

Silicon Carbide PiN Diode Chip

Features

- 10 kV blocking
- 250 °C operating temperature
- Fast turn off characteristics
- Soft reverse recovery characteristics
- Ultra-Fast high temperature switching

Advantages

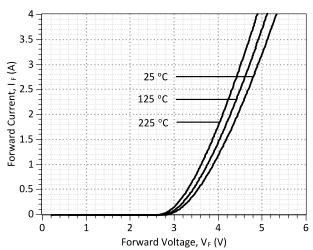
- Industry's lowest conduction losses
- Reduced stacking
- · Reduced system complexity/Increased reliability

Applications

- Voltage Multiplier
- Ignition/Trigger Circuits
- Oil/Downhole
- Lighting
- Defense

Maximum Ratings at T_j = 250 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V _{RRM}		10	kV
Continuous forward current	I _F	T _C ≤ 150 °C	2	А
RMS forward current	I _{F(RMS)}	T _C ≤ 150 °C	1	А
Operating and storage temperature	T _j , T _{stg}		-55 to 250	°C


Electrical Characteristics at T_j = 250 °C, unless otherwise specified

Parameter	Symbol	Conditions -		Values		11	
				min.	typ.	max.	Unit
Diode forward voltage	V _F	I _F = 2 A, T _j = 2	25 °C		4.4	4.8	V
		I _F = 2 A, T _j = 225 °C			4.1	4.5	v
Reverse current	I _R	V _R = 10 kV, T _j =	= 25 °C		0.1	3	
		V _R = 10 kV, T _j =	225 °C			50 ^{µA}	μA
Total reverse recovery charge	Q _{rr}	I _E ≤ I _{E.MAX}	V _R = 1000 V		558		nC
	~II	$dI_{\rm F}/dt = 70 \text{A/\mu s}$	I _F = 1.5 A				
Switching time	ts	T _j = 225 °C	V _R = 1000 V I _F = 1.5 A		< 236		ns
Total capacitance	С	V _R = 1 V, f = 1 MHz	, T _i = 25 °C		20		
		V _R = 400 V, f = 1 MH	z, T _i = 25 °C		5		pF
		V _R = 1000 V, f = 1 MH	lz, Τ _j = 25 °C		4		
Total capacitive charge	Q _c	V _R = 1000 V, f = 1 MH	lz, T _j = 25 °C		5.34		nC

*For chip size and metallization, please refer to the mechanical datasheet (must have a non-disclosure agreement with GeneSiC Semiconductor).

Electrical Datasheet*

GA01PNS100-CAL

Figure 1: Typical Forward Characteristics

ene CONDUC

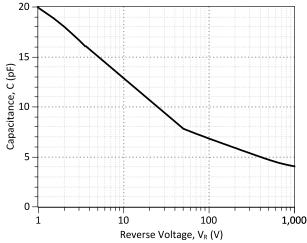
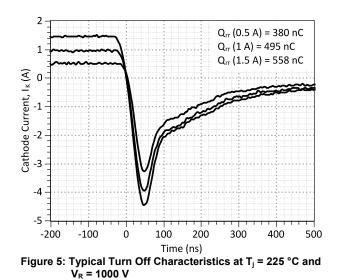



Figure 3: Typical Junction Capacitance vs Reverse Voltage Characteristics

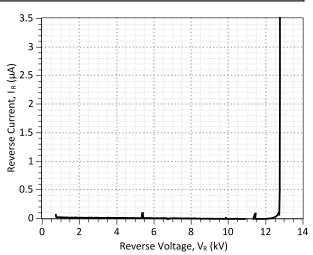


Figure 2: Typical Reverse Characteristics

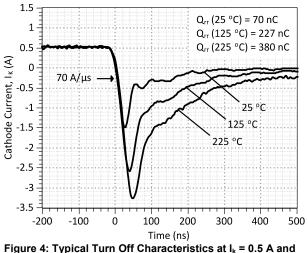


Figure 4: Typical Turn Off Characteristics at $I_k = 0.5$ A and $V_R = 1000$ V

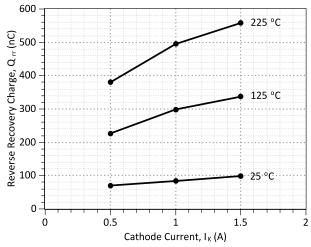


Figure 6: Reverse Recovery Charge vs Cathode Current

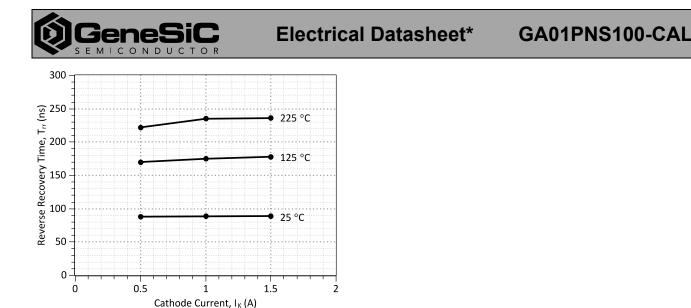


Figure 7: Reverse Recovery Time vs Cathode Current

Revision History							
Date	Revision	Comments	Supersedes				
2012/08/15	0	Initial release					

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.