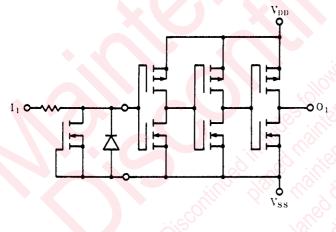
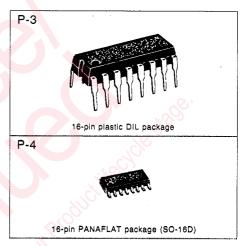
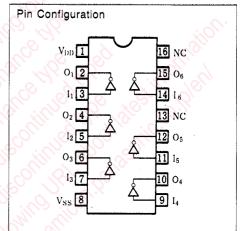
MN4049B/MN4049BS

Hex Inverting Buffer

Outline


The MN4049B/S is an inversion type buffer having six circuits, and usable for logical level conversion.


Because of the large output current, it can directly drive TTL and DTL, and is also usable as an interface from CMOS to TTL since it can drive two standard TTL circuits.


The circuits structurally constituting a 3-stage inverter assure excellent switching characteristics.

This hex inverting buffer is equivalent to Motorola's MC14049BB and RCA's CD4049B.

■ Schematic Diagram (1/6) & Input Protection Circuit

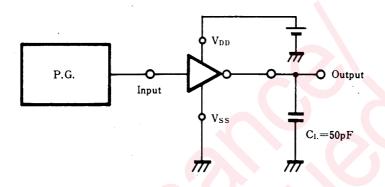
■ Absolute Maximum Ratings (Ta=25°C)

Item		Symbol	Rating	Unit	
Supply voltage		$ m V_{DD}$	-0.5~+18	V	
Input voltage		V _I	$-0.5 \sim V_{DD} + 0.5 *$	V	
Output pin voltage		V _o	$-0.5 \sim V_{DD} + 0.5 *$	V	
Peak input · output pin current		$\pm I_1$	max. 10	mA	
Power dissipation (per package)	Ta=-40~+60°C	P_D	max. 400	mW	
	Ta=+60~+80°C	rD	Decrease to 200mW at the rate of 8mW/°C	Invy	
Power dissipation (per output pin)		P_D	max. 100	mW	
Operating ambient temperature T _{opr}		T_{opr}	-40~+85	°C	
Storage temperature		$T_{\rm stg}$	$-65 \sim +150$	°C	

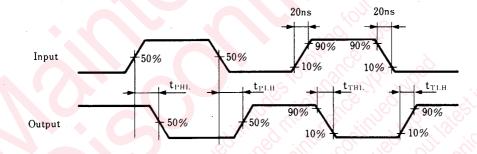
^{*} $V_{DD}+0.5V$ should be lower than 18V.

■ Guaranteed Fan-Out for Logic Circuit Series

Driving IC	Guaranteed fan-out
Standard TTL	2
74LS	9
74L	16


■ DC Characteristics (V_{SS}=0V)

Item	V_{DD}	Symbol	nbol Condition		$Ta = -40^{\circ}C$		Ta=25°C		Ta=85°C		Unit
nem	(V)	Symbol		Condition	min. max. min. max. min.		max.				
	5				_	4	_	4	_	30	
Static supply current	10	I_{DD}	$V_I = V_{SS}$ or V_{DD}		_	8	_	8	_	60	μA
	15					16		16		120	
	5		$V_I = V_{SS}$ or	V		0.05	_	0.05	A)	0.05	
Output voltage low level	10	Vol	$ I_0 < 1\mu A$		_	0.05		0.05	<u>~</u>	0.05	V
	15		11()I~1µA	ΙμΑ		0.05	_	0.05	_	0.05	
,	5		V _I =V _{SS} or V _{DD}		4.95	_	4.95	<u> </u>	4.95	_	
Output voltage high level	10	V _{OH}			9.95	_	9.95	_	9.95	—	V
	15		$ I_0 < 1\mu A$		14.95	<u> </u>	14.95	-	14.95	_	
	5			$V_0 = 0.5V$ or 4.5V	_	1.5		1.5		1.5	
Input voltage low level	10	VIL	$ I_0 < 1\mu A$	$V_0 = 1V$ or $9V$	7	3	_	3	_	3	V
	15			$V_0 = 1.5V$ or $13.5V$		4		4		4	
·	5			$V_0 = 0.5V$ or $4.5V$	3.5	_	3.5		3.5	_	
Input voltage high level	10	V _{IH}	$ I_0 < 1\mu A$	$V_0=1V$ or $9V$	7	· (7	_	7		V
	15			$V_0 = 1.5 V$ or $13.5 V$	11		11		11	_±0	
	4.75		$V_0 = 0.4V$	1000	3.5	_	2.9	_	2.3	()	
Output current low level	10	IoL	$V_0 = 0.5V$, $V_i = 0$ or $10V$		12		10	_	8		mA
	15		$V_0 = 1.5V$, $V_1 = 0$ or 15V		24	(/- /)	20	_,	16	4	
	5		$V_0 = 4.6V$, $V_I = 0$ or 5V		0.52	<u></u>	0.44	-	0.36	<u>//5</u>	
Output current high level	10	-I _{OH}	V_0 =9.5V, V_i =0 or 10V V_0 =13.5V, V_i =0 or 15V		1.3	<u></u> (1.1		0.9	×	mA
	15				3.6	127	3) <u> </u>	2.4		
Output current high level	5	-I _{OH}	$V_0=2.5V, V_1=0 \text{ or } 5V$		1.7	3-	1.4		1.1		mA
Input leakage current	15	$\pm I_i$	V ₁ =0 or 15V		N. A.	0.3		0.3		1	μΑ


■ Switching Characteristics (Ta=25°C, V_{ss}=0V, C_L=50pF)

Item		$V_{DD}(V)$	Symbol	min.	typ.	max.	Unit
	-01	5	R	409	60	180	
Output rise time Output fall time		10	tTLH	10 m	30	90	ns
20	<i>y</i>	15		(0) $ (0)$	20	60	
1,70,		5		- <u>- 4</u> 10.	25	75	
Output fall time		10	tTHL	1177	10	30	ns
All		15	t _{TLH}	7	21		
Propagation time		5	10 M	_	60	180	
		10	t _{PLH}		30	90	ns
		15		_	25	75	
•		5		_	50	150	
Propagation time		10	t _{PHL}		20	60	ns
		15	— 15 45				
Input capacitance			Ci	_		7.5	pF

1. Switching time measuring circuit

2. Switching waveforms

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805