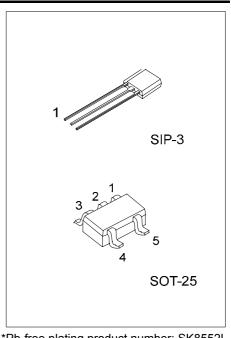
UNISONIC TECHNOLOGIES CO., LTD

SK8552

LINEAR INTEGRATED CIRCUIT


LOW VOLTAGE OPERATION HALL IC

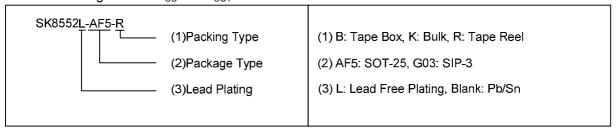
DESCRIPTION

SK8552 is a semiconductor integrated circuit utilizing the Hall effect. It has been so designed as to operate in the alternating magnetic field especially at low supply voltage and operation over extended temperature ranges to +125 . This Hall IC is suitable for application to various kinds of sensors, contact-less switches, and the like.

FEATURES

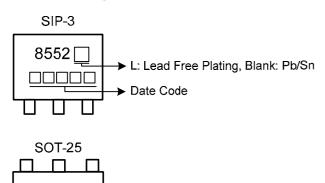
- * Wide supply voltage range of 3V to 20V
- * Wide temperature operation range of -20 ~+125
- * TTL and MOS IC are directly drivable by the output
- * The life is semipermanent because it employs contactless parts
- * SIP-3, SOT-25 package
- * Equipped with an output pull-up resistor (typical $20k\Omega$)

*Pb-free plating product number: SK8552L


APPLICATION

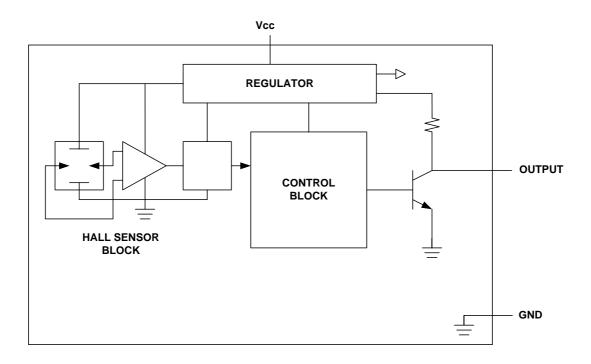
- * Position sensor
- * Contact-less sensor
- * Detection of cover (open/close)

ORDERING INFORMATION


Ordering Number		Dookogo	Pin Assignment				Dooking		
Normal	Lead Free Plating	Package	1	2	3	4	5	Packing	
SK8552-AF5-R	SK8552L-AF5-R	SOT-25	G	G	0	ı	Ν	Tape Reel	
SK8552-G03-B	SK8552L-G03-B	SIP-3	ı	G	0	-	-	Tape Box	
SK8552-G03-K	SK8552L-G03-K	SIP-3	I	G	0	-	-	Bulk	

Note: Pin Assignment: I:V_{CC} O:V_{OUT} G:GND N: No Connection

www.unisonic.com.tw 1 of 5


■ MARKING

➤ L: Lead Free Plating, Blank: Pb/Sn

■ BLOCK DIAGRAM

8552 🔲

■ ABSOLUTE MAXIMUM RATINGS (Ta = 25)

PARAMETER		SYMBOL	RATINGS	UNIT	
Supply Voltage		V_{CC}	3~20	V	
Supply Current		I _{CC}	10	mA	
Output Current		I _{OUT}	10	mA	
Dawer Dissipation	SIP	J	400	mW	
Power Dissipation	SOT	P _D	200	mW	
Junction Temperature		TJ	+125	°C	
Operating Temperature	•	T _{OPR}	-20~ +125	°C	
Storage Temperature	•	T_{STG}	-55~+150	°C	

- Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The device is guaranteed to meet performance specification within 0 \sim +70 operating temperature range and assured by design from -20 \sim +125 .

■ ELECTRICAL CHARACTERISTICS (Ta = 25)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT		
			IVIIIN					
Output voltage SH	V _{OHS}	V _{CC} =3V,I _{OUT} =-10μA,B=100G		2.8	3	V		
Output voltage NH	V_{OHN}	V _{CC} =3V,I _{OUT} =-10μA,B=-100G		2.8	3	V		
Output voltage SL	V_{OLS}	V _{CC} =3V, I _{OUT} =1mA,B=5G			0.7	V		
Output voltage NL	V_{OLN}	V _{CC} =3V, I _{OUT} =1mA,B=-5G			0.7	V		
Output current 1	I _{OHS}	V _{CC} =3V,V _{OUT} =3V , B=100G		10		mA		
Output current 2	I _{OHN}	V _{CC} =3V,V _{OUT} =3V , B=-100G		10		mA		
Supply current	Icc	V _{CC} =3V, B=5G		5		mA		
Output quitabing time	T_R			5		μS		
Output switching time	T_F			1		μS		
MAGNETIC CHARACTERISTICS (over operating supply voltage range)								
Operating magnetic flux density	BHLS	V _{CC} =3V	-20			G		
Operating magnetic flux density	BHLN	V _{CC} =3V	20			G		
Operating magnetic flux density	BLHS	V _{CC} =3V			-100	G		
Operating magnetic flux density	BLHN	V _{CC} =3V			100	G		

PACKAGE INFORMATION

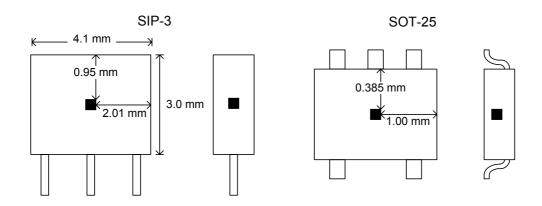


Fig. 1 SENSOR LOCATIONS

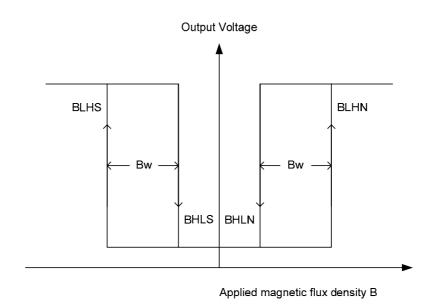
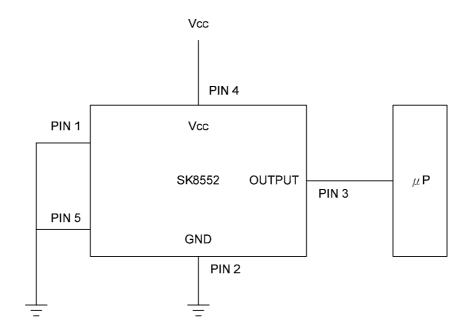



Fig. 2 OPERATING MAGNETIC FLUX DENSITY

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.