
TONE RINGER \$1T2410B01/B02

### INTRODUCTION

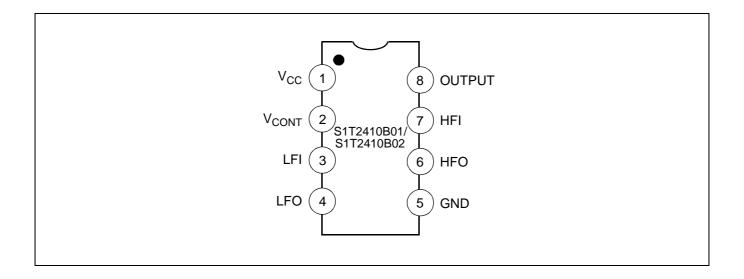
The S1T2410B01/B02 is a bipolar integrated circuit designed as a telephone bell replacement.

### **FUNCTIONS**

- Two oscillators
- Output amplifier
- · Power supply control circuit



### **FEATURES**


- Designed for telephone bell replacement
- Low drain current
- Small size MINIDIP package
- Adjustable 2-frequency tone
- · Adjustable warbling rate
- Built-in hysteresis prevents false triggering and rotary dial 'CHIRPS'
- · Extension tone ringer modules
- · Alarms or other alerting devices
- External triggering or ringer disable (S1T2410B01)
- Adjustable for reduced initial supply current (S1T2410B02)

### **ORDERING INFORMATION**

| Device          | Package   | Operating Temperature |
|-----------------|-----------|-----------------------|
| S1T2410B01-D0B0 | 8-DIP-300 | −45°C to +65°C        |
| S1T2410B02-D0B0 | 0 10 000  | 43 0 10 103 0         |



# **PIN CONFIGURATION**



# **ABSOLUTE MAXIMUM RATINGS**

| Characteristic        | Symbol           | Value       | Unit |
|-----------------------|------------------|-------------|------|
| Supply Voltage        | V <sub>CC</sub>  | 30          | V    |
| Power Dissipation     | P <sub>D</sub>   | 400         | mW   |
| Operating Temperature | T <sub>OPR</sub> | - 45 to +65 | °C   |
| Storage Temperature   | T <sub>STG</sub> | -65 to +150 | °C   |



TONE RINGER \$1T2410B01/B02

# **ELECTRICAL CHARACTERISTICS (Ta = 25°C)**

(All voltage referenced to GND unless otherwise specified)

| Characteristic                  | Symbol                 | Test Conditions                                                         | Min. | Тур. | Max.              | Unit |
|---------------------------------|------------------------|-------------------------------------------------------------------------|------|------|-------------------|------|
| Operating Voltage               | V <sub>CC</sub>        | -                                                                       | _    | _    | 29.0              | V    |
| Initiation Voltage <sup>1</sup> | V <sub>SI</sub>        | See Fig. 1                                                              | 17   | 19   | 21                | V    |
| Initiation Current <sup>1</sup> | I <sub>SI</sub>        | S1T2410B02 -6.8K-Pin 2 to GND                                           | 1.4  | 2.5  | 4.2               | mA   |
| Sustaining Voltage <sup>2</sup> | V <sub>SUS</sub>       | See Fig. 1                                                              | 9.7  | 11.0 | 12.0              | V    |
| Sustaining Current <sup>2</sup> | I <sub>SUS</sub>       | No Load $V_{CC} = V_{SUS}$ , See Fig. 1                                 | 0.7  | 1.4  | 2.5               | mA   |
| Trigger Voltage <sup>3</sup>    | V <sub>TRG</sub>       | S1T2410B01 Only V <sub>CC</sub> = 15V                                   | 9.0  | 10.5 | 12.0              | V    |
| Trigger Current <sup>3</sup>    | I <sub>TRG</sub>       | S1T2410B01 Only                                                         | 10.0 | 20.0 | 1000 <sup>5</sup> | μΑ   |
| Disable Voltage <sup>4</sup>    | V <sub>DIS</sub>       | S1T2410B01 Only                                                         | _    | _    | 0.8               | V    |
| Disable Current <sup>4</sup>    | I <sub>DIS</sub>       | S1T2410B01 Only                                                         | -40  | -50  | _                 | μΑ   |
| Output Voltage High             | V <sub>OH</sub>        | $V_{CC} = 21V$ , $I_8 = -15mA$<br>Pin 6 = 6V, Pin 7 = GND               | 17.0 | 19.0 | 21.0              | V    |
| Output Voltage Low              | V <sub>OL</sub>        | V <sub>CC</sub> = 21V, I <sub>8</sub> = 15mA<br>Pin 6 = GND, Pin 7 = 6V | -    | _    | 1.6               | V    |
| Input Current 1 (Pin 3)         | I <sub>I (PIN 3)</sub> | Pin 3 = 6V, Pin 4 = GND                                                 | _    | -    | 500               | nA   |
| Input Current 2 (Pin 7)         | I <sub>I (PIN 7)</sub> | Pin 7 = 6V, Pin 6 = GND                                                 | _    | -    | 500               | nA   |
| High Frequency 1                | f <sub>H1</sub>        | R <sub>3</sub> = 191K, C <sub>3</sub> = 6800pF                          | 461  | 512  | 563               | Hz   |
| High Frequency 2                | f <sub>H2</sub>        | R <sub>3</sub> = 191K, C <sub>3</sub> = 6800pF                          | 576  | 640  | 704               | Hz   |
| Low Frequency                   | fL                     | $R_2 = 165K, C_2 = 0.47\mu F$                                           | 9.0  | 10   | 11.0              | Hz   |

#### NOTES: (see electrical characteristics sheet)

- 1. Initial supply voltage (V<sub>SI</sub>) is the supply voltage required to start tone ringer oscillation
- 2. Sustaining voltage (V<sub>SUS</sub>) is the supply voltage required to maintain oscillation.
- 3.  $V_{TR}$  and  $I_{TR}$  are the conditions applied to trigger to start oscillation for  $V_{SUS} \le V_{CC} \le V_{SI}$
- V<sub>DIS</sub> and I<sub>DIS</sub> are the conditions applied to trigger to inhibit oscillation for V<sub>SI</sub> ≤ V<sub>CC</sub>
- 5. Trigger current must be limited to this value externally.



# **CHARACTERISTIC CURVE**

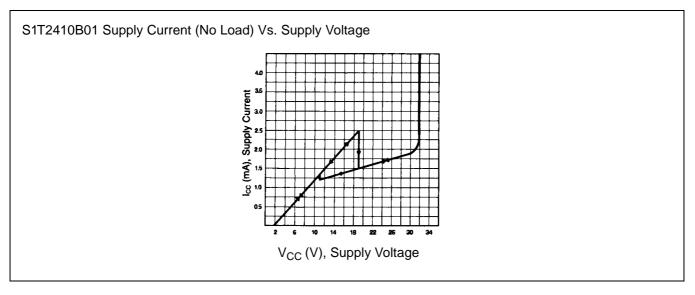



Figure 1.

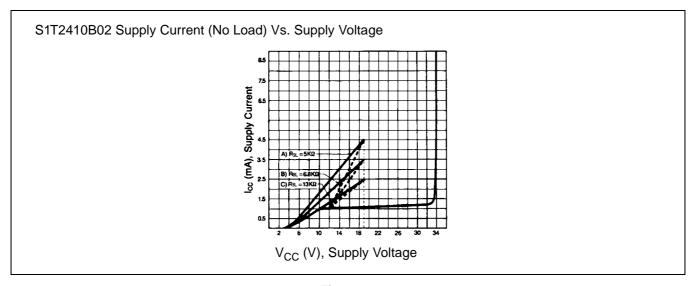



Figure 2.

TONE RINGER S1T2410B01/B02

#### **APPLICATION INFORMATION**

The application circuit illustrates the use of the S1T2410B01/B02 devices in typical telephone or extensive tone ringer applications.

The AC ringer signal voltage appears across the TIP and RING inputs of the circuit, and is attenuated by capacitor  $C_1$  and resistor  $R_1$ .

(C<sub>1</sub> also provides isolation from DC voltages (48V) on the exchange line).

After full wave rectification by the bridge diode, the wave form is filtered by capacitor  $C_4$  to provide a DC supply for the tone ringer chip.

When this voltage exceeds the initiation (V<sub>SI</sub>), oscillation starts.

With the components shown, the output frequency chops between 512 Hz (f<sub>H1</sub>) and 640Hz (f<sub>H2</sub>) at a 10Hz (f<sub>I</sub>) rate.

The loudspeaker load is coupled through a  $1300\Omega$  to  $8\Omega$  transformer.

The output coupling capacitor C<sub>5</sub> with transformer coupled loads is required.

When driving a piezo-ceramic transducer type load, the coupling  $C_5$  and transformer (1300 $\Omega$ :8  $\Omega$ ) are not required. However, a current limiting resistor is required.

The low frequency oscillator oscillates at a rate ( $f_L$ ) controlled by an external resistor ( $R_2$ ) and capacitor ( $C_2$ ). The frequency can be determined using the function  $f_L = 1/(1.289 R_2 \cdot C_2)$ . The high frequency oscillates at a  $f_{H1}$ ,  $f_{H2}$  controlled by an external resistor ( $R_3$ ) and capacitor ( $C_3$ ). The frequency can be determined using the function  $t_{H1} = 1/(1.504 R_3 \cdot C_3)$ . Voltage remains constant independent of  $R_{SL}$ .

Pin 2 of the S1T2410B02 allows connection of an external resistor  $R_{SL}$ , which is used to program the slope of the supply current vs supply voltage characteristics (see Fig. 2) and hence the supply current up to the initial voltage  $(V_{SI})$ . This initial voltage remains constant independent of  $R_{SL}$ .

The supply current drawn prior to triggering is inversely proportional with R<sub>SL</sub>, decreasing for an increasing value of resistance.

Thus, increasing the value of  $R_{SL}$ , will decrease the amount of AC ringing current required to trigger the device. Longer subscriber loops are possible since less voltage is dropped per unit length of loop wire due to the lower current level.  $R_{SL}$  can also be used to compensate for smaller AC coupling capacitors ( $C_5$  on Fig. 3) (higher impedance) to the line which is used to alter the ringer equivalence number of a tone ringer circuit.

The graph in Fig. 2 illustrates the variation of supply current with supply voltage of the S1T2410B02. Three curves are drawn to show the variation of the initiation current with  $R_{SL}$ . Curve B ( $R_{SL} = 6.8 \mathrm{k}\Omega$ ) shows the I-V characteristic for the S1T2410B02 tone ringer. Curve A is a plot with  $R_{SL} < 6.8 \mathrm{k}\Omega$  and shows an increase in the current drawn up to the initiation voltage  $V_{SI}$ . After initiation, the I-V characteristic remain unchanged. Curve C illustrates the effect of increasing  $R_{SL}$  above  $6.8 \mathrm{k}\Omega$  initiation current decreases, but is unchanged after triggering.



# **APPLICATION CIRCUIT 1 (S1T2410B01)**

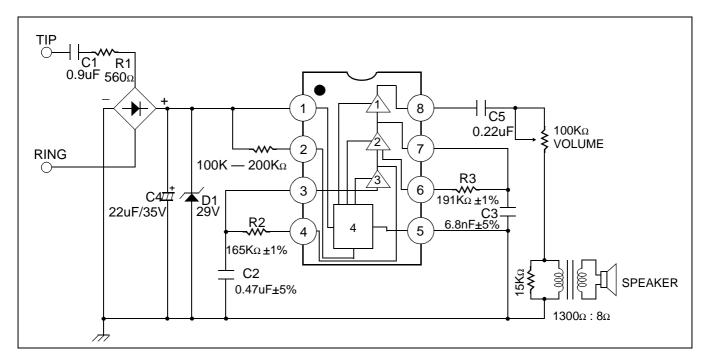
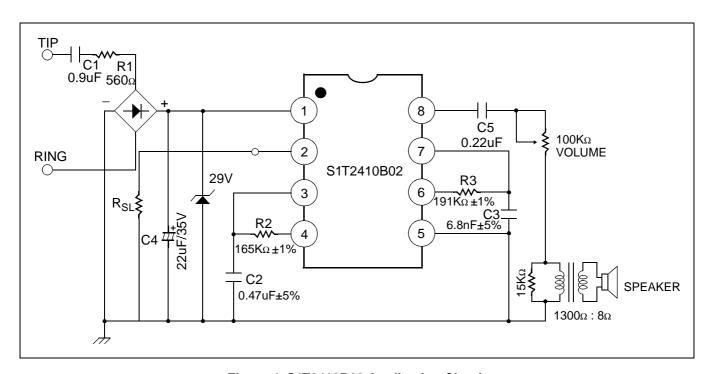
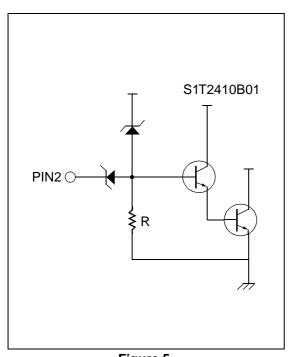



Figure 3. S1T2410B01 Application Circuit

# **APPLICATION CIRCUIT 2 (S1T2410B02)**





Figure 4. S1T2410B02 Application Circuit



**TONE RINGER** S1T2410B01/B02

## **EQUIVALENT CIRCUIT (Pin 2 Input)**

### **INHIBITING OSCILLATION**



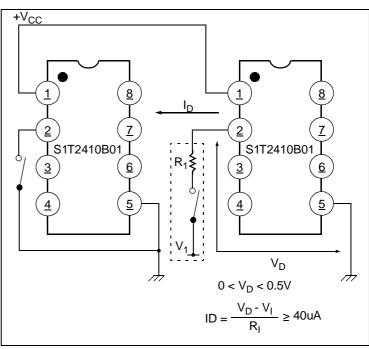



Figure 5. Triggering The S1T2410B01 From CMOS or TTL Logic

Figure 6.

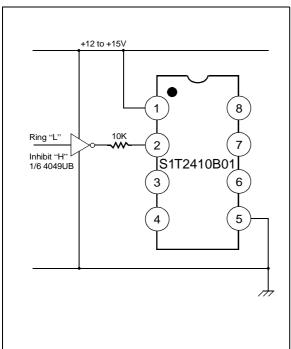
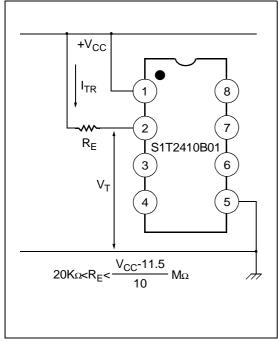




Figure 7.

+12 to +24V 50K**≷** Ring "L" Inhibit "H" 74HCTLS06 S1T2410B01

Figure 8.

## PROGRAMMING THE S1T2410B01 INITIATION SUPPLY VOLTAGE





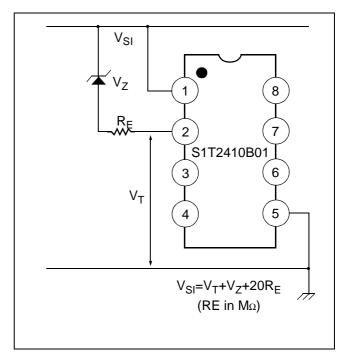



Figure 10.