

 SH6610 instructions introduction

SH6610 instructions introduction

 Sino Wealth Electronic (Shanghai) LTD.

Ver1.0 1/36

http://www.Datasheet4U.com

 SH6610 instructions introduction

Analysis of SH6610 Instructions
 The following a re SH6610 in structions, catego rized a nd ex plained acco rding to their

respective functions. When you nee d an instruct ion for a certai n function, you can loo k up

the instruction in its function category. You’d better browse through all the instructions listed

here, because even thoug h you can’t rememb er all of them at once, you can still have an

impression to remind you of such inst ruction when need ed. Some people don ’t even know

about some very good instructions that he can use, just because he didn’t browse through all

of them. This ignorance may cause considerable waste of space on a system without a b ig

enough ROM, which is so regrettable. I will ex plain as simply as possible to i mprove your

learning efficiency. Of co urse, it is n ormal to u nderstand o r re member o nly part of the

contents afte r reading once. And you are certain of ten revert to this bo ok because it i s a

collection of instructions.

Instructions

Instruction is a se ries of codes that can be recognized by CPU, and then CPU will

operate according to the given instruction.

Operand

Apart from instructions t o tell CPU how to op erate, the ope ration o bject must be

designated. The o bject for CP U to o perate with i s called Operand. Therefore, a complete

instruction must include two items, both instruction and operand.

Format of SH6610 Instructions

 Instruction [Operand 1], [Operand 2]

Of the above, items inside [] are used according to nature of the instruction. Some

instructions require only one operand, while some require two. Instruction and operand shall

be separated by a space, and operands shall be separated from each other by a ‘,’.

Execution Time of Instruction

 Execution time for SH6610 instructions is one instruction cycle, which is one fourth of the

system working frequency.

Ver1.0 2/36

 SH6610 instructions introduction

1-1 Instruction Categories

According to their functions, SH6610 instructions can be classified into four categories:

 Arithmetic Operation Instructions

I. addition: ADC，ADCM，ADD，ADDM，ADI，ADIM

II. Subtraction: SBC，SBCM，SUB，SUBM，SBI，SBIM

III. BCD: DAA，DAS

 Logic Operation Instructions

EOR，EORM，EORIM，OR，ORM，ORIM，AND，ANDM，ANDIM

 Data Transmission Instructions

LDA，STA，LDI

 Flow Control Instructions

BAZ，BC，BA0，BA1，BA2，BA3，CALL，RTNW，RTNI，HALT，STOP，JMP，TJMP

The above a re all of the instructio ns o f SH6610 se ries, which a dd up to onl y 40 in

number, but never overlook them! A variety of consumer electrical products on the market

are created with them, e.g. calculator, remote controller, watch, toy, etc.

1-2 Explanation of Symbols

Before going to our subject, we list the symbols that may appear afterwards so that our

readers can understand this book more easily. The symbols are listed as follows:

PC Program Counter

AC Accumulator

CY Carry Flag

Mx Data Memory

bbb RAM bank

ST Stack

TBR Table Branch Register

X Program Address

I Immediate Data

Ver1.0 3/36

 SH6610 instructions introduction

& Logic AND

| Logic OR

^ Logic EOR

Now let’s enter the world of instructions of SH6610 series. “Let ‘s go “。

Ver1.0 4/36

 SH6610 instructions introduction

1-3 Instructions for Data Transmission

 During th e internal o peration of the system, da ta is transmit ted rapidly a nd incessa ntly

between memories or registers. This fast and incessant transmission is the power of system

capability. SH6610 system provides several instructions for data transmission, as follows:
Instruction: LDI Function: to load Immediate Data I to “Accumulator” and “Data

Memory”

Format:
Instruction Code:
Carry Flag:
Operation:

LDI Mx，I
01111 iiii xxx xxxx
Not affected
AC , Mx I

Explanation

 LDI is a very frequently used inst ruction. It loads immediate d ata I to accu mulator and

data memory. However, due to this 4-bit system, the preset range of the immediate data I is

00H ~ 0FH(0 ~ 15), and that of Mx is 00H~7FH.

 [Example]

 LDI 20H，05H

 after execution:

 AC=05H

 Content of data memory $20H=05H

 Programming Tip

 There isn’t any specially defined register for users in SH6610 system, but we can use its

powerful data memory as registers in our program designing. In the above example, I have

used data memory $20H for a register. However, if they are expressed only by address and

without respective names, the design of the program will be very confusing. Here’s a tip for

you: you can use the pseudo-instruction EQU to define each data address.

 AAA EQU 2 0H

Name of memory variable
Data memory address

Pseudo-

Therefore, the LDI instruction can also be written like this:

 LDI AAA，05H

Ver1.0 5/36

 SH6610 instructions introduction

Instruction: STA Function:to store the value of Accumulator to Data Memory
Format:
Instruction Code:
Carry Flag:
Operation:

STA Mx，bbb
00111 1bbb xxx xxxx
Not affected
Mx AC

Explanation

 STA loads the val ue of accumulator to dat a memory. When executing this instruction,

CPU does the transmission only and the carry flag is not affected.

 [Example] Save the value of AC in $21H

 :

 LDI 20H，05H ;AC=05H，$20H=05H

 STA 21H，00H ;$21H=05H

 :

 Programming Tip

 If operand 2 is the immediate data I, then the program can be written in the following

ways:

 LDI 20H,0AH ;expressed in hex

 LDI 20H,10 ;expressed in decimal

 LDI 20H,1010B ;expressed in binary

Instruction: LDA Function: to load the value of Data Memory to Accumulator
Format:
Instruction Code:
Carry Flag:
Operation:

LDA Mx，bbb
00111 0bbb xxx xxxx
Not affected
AC Mx

Explanation

LDA loads the value of da ta memory to accumulator. This instruction does not affect

the carry flag.

Ver1.0 6 /36

 SH6610 instructions introduction

 [Example] Load the value of $20H to AC

 :

 LDI 20H,05H ;$20H=05H,AC=05H

 LDI 21H,0FH ;$21H=0FH,AC=0FH

 LDA 20H,0 ;AC=05H

 :

 Programming Tip

 When writing a prog ram, we often use la bels as jum ping de stinations in the pro gram.

Label names can be defined by user according to the following rules:

I. A label mustn’t begin with number or space.

II. Length of a label mustn’t exceed 7 characters. Only the first 7 characters will be

recognized for labels exceeding that length.

Ver1.0 7/36

 SH6610 instructions introduction

1-4 Instructions for Arithmetic Operation

SH6610 series provide some frequently used arithmetic (integer) operation instructions,

like: Addition, subtraction, BCD adjustment, etc.
Instruction: ADD Function: to add up the values of Data Memory and Accumulator,

and then save the result in the Accumulator
Format:
Instruction Code:
Carry Flag:
Operation:

ADD Mx，bbb
00001 0bbb xxx xxxx
CY
AC Mx + AC

Explanation

 Instruction ADD adds up the values of data memory and accumulator and saves the

result in the accumulator. The ADD operation affects carry flag: when the result of ADD

exceeds 0FH, the carry flag is set to 1; otherwise the value of CY is 0. Therefore we can

decide whether there’s a carry by the value of the carry flag after addition.

 [Example] 05H +06H

 :

 LDI 20H,05H ;$20H=05H,AC=05H

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=05H

 ADD 21H,0 ;AC=0BH,CY=0,$21H=06H

 :

 [Example] 0BH + 06H

 :

 LDI 20H,0BH ;$20H=0BH,AC=0BH

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=0BH,CY=0

 ADD 21H,0 ;AC=01H,CY=1,$21H=06H

 :

Instruction: ADDM Function: to add up the values of Data Memory and Accumulator,

and save the result in both the Accumulator and the Data
Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ADDM Mx，bbb
00001 1bbb xxx xxxx
CY
AC , Mx Mx + AC

Ver1.0 8/36

 SH6610 instructions introduction

Explanation

 Instruction ADDM a dds up the valu es of data memory and accumulator and saves the

result in both the accumulator and the data memory. The ADDM operation affects carry flag:

when the result of ADDM exceeds 0FH, the carry flag is set to 1; otherwise the value CY is 0.

Therefore we can decide whether there’s a carry by the value of the carry flag after addition.

 [Example] 05H +06H

 :

 LDI 20H,05H ;$20H=05H,AC=05H

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=05H

 ADDM 21H,0 ;AC=0BH,$21H=0BH,CY=0

 :

 [Example] 0BH + 06H

 :

 LDI 20H,0BH ;$20H=0BH,AC=0BH

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=0BH,CY=0

 ADDM 21H,0 ;AC=01H,$21H=01H,CY=1

 :

 Programming Tip

 When you are reading the examples, I suggest that you call them into ICE after compiling

to watch the change in each of the registers step by step.

Instruction: ADC Function: to add up the value of Data Memory, Carry Flay and the

value of Accumulator, and then save the result in the
Accumulator

Format:
Instruction Code:
Carry Flag:
Operation:

ADC Mx，bbb
00000 0bbb xxx xxxx
CY
AC Mx + AC + CY

Explanation

 Instruction ADC ad ds up the value of dat a memory, carry flag and the value of

Ver1.0 9/36

 SH6610 instructions introduction

accumulator, and saves th e result in the accu mulator. The ADC operation affects the carry

flag: when the result of ADC exceeds 0FH, the carry flag is set to 1; otherwise the value of CY

is 0. Therefore we can d ecide whether there’s a carry by the value of the carry flag af ter

addition.

 [Example] 05H +06H , CY=1

 : ;CY=1

 LDI 20H,05H ;$20H=05H,AC=05H

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=05H

 ADC 21H,0 ;AC=0CH,$21H=06H,CY=0

 :

 [Example] 0BH + 06H , CY=0

 : ;CY=0

 LDI 20H,0BH ;$20H=0BH,AC=0BH

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=0BH

 ADC 21H,0 ;AC=01H,$21H=06H,CY=1

 :

 Programming Tip

 When carry is not considered, you’d better use ADD rather than ADC, in order to a void

extra uncertainty due to the addition of CY value (because CY can be either 1 or 0).

Ver1.0 10/36

 SH6610 instructions introduction

Instruction: ADCM Function: to add up the value of Data Memory, Carry Flag and the

value of Accumulator, and then save the result in both the
Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ADCM Mx，bbb
00000 1bbb xxx xxxx
CY
AC , Mx Mx + AC + CY

Explanation

 Instruction ADCM ad ds up the value of dat a memory , ca rry flag and the value of

accumulator, and saves the result in both the accumulator and the data memory. The ADCM

operation affects the carry flag: wh en the result of ADCM exceed s 0FH, the carry flag is set

to1; otherwise the value of CY is 0. Therefore we can decide whether there’s a carry by the

value of the carry flag after addition.

 [Example] 05H +06H , CY=1

 : ;CY=1

 LDI 20H,05H ;$20H=05H,AC=05H

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=05H

 ADCM 21H,0 ;AC=0CH,$21H=0CH,CY=0

 :

 [Example] 0BH + 06H , CY=0

 : ;CY=0

 LDI 20H,0BH ;$20H=0BH,AC=0BH

 LDI 21H,06H ;$21H=06H,AC=06H

 LDA 20H,00H ;AC=0BH,

 ADCM 21H,0 ;AC=01H,$21H=01H,CY=1

 :

Instruction: ADI Function: to add up the value of Data Memory and Immediate Data

I, and then save the result in Accumulator
Format:
Instruction Code:
Carry Flag:
Operation:

ADI Mx，I
01000 iiii xxx xxxx
CY
AC Mx + I

Explanation

 Instruction ADI adds u p the value of dat a memory and immedi ate data I, and save s the

Ver1.0 11/36

 SH6610 instructions introduction

result in accumulator. The ADI operation affects carry flag: when the result of ADI exceed s

0FH, the carry flag is set to1; otherwi se the va lue of CY is 0. Therefore we ca n de cide

whether there’s a carry by the value of the carry flag after addition.

 [Example] $20H=0 5H , I=04H

 :

 LDI 20H,05H ;$20H=05H,AC=05H,CY=0

 ADI 20H,04H ;AC=09H,$20H=05H,CY=0

 :

 [Example] $20H=0 AH , I=07H

 :

 LDI 20H,0AH ;$20H=0AH,AC=0AH,CY=0

 ADI 20H,07H ;AC=01H,$20H=0AH,CY=1

 :

Instruction: ADIM Function: to add up the value of Data Memory and Immediate Data

I, and then save the result in both Accumulator and the
Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ADIM Mx，I
01001 iiii xxx xxxx
CY
AC , Mx Mx + I

Explanation

 Instruction ADIM adds up the value of data memory and immediate dat a I, and saves th e

result in both accumulato r and the dat a memory. The ADIM o peration af fects carry flag:

when the result of ADIM exceeds 0FH, the carry flag is set to1; otherwise the value of CY is 0.

Therefore we can decide by the value of the carry flag after addition whether there is a carry.

 [Example] $20H=0 5H , I=04H

 :

 LDI 20H,05H ;$20H=05H,AC=05H

 ADIM 20H,04H ;AC=09H,$20H=09H,CY=0

 :

 [Example] $20H=0 AH , I=07H

 :

 LDI 20H,0AH ;$20H=0AH,AC=0AH

Ver1.0 12/36

 SH6610 instructions introduction

 ADIM 20H,07H ;AC=01H,$20H=01H,CY=1

 :

Instruction: DAA Function: to adjust the value of Data Memory to decimal after

addition, and then save the result in both Accumulator
and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

DAA Mx
11001 0110 xxx xxxx
CY
AC ; Mx Decimal , adjust AC for Add

Explanation

 Instruction DAA acts by adjusting the value of data memory to decimal after addition and

saving the re sult to both accumul ator and the data memory. Its adjusting m ethod is if the

value of the data memory is g reater than 9 or if CY= 1, the n add 6 to the data memory and

set the carry flag to 1.

 [Example] 06H + 05H , and do DAA adjustment

 :

 LDI 20H,06H ;AC=06H,$20H=06H

 LDI 21H,05H ;AC=05H,$21H=05H

 LDA 20H,0 ;AC=06H

 ADD 21H,0 ;AC=0BH,CY=0

 DAA 21H ;AC=01H,$21H=01H,CY=1

 :

Ver1.0 13/36

 SH6610 instructions introduction

Instruction: SUB Function: to subtract the value of Accumulator from the value of

Data Memory, and then save the result in the
Accumulator

Format:
Instruction Code:
Carry Flag:
Operation:

SUB Mx，bbb
00011 0bbb xxx xxxx
CY
AC Mx - AC

Explanation

SUB subtracts the value of accumulato r from the value of data memory and saves the

result in the accumulator. When executing SUB, if the value of data memory is less than the

value of accumulator, a “borrow” will take place and CY will be set to 0. On the contrary, if

the value of dat a memory is gre ater than the value of accumulator, borrow wil l not happe n

and CY will be set to 1. Therefore we can decide by the value of CY whether the re i s a

borrow after execution of SUB. Besides, subtraction in the system is done through addition,

i.e. when subtracting a number, it is actually adding the number’s binary complement.

 [Example] 06H - 05H

 :

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 20H,0 ;AC=05H

 SUB 21H,0 ;AC=1,CY=1,$21H=06H

 :

 [Example] 05H - 06H

 :

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 21H,0 ;AC=06H

 SUB 20H,0 ;AC=0FH,CY=0,$20H=05H

 :

Ver1.0 14/36

 SH6610 instructions introduction

Instruction: SUBM Function: to subtract the value of Accumulator from the value of

Data Memory, and then save the result in both the
Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

SUBM Mx，bbb
00011 1bbb xxx xxxx
CY
AC , Mx Mx - AC

Explanation

 System movement of SUBM is alm ost the sam e as SUB, it subt racts current value of

accumulator from the val ue of data memory and saves the result in the accumulator as well

as in the data memory. When executing SUBM, if the value of data memory is less than the

value of accumulator, a “borrow” will take place and CY will be set to 0. On the contrary, if

the value of dat a memory is gre ater than the value of accumulator, borrow wil l not happe n

and CY will be 1. Therefore we ca n decide by the value of CY whether there i s a borr ow

after execution of SUBM.

 [Example] 06H - 05H

 :

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 20H,0 ;AC=05H

 SUBM 21H,0 ;AC=01H,CY=1,$21H=01H

 :

 [Example] 05H - 06H

 :

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 21H,0 ;AC=06H

 SUBM 20H,0 ;AC=0FH,CY=0,$20H=0FH

 :

Ver1.0 15/ 36

 SH6610 instructions introduction

Instruction: SBC Function: to subtract the value of Accumulator from the value of

Data Memory, add Carry Flag, and then save the result in
the Accumulator

Format:
Instruction Code:
Carry Flag:
Operation:

SBC Mx，bbb
00010 0bbb xxx xxxx
CY
AC Mx - AC + CY

Explanation

System movement of SB C is to subtract the valu e of accum ulator from th e value of

data memory, add the value of carry flag, and then save the result in the accumulator. When

executing SBC, if the value of data memory is less than the value of accumulator, a “borrow”

will take place and the CY will be set to 0. On the contrary, if th e value of dat a memory is

greater tha n the value of accum ulator, bo rrow will not hap pen and th e CY will be 1.

Therefore we can d ecide by the value of CY wheth er there is a borrow after execution of

SBC.

 [Example] CY=0，6 - 5=?

 : ;CY=0

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 20H,0 ;AC=05H

 SBC 21H,0 ;AC=01H,CY=0,$21H=06H

 :

[Example] CY=1，6 - 5=?

 : ;CY=1

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 20H,0 ;AC=05H

 SBC 21H,0 ;AC=02H,CY=0,$21H=06H

 :

Instruction: SBCM Function: to subtract the value of Accumulator from the value of

Data Memory, add Carry Flag, and then save the result in
both the Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

SBCM Mx ，bbb
00010 1bbb xxx xxxx
CY
AC , Mx Mx - AC + CY

Ver1.0 16/36

 SH6610 instructions introduction

Explanation

System movement of SBCM is to subtract the value of accumulator from the value of

data memory, add the value of carry flag, and then save the result in both the accumulator

and data memory. When executin g S BCM, if the value of d ata memo ry is l ess than the

value of accumulator, a “borrow” will take place and the CY will be set to 0. On the contrary,

if the value of data memory is greater t han the value of accumulator, borrow will not happen

and the CY will be set to 1. Therefore we can decide by the value of CY whether there is a

borrow after execution of SBCM.

[Example] CY=0，6 - 5=?

 : ;CY=0

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 20H,0 ;AC=05H,CY=0

 SBCM 21H,0 ;AC=01H,CY=0,$21H=01H

 :

[Example] CY=1，6 - 5=?

 : ;CY=1

 LDI 20H,05H ;AC=05H,$20H=05H

 LDI 21H,06H ;AC=06H,$21H=06H

 LDA 20H,0 ;AC=05H,CY=1

 SBCM 21H,0 ;AC=02H,CY=0,$21H=02H

 :

Instruction: SBI Function: to subtract the Immediate Data I from the value of Data

Memory, and then save the result in Accumulator
Format:
Instruction Code:
Carry Flag:
Operation:

SBI Mx，I
01010 iiii xxx xxxx
CY
AC Mx - I

Explanation

System movement of SBI is to subtract immediate data I from the value of data memory,

and save the result in accumulator. When executing SBI, if the value of the dat a memory is

less than the immediate d ata, a “bo rrow” will t ake place and CY will be set to 0. On th e

Ver1.0 17/36

 SH6610 instructions introduction

contrary, if the value of dat a memory is gr eater than the immediate data, borrow will not

happen and CY will be 1. Therefore we ca n decide by the valu e of CY whether there is a

borrow after execution of SBI.

 [Example] $20H=0 5H , I=04H

 :

 LDI 20H,05H ;$20H=05H,AC=05H,CY=0

 SBI 20H,04H ;AC=01H,$20H=05H,CY=1

 :

 [Example] $20H=0 2H , I=07H

 :

 LDI 20H,02H ;$20H=02H,AC=02H,CY=0

 SBI 20H,07H ;AC=0BH,$20H=02H,CY=0

 :

Instruction: SBIM Function: to subtract Immediate Data I from the value of Data

Memory, and then save the result in both Accumulator
and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

SBIM Mx，I
01011 iiii xxx xxxx
CY
AC , Mx Mx - I

Explanation

System movement of SBIM is to subtract immediate data I from the value of data

memory, and save the result in both accumulator and the data memory. When executing

SBIM, if the value of dat a memory is less than the immediate data, a “borrow” will take place

and CY will be set to 0. On the cont rary, if the va lue of dat a memory is g reater than the

immediate data, borrow will not happe n and CY will be 1. Therefore we ca n decide by the

value of CY whether there is a borrow after execution of SBIM.

 [Example] $20H=0 5H , I=04H

 :

 LDI 20H,05H ;$20H=05H,AC=05H

 SBIM 20H,04H ;AC=01H,$20H=01H,CY=1

 :

Ver1.0 18/36

 SH6610 instructions introduction

 [Example] $20H=0 2H , I=07H

 :

 LDI 20H,02H ;$20H=02H,AC=02H

 SBIM 20H,07H ;AC=0BH,$20H=0BH,CY=0

 :

Instruction: DAS Function: to adjust the value of Data Memory to decimal after

subtraction, and save the result in Accumulator and the
Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

DAS Mx
11001 1010 xxx xxxx
CY
AC ; Mx Decimal , adjust AC for Sub

Explanation

Instruction DAS acts by adjusting the value of data memory to decimal after subtraction

and saving the result to b oth accumulator and th e data memory. Its adjusting method i s if

the value of data memory is greater than 9 or if CY=0, then add 0AH to the data memory and

set CY to 0.

 [Example] 05H - 06H , and do DAS adjustment

 :

 LDI 20H,06H ;AC=06H,$20H=06H

 LDI 21H,05H ;AC=05H,$21H=05H

 LDA 20H,0 ; AC=06H

 SUB 21H,0 ;AC=0FH,CY=0

 D AS 21H ;AC=09H,$21H=09H,CY=0

 :

Ver1.0 19/36

 SH6610 instructions introduction

1-5 Instructions for Logic Operation

Logic instructions are essential to system structu re. SH6610 se ries MCU provid e

some common logic instructions. Now I’m going to explain to you one by one in most details,

and assist my explanation with simpl e examples, so that you can quickly unde rstand action

theory of each instruction.

Instruction: AND Function: to do logic AND operation with the values of Data Memory

and Accumulator, and then save the result in the
Accumulator

Format:
Instruction Code:
Carry Flag:
Operation:

AND Mx，bbb
00110 1bbb xxx xxxx
Not affected
AC Mx & AC

Explanation

In AND operation, the resul t will be 1(true) only if both of the two operands are 1(true).

Its logic table is as follows:

Logic operation table for AND

 a b a AND b
 0 0 0
 0 1 0
 1 0 0
 1 1 1

 However, in real inst ruction the logic operand has 4 bit s rather than 1 bit. The

instruction A ND i s to AND the valu es of dat a me mory with accumulator, a nd the re sult i s

saved in the accumulator.

 [Example] 06H & 05H

 :

 LDI 20H,0110B ;AC=06H,$20H=06H

 LDI 21H,0101B ;AC=05H,$21H=05H

 AND 20H,0 ;AC=0100B,$20H=06H

 :

Ver1.0 20/ 36

 SH6610 instructions introduction
Instruction: ANDM Function: to do logic AND operation with the values of Data

Memory and Accumulator, and then save the result in
both the Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ANDM Mx，bbb
00110 1bbb xxx xxxx
Not affected
AC , Mx Mx & AC

Explanation

 System movement of the instru ction ANDM i s almost the sa me as AND, but saving th e

operation result in data memory as well as in accumulator.

 [Example] 01 10B & 0101B

 :

 LDI 20H,0110B ;AC=0110B,$20H=0110B

 LDI 21H,0101B ;AC=0101B,$21H=0101B

 ANDM 20H,0 ;AC=0100B,$20H=0100B

 :

Instruction: ANDIM Function: to do logic AND operation with the value of Data Memory

and Immediate Data I, and then save the result in both
Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ANDIM Mx，I
01110 iiii xxx xxxx
Not affected
AC , Mx Mx & I

Explanation

System movement of the instruction ANDIM is to chang e operand 2 (accumulator) of

instruction AND to imme diate data I. This instruction is in imme diate mode, so the add ress

of data memory can only be set to bank 0($000 H ~ $07FH). The operation result is saved

in both accumulator and the data memory.

 [Example] $20H=01 10B , I=0011B

 :

 LDI 20H,0110B ;AC=06H,$20H=0110B

 ANDIM 20H,0011B ;AC=0010B,$20H=0010B

 :

Ver1.0 21/36

 SH6610 instructions introduction

 Programming Tip

ANDIM itself has a special function “MASK”. When we need to set a certain bit to 0,

we can clear this bit to 0 with ANDIM like this:

 [Example] Clear bit 2 of $20H to 0

 ANDIM 20H，1011B

 Af ter execution: $20H=x0xxB

Ver1.0 22/36

 SH6610 instructions introduction

Instruction: OR Function: to do logic OR operation with the values of Data Memory

and Accumulator, and then save the result in the
Accumulator

Format:
Instruction Code:
Carry Flag:
Operation:

OR Mx，bbb
00101 0bbb xxx xxxx
Not affected
AC Mx | AC

 Explanation

In OR operation, the resul t will be 1(true) if either one of the two operands is 1(true).

Its logic table is as follows:

Logic operation table for OR

 a b a OR b
 0 0 0
 0 1 1
 1 0 1
 1 1 1

 However, in real inst ruction the l ogic op erand also h as 4bits rath er tha n 1 bit. The

instruction OR is to OR the values of data memory with accumulator, and the result is saved

in the accumulator.

 [Example] 0001B | 0100B

 :

 LDI 20H,0001B ;$20H=0001B,AC=0001B

 LDI 21H,0100B ;$21H=0100B,AC=0100B

 OR 20H,0 ;$20H=0001B,AC=0101B

 :

Instruction: ORM Function: to do logic OR operation with the values of Data Memory

and Accumulator, and then save the result in both the
Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ORM Mx，bbb
00101 1bbb xxx xxxx
Not affected
AC , Mx Mx | AC

Ver1.0 23/36

 SH6610 instructions introduction
Explanation

 System movement of the in struction O RM i s almost the same a s O R, but saving t he

operation result in data memory as well as in accumulator.

 [Example] 0001B | 0100B

 :

 LDI 20H,0001B ;$20H=0001B,AC=0001B

 LDI 21H,0100B ;$21H=0100B,AC=0100B

 ORM 20H,0 ;$20H=0101B,AC=0101B

 :

 Programming Tip

 In program designing, if a cert ain bit of a variable needs to be set to 1 and the other bit s

must not be affected, then this can be done by the instruction OR. Because any bit that has

done OR operation with 0 can keep its original value, while those with 1 will have the value of

1.

Instruction: ORIM Function: to do logic OR operation with the value of Data Memory

and Immediate Data I, and then save the result in both
Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

ORIM Mx，I
01101 iiii xxx xxxx
Not affected
AC , Mx Mx | I

Explanation

 System movement of the instru ction ORIM is to do logic O R operation with the value o f

data memory and Imm ediate Data I, a nd save the result in b oth accumulator and th e data

memory. This instruction is also in immediate mode.

 [Example] Set bit 3 of the value of $20H to 1

 ORIM 20H，1000B

 After execution: $20H=1xxxB

Ver1.0 24/ 36

 SH6610 instructions introduction

Instruction: EOR Function: to do logic Exclusive OR operation with the values of Data

Memory and Accumulator, and then save the result in the
Accumulator

Format:
Instruction Code:
Carry Flag:
Operation:

EOR Mx，bbb
00100 0bbb xxx xxxx
Not affected
AC Mx ^ AC

Explanation

 System movement of EOR is to do logic Exclu sive OR operation with the value s of dat a

memory and accumulator, and save the result in the accumulator. EOR is usually referred to

as Exclusive OR, becau se the operati on resu lt will be 1 only if the two opera nds have

different values; otherwise the result will be 0. The logic table for EOR is as follows:

Logic operation table for EOR

 a b a EOR b
 0 0 0
 0 1 1
 1 0 1
 1 1 0

 [Example] 0011B ^ 0101B

 :

 LDI 20H,0011B ;$20H=0011B,AC=0011B

 LDI 21H,0101B ;$21H=0101B,AC=0101B

 EOR 20H,0 ;$20H=0011B,AC=0110B

 :

Ver1.0 25/36

 SH6610 instructions introduction

Instruction: EORM Function: to do logic Exclusive OR operation with the values of

Data Memory and Accumulator, and then save the result
in both the Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

EORM Mx，bbb
00100 1bbb xxx xxxx
Not affected
AC , Mx Mx ^ AC

Explanation

 System movement of the instructio n EORM is almost the sa me as EOR, i.e. doing EOR

action with the values of data memory and accumulator, but saving the operation result in the

data memory as well as in the accumulator.

[Example] 0011B ^ 0101B

 :

 LDI 20H,0011B ;$20H=0011B,AC=0011B

 LDI 21H,0101B ;$21H=0101B,AC=0101B

 EORM 20H,0 ;$20H=0110B,AC=0110B

 :

Instruction: EORIM Function: to do logic EOR operation with the value of Data Memory

and Immediate Data I, and then save the result in both
the Accumulator and the Data Memory

Format:
Instruction Code:
Carry Flag:
Operation:

EORIM Mx，I
01100 iiii xxx xxxx
Not affected
AC , Mx Mx ^ I

Explanation

 Operand 2 of the instructi on EORIM should be immediate dat a. This instruction is to do

logic EOR op eration with the value of d ata memory and immedi ate data I, and to save th e

result in both the accumulator and the data memory.

 [Example] $20H=0 011B，I=0101B

 :

 LDI 20H,0011B ;$20H=0011B,AC=0011B

 EORIM 20H,0101B ;$20H=0110B,AC=0110B

 :

Ver1.0 26/36

 SH6610 instructions introduction

 Programming Tip

 After readi ng all of the logic inst ructions, yo u may wond er why there haven’t the ‘N OT’

instruction (inverse)? If there haven’t such an instruction in SH6610 series, what can I do?

Don’t worry, Programming Tip is going to tell you how to use other instru ctions to perform the

NOT function. The operation of NO T is to change 0 1 or 1 0 on each bit. Here, the

EOR in struction can h elp us to g et the in versed value b y doi ng EO R op eration wit h

immediate data (0FH) and the variable that wants to be done NOT. You’ll understand clearly

after reading the following example.

[Example] Do the operation NOT with the value of $20H (1100B)

 EORIM 20H,0FH

 Execution result: $20H=0011B,AC=0011B

1-6 Instructions for Flow Control

Instruction: JMP Function: to jump to a designated address to execute program
Format:
Instruction Code:
Carry Flag:
Operation:

JMP X
1110p xxxx xxx xxxx
Not affected
PC X(Include p)

Explanation

 Instruction JMP jump s to a desi gnated address to execute prog ram. Howeve r,

addressing capability of SH6610 series CPU is limited to 4K wo rds (0000H~0FFFH), so th e

jumping range of JMP can only reach 4K(0FFFH). Address beyond 4K shall be reached by

switching ba nks. There’s det ailed explanatio n in later ch apters for how to switch ban ks.

The JMP instruction is similar to the GOTO instruction in BASIC program.

 [Example] PC=40H , Jump to 0E00H

 JMP 0E00H

 Execution result: PC=0E00H

Ver1.0 27/36

 SH6610 instructions introduction

 [Example] J ump to LABLE

 JMP LOOP ;jump to loop (PC 0340h)

 :

 ORG 0340H

 LOOP : NOP

 NOP

 :

Instruction: BAZ Function: if AC equals 0, then go to a designated address to

execute program; otherwise continue to execute the next
line

Format:
Instruction Code:
Carry Flag:
Operation:

BAZ X
10010 xxxx xxx xxxx
Not affected
PC X , if AC=0

Explanation

 If the val ue of AC is 0, then af ter exec uting the BAZ instruction, PC will go to th e

designated address X to execute p rogram, the range of X bein g from $0 00H to $7FF H. It

continues to execute the next line if the value of AC is 1

 [Example] if ($20H=$20H-1)=00H then goto INC21H

 LDI 20H,0FH ;$20H=0FH

 DEC20 H: SBIM 20H,01H ;AC,$20H $20H -1

 BAZ INC21H ;ifAC=0 jump to INC21H

 JMP DEC20H ;else jump to DEC20H

 :

 INC21H ADIM 21H,01H ;$21H+1

 :

Instruction: BA0 Function: if bit 0 of AC is 1, then go to a designated address to

execute program; otherwise continue to execute the next
line

Format:
Instruction Code:
Carry Flag:
Operation:

BA0 X
10100 xxxx xxx xxxx
Not affected
PC X , if AC(0)=1

Ver1.0 28/36

 SH6610 instructions introduction
Explanation

 If bit 0 of AC is 1, then af ter executing BA0 instructio n, PC will go to the designat ed

address X to execute program, the range of X being from $000H to $7FFH or from $0800H to

$0FFFH. It continues to execute the next line if bit 0 of AC is 0.

[Example] if $20H(bit 0)=1 then goto INC21H

 :

 LDI 20H,0FH ;$20H=0FH,AC=0FH

DEC20H: BIM 20H,01H ;$20H,AC $20H -1

 BA0 INC21H ;if AC(bit0)=1,jump to INC21H

 JMP DEC20H ;else jump to DEC20H

 :

INC21H: ADIM 21H,01H ;$21H,AC $21H+1

Instruction: BA1 Function: if bit 1 of AC is 1, then go to designated address to

execute program; otherwise continue to execute the next
line

Format:
Instruction Code:
Carry Flag:
Operation:

BA1 X
10101 xxxx xxx xxxx
Not affected
PC X , if AC(1)=1

Explanation

 If bit 1 of AC is 1, then af ter executing BA1 instructio n, PC will go to the designat ed

address X to execute program, the range of X being from $000H to $7FFH or from $0800H to

$0FFFH. It continues to execute the next line if bit 1 of AC is 0.

 [Example] if $20H(bit 1)=1 then goto INC21H

 :

 LDI 20H,0FH ;$20H=0FH,AC=0FH

 DEC20 H: SBIM 20H,01H ;$20H,AC $20H -1

 BA1 INC21H ;ifAC(bit1)=1,jump to INC21H

 JMP DEC20H ;else jump to DEC20H

 :

 INC21 H: ADIM 21H,01H ;$21H,AC $21H+1

 :

Ver1.0 29/36

 SH6610 instructions introduction
Instruction: BA2 Function: if bit 2 of AC is 1, then go to designated address to

execute program; otherwise continue to execute the next
line

Format:
Instruction Code:
Carry Flag:
Operation:

BA2 X
10110 xxxx xxx xxxx
Not affected
PC X , if AC(2)=1

Explanation

 If bit 2 of AC is 1, then af ter executing BA2 instructio n, PC will go to the designat ed

address X to execute program, the range of X being from $000H to $7FFH or from $0800H or

$0FFFH. It continues to execute the next line if bit 1 of AC is 0.

[Example] if $20H(bit 2)=1 then goto INC21H

 :

 LDI 20H,0FH ;$20H=0FH,AC=0FH

DEC20H: SBIM 20H,01H ;$20H,AC $20H -1

 BA2 INC21H ;if AC(bit2)=1,jump to INC21H

 JMP DEC20H ;else jump to DEC20H

 :

INC21H: ADIM 21H,01H ;$21H,AC $21H+1

 :

Instruction: BA3 Function: if bit 3 of AC is 1, then go to designated address to

execute program; otherwise continue to execute the next
line

Format:
Instruction Code:
Carry Flag:
Operation:

BA3 X
10111 xxxx xxx xxxx
Not affected
PC X , if AC(3)=1

Explanation

 If bit 3 of AC is 1, th en af ter executing BA3 instruct ion, PC will go to the designat ed

address X to execute program, the range of X being from $000H to $7FFH or from $0800H to

$0FFFH. It continues to execute the next line if bit 1 of AC is 0.

Ver1.0 30/ 36

 SH6610 instructions introduction

[Example] if $20H(bit 3)=1 then goto INC21H

 :

 LDI 20H,0FH ;$20H=0FH,AC=0FH

DEC20H SBIM 20H,01H ;$20H,AC $20H -1

 BA3 INC21H ;if AC(bit3)=1,jump to INC21H

 JMP DEC20H ;else jump to DEC20H

 :

INC21H: ADIM 21H,01H ;$21H,AC $21H+1

 :

Instruction: BC Function: if CY is 1, then go to designated address to execute

program; otherwise continue to execute the next line
Format:
Instruction Code:
Carry Flag:
Operation:

BC X
10011 xxxx xxx xxxx
CY
PC X , if CY=1

Explanation

 If CY is 1, then af ter executing instruction BC, PC will go to the designated address X to

execute program, the ran ge of X being from $000 H to $7FFH. It continues to execute the

next line if CY is n ot 1. The in struction BC is often u sed af ter ad dition or subtraction t o

decide whether there is a carry or borrow. You should especially note that for addition, CY is

set to 1 when there is a carry, while for subtraction CY is set to1 when there isn’t any borrow.

Therefore you should be careful when dealing with program flows.

[Example] if CY=1 then goto INC20H

 :

 LDI 20H,0FH ;$20H=0FH,AC=0FH,CY=0

INC20H : SBIM 20H,01H ;$20H,AC $20H -1

 BC INC20H ;if CY=1,jump to INC20H

 :

Ver1.0 31/36

 SH6610 instructions introduction

Instruction: TJMP Function:Unconditionally go to the address composed by

(PC11~PC8), TBR and AC value to execute program
Format:
Instruction Code:
Carry Flag:
Operation:

TJMP
11110 1111 111 1111
Not affected

Explanation

The destination address for Instructio n TJMP is co mposed by PC’ s bit 8 ~bit 11, TBR

and AC value (please refer to instruction RTNW for program example).

Example: PC=300H, TBR=01H, AC=02H, then the rule for composing a destination

address is as follows:

 address=PC(bit8~bit 11) TBR AC

 If:

 PC =300H

 TBR=01H

 AC=02H

 Then the destination address is: 3 1 2 H

Instruction: CALL Function: to call a subprogram
Format:
Instruction Code:
Carry Flag:
Operation:

CALL X
11000 xxxx xxx xxxx
Not affected
ST CY;PC , PC X (not include p)

Explanation

 Instruction CALL is used to call a subprogram. First it saves the values of CY and PC+1

to stack for returning to the calling program, then goes to the designated address X ($0000H

~ $07FFH or $0800 H ~ $0FFF H) to execute p rogram. Instructions RTNW or RTNI can be

used to retu rn to the calli ng program. When using CALL to call a su bprogram, you sho uld

especially note how many layers of st ack have al ready been use d, because SH6610 series

only provide 4-layer stacks. If more than 4 layers are used, serious erro r will be o ccurred

when returning to the calling program!

Ver1.0 32/36

 SH6610 instructions introduction

Instruction: RTNW Function: to return to the calling program, H TBR, L AC
Format:
Instruction Code:
Carry Flag:
Operation:

RTNW H，L
11010 000h hhh 1111
Not affected
PC ST , TBR hhhh , AC 1111

Explanation

RTNW is an instruction to get data from stack to PC for returning to the calling program,

and at the same time put the value of H into TBR and the value of L into AC. This instruction

is often used to get stationary data.

[Example] To get data from ROM address 302H

TBR EQU OEH

TEMP EQU 20H

 :

 :

001A LDI TBR，00H ;put index value (high nibble) 0 into TBR.

001B LDI TEMP，02 ;put index value (low nibble) 2 into AC

001C CALL 300H ;call subprogram.

001D :

 :

 :

 ORG 300H

0300 TJMP ; get destination address $0302H according to

(PC11~PC8),TBR,AC

0301 RTNW 00H,01H

0302 RTNW 00H,02H ;return to main program, H TBR,L AC

0303 RTNW 04H,05H

0304 RTNW 09H,08H

0305 :

Instruction: RTNI Function: to return from interrupt or subprogram
Format:
Instruction Code:
Carry Flag:
Operation:

RTNI
11010 1000 000 0000
CY
CY;PC ST

Ver1.0 33/ 36

 SH6610 instructions introduction

Explanation

Instruction RTNI is mainly used for retu rning from interrupt or sub program. It fills CY

and PC with values of st ack (CY an d returni ng add ress) wh en returning. What’s the

difference between RTNI and RTNW? We can find that whe n returning by RTNW, only the

returning address in the st ack is fetche d into PC, but CY value is not fetched. And RTNW

fetches another two values (H TBR, L AC), which RTNI does not do. Therefore you can

choose from the two instructions according to your needs.

 [Example] To exchange two numbers

 000E 1 TBR EQU 0EH

 0020 2 REGX EQU 20H

 0021 3 REGY EQU 21H

 0022 4 TEMP EQU 22H

 5 ;*********************

 0005 780E 12 RESET : LDI TEMP,00H ;set TEMP=00h

 0006 7920 13 LDI REGX,02H ;set RegX=02h

 0007 7A21 14 LDI REGY,04H ;set RegY=04h

 0008 C00A 15 CALL SWAPXY ; ;call subprogram

 17 ;**********************

 000A 3820 18 SWAPXY LDA REGX,00H ;AC=02H

 000B 3C22 19 STA TEMP,00H ;TEMP=02H

 000C 3821 20 LDA REGY,00H ;AC=04H

 000D 3C20 21 STA REGX,00H ;REGX=04H

 000E 3822 22 LDA TEMP,00H ;AC=02H

 000F 3C21 23 STA REGY,00H ;REG2=02H

 0010 D400 24 RTNI ;return to main program

Ver1.0 34/ 36

 SH6610 instructions introduction

Instruction: HALT Function: CPU to be halt from working
Format:
Instruction Code:
Carry Flag:
Operation:

HALT
11011 0000 000 0000
Not affected
No

Explanation

 After executing inst ruction HALT, CPU will be ha lt while it s surrounding circuit (counter ,

oscillation circuit) continues working. The instruct ion HA LT is usually use d to stop CP U

temporarily in order to save power. In HALT mode, when any of the system interrupts occurs,

CPU will be released from HALT mode and continue to work.

 [Example] HALT program, to enable PORT B interrupt to wake up the program

 IEX EQU 00H ;interrupt enable register

 IRQ EQU 01H ;interrupt require flag

 PORTB EQU 09H ;i/o port b

 :

 LDI PORTB,0FH ;set port b = “ high ‘

 LDI IEX,0001B ;enable port interrupt

 LDI IRQ,00H ;clear interrupt require flag

 HALT ;system cpu halt

 NOP

 :

Instruction: STOP Function: to stop the whole chip (including oscillation circuit)
Format:
Instruction Code:
Carry Flag:
Operation:

STOP
11011 1000 000 0000
Not affected
No

Explanation

 Executing instruction STOP will stop the whole chip from working, incl uding oscillation

circuit. Only PORT interrupt and external interrupt can relea se CPU from S TOP mode, so

you must en able an inte rrupt befo re e ntering ST OP mode , otherwise the system can’t be

waked up from STOP mode.

Ver1.0 35/ 36

 SH6610 instructions introduction

 [Example] STOP program, to enable PORT B interrupt to wake up the program

 IEX EQU 00H ;interrupt enable register

 IRQ EQU 01H ;interrupt require flag

 PORTB EQU 09H ;i/o port b

 :

 LDI PORTB,0FH ;set port b = “ high ‘

 LDI IEX,0001B ;enable port interrupt

 LDI IRQ,00H ;clear interrupt require flag

 STOP ;all system is “ stop ”

 NOP

 :

Instruction: NOP Function: to do nothing
Format:
Instruction Code:
Carry Flag:
Operation:

NOP
1111 1111 111 1111
Not affected
No

Explanation

 Instruction NOP means doing n othing in it s instruction cycle and it is of ten used for tim e

delay. Because it does n othing when executing, you don’t worry if it will af fect any current

status.

Ver1.0 36/36

