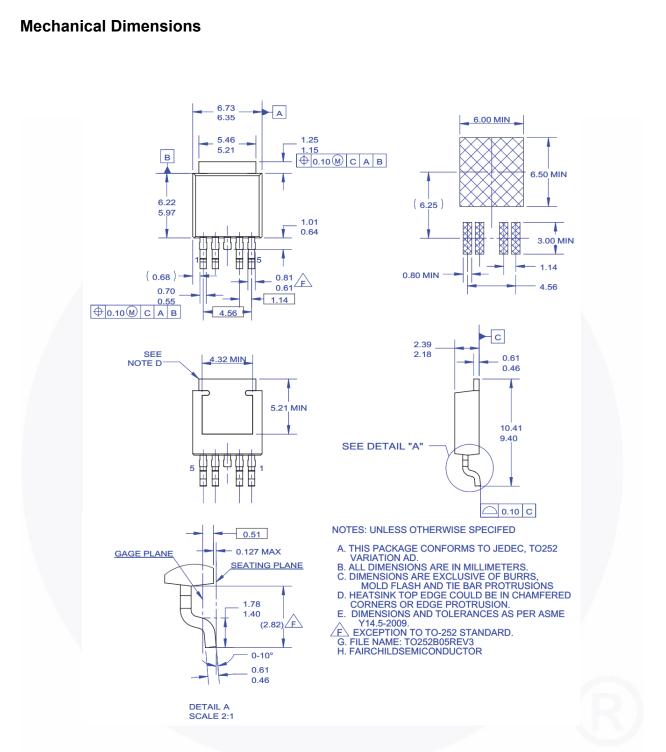
©2013 Fairchild Semiconductor Corporation FDD850N10LD Rev. C2

FDD850N10LD — BoostPak (N-Channel PowerTrench[®] MOSFET + Diode)


FDD850N10LD — BoostPak (N-Channel PowerTrench[®] MOSFET + Diode)



FDD850N10LD — BoostPak (N-Channel PowerTrench[®] MOSFET + Diode)


7

FDD850N10LD — BoostPak (N-Channel PowerTrench[®] MOSFET + Diode)

9

Figure 23. TO252 (D-PAK), Molded, 5-Lead, Option AD

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-005

FDD850N10LD — BoostPak (N-Channel PowerTrench[®] MOSFET + Diode)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP [®] *
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™_
EcoSPARK [®]
EfficentMax™
ESBC™

airchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

F-PES™

 $(1)_{\mathbb{R}}$ PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure[™] Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SYSTEM^{®*} GENERAL TinyBoost[®] TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™ UHC® Ultra FRFET™ UniFFT™ VCX™ VisualMax™

VoltagePlus™

XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SvncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Tern

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right t make changes at any time without notice to improve the design.			
Obsolete Not In Producti		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			