20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081

U.S.A.

MJF122, MJF127

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

Complementary Power Darlingtons

For Isolated Package Applications

Designed for general-purpose amplifiers and switching applications, where the mounting surface of the device is required to be electrically isolated from the heatsink or chassis.

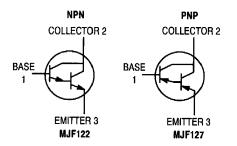
Features

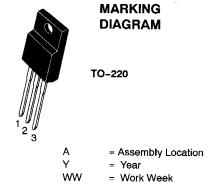
- Electrically Similar to the Popular TIP122 and TIP127
- 100 V_{CEO(sus)}
- 5.0 A Rated Collector Current
- No Isolating Washers Required
- · Reduced System Cost
- High DC Current Gain 2000 (Min) @ I_C = 3 Adc
- UL Recognized, File #E69369, to 3500 V_{RMS} Isolation
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{ÉB}	5	Vdc
RMS Isolation Voltage (Note 1) (t = 0.3 sec, R.H. ≤ 30%, T _A = 25°C) Per Figure 14	V _{ISOL}	4500	V _{RMS}
Collector Current - Continuous Peak	lc	5 8	Adc
Base Current	l _B	0.12	Adc
Total Power Dissipation (Note 2) @ T _C = 25°C Derate above 25°C	P _D	30 0.24	W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D 2 0.016		W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	lc

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction-to-Ambient	R _{0JA}	62.5	°C/W	
Thermal Resistance, Junction-to-Case (Note 2)	R _{0JC}	4.1	°C/W	
Lead Temperature for Soldering Purpose	Tı	260	°C	


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Proper strike and creepage distance must be provided.

Measurement made with thermocouple contacting the bottom insulated mounting surface (in a location beneath the die), the device mounted on a heatsink with thermal grease and a mounting torque of ≥ 6 in. lbs.

COMPLEMENTARY SILICON **POWER DARLINGTONS** 5.0 A, 100 V, 30 W

MJF122, MJF127

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 100 \text{ mAdc}, I_B = 0)$		V _{CEO(sus)}	100	-	Vdc
Collector Cutoff Current (V _{CE} = 50 Vdc, I _B = 0)		I _{CEO}	_	10	μAdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)		I _{CBO}	_	10	μAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)		I _{EBO}	_	2	mAdc
ON CHARACTERISTICS (Note 3)					
DC Current Gain ($I_C = 0.5$ Adc, $V_{CE} = 3$ Vdc) ($I_C = 3$ Adc, $V_{CE} = 3$ Vdc)		h _{FE}	1000 2000	- -	
Collector–Emitter Saturation Voltage ($I_C = 3$ Adc, $I_B = 12$ mAdc) ($I_C = 5$ Adc, $I_B = 20$ mAdc)		V _{CE(sat)}	-	2 3.5	Vdc
Base-Emitter On Voltage (I _C = 3 Adc, V _{CE} = 3 Vdc)		V _{BE(on)}	_	2.5	Vdc
DYNAMIC CHARACTERISTICS					
Small-Signal Current Gain (I _C = 3 Adc, V _{CE} = 4 Vdc, f = 1 MHz)		h _{fe}	4	_	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	MJF127 MJF122	C _{ob}	-	300 200	pF

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

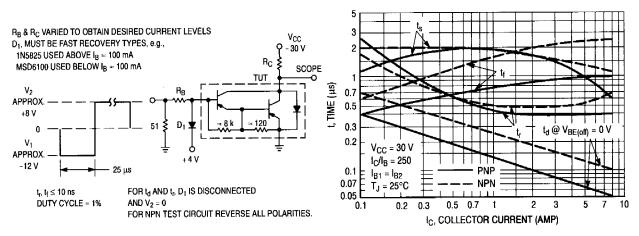


Figure 1. Switching Times Test Circuit

Figure 2. Typical Switching Times