RadTolerant FPGAs

Features

General Characteristics

- Tested Total Ionizing Dose (TID) Survivability Level
- No Single Event Latch-Up Below a Minimum LET (Linear Energy Transfer) Threshold of $80 \mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$ for All RT (RadTolerant) Devices
- Packages: 84-Pin, 132-Pin, 172-Pin, 196-Pin, and 256-Pin Ceramic Quad Flat Pack
- Offered as Class B and E-Flow (Actel Space Level Flow)
- QML Certified Devices
- 100% Military Temperature Tested $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

High Density and Performance

- 4,000 to 20,000 Logic Equivalent Gates
- 2,000 to 10,000 ASIC Equivalent Gates
- Up to 85 MHz Internal Performance
- Up to 60 MHz System Performance
- Up to 228 User I/Os
- Up to Four Fast, Low-Skew Clock Networks

Easy Logic Integration

- Nonvolatile, User Programmable
- Pin-Compatible Commercial Devices Available for Prototyping
- Highly Predictable Performance with 100% Automatic Place-and-Route
- 100\% Resource Utilization with 100\% Pin-Locking
- Secure Programming Technology Prevents Reverse Engineering and Design Theft
- Permanently Programmed for Operation on Power-Up
- Unique In-System Diagnostic and Verification Capability with Silicon Explorer

Product Family Profile

Table 1 - RadTolerant Family

Device	RT1020	RT1280A	RT1425A	RT1460A	RT14100A
Capacity					
System Gates	6,000	24,000	7,500	18,000	30,000
Logic Gates	4,000	16,000	5,000	12,000	20,000
ASIC Equivalent Gates	2,000	8.000	2,500	6,000	10,000
PLD Equivalent Gates	5,000	20,000	6,250	15.000	25,000
TTL Equivalent Package	50	200	60	150	250
20-Pin PAL Equivalent Packages	20	80	25	60	100
Logic Modules	547	1,232	310	848	1,377
S-Modules	N / A	624	160	432	697
C-Modules	547	608	150	416	680
User I/Os (Maximum)	69	140	100	168	228
Performance					
System Speed (Maximum)	20 MHz	40 MHz	60 MHz	60 MHz	60 MHz
Packages (by Pin Count)				132	196
CQFP	84			256	

Ordering Information

```
RT1280A -

```

 Application (Temperature Range)
 C = Commercial (0 to +70 C)
 M = Military (-55 to +125 %)
 B = MIL-STD-883 Class B
 E = Extended Flow (Space Level)
 Package Lead Count
 Package Type
 CQ = Ceramic Quad Flat Pack (CQFP)
 Speed Grade
 Std = Standard Speed
 -1 = Approximately 15% Faster than Standard
 Part Number
 RT1020 = 4,000 Gates-RadTolerant ACT 1
 RT1280A = 16,000 Gates-RadTolerant ACT 2
 RT1425A =5,000 Gates-RadTolerant ACT 3
 RT1460A = 12,000 Gates-RadTolerant ACT 3
 RT14100A = 20,000 Gates-RadTolerant ACT 3
 A1020B = 4,000 Gates-ACT 1
 A1280A = 16,000 Gates-ACT 2
 A1425A =5,000 Gates-ACT 3
 A1460A = 12,000 Gates-ACT 3
 A14100A = 20,000 Gates-ACT 3
    ```

\section*{Device Resources}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & & \multirow{4}{|c|}{ User I/Os } \\
FPGA Device Type & Logic Modules & \begin{tabular}{c} 
Equivalent \\
Gates
\end{tabular} & \begin{tabular}{c} 
CQFP \\
84-Pin
\end{tabular} & \begin{tabular}{c} 
CQFP \\
132-Pin
\end{tabular} & \begin{tabular}{c} 
CQFP \\
172-Pin
\end{tabular} & \begin{tabular}{c} 
CQFP \\
196-Pin
\end{tabular} & \begin{tabular}{c} 
CQFP \\
256-Pin
\end{tabular} \\
\hline RT1020/A1020B & 547 & 2,000 & 69 & - & - & - & - \\
\hline RT1280A/A1280A & 1,232 & 8,000 & - & - & 140 & - & - \\
\hline RT1425A/A1425A & 310 & 2,500 & - & 100 & - & - & - \\
\hline RT1460A/A1460A & 848 & 6,000 & - & - & - & 168 & - \\
\hline RT14100A/A14100A & 1,377 & 10,000 & - & - & - & - & 228 \\
\hline
\end{tabular}

Note: Package Definition: CQFP = Ceramic Quad Flat Pack
Contact your Actel sales representative for product availability.
\(\qquad\)

\section*{Product Plan}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{Speed Grade} & \multicolumn{4}{|c|}{Application} \\
\hline & & Std & -1* & Commercial & Military & MIL-STD-883 & Extended Flow \\
\hline \multirow[t]{4}{*}{ACT 1} & \multicolumn{7}{|l|}{RT1020 Device} \\
\hline & 84-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & - & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline & \multicolumn{7}{|l|}{A1020B Device (Prototyping Use)} \\
\hline & 84-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline \multirow[t]{4}{*}{ACT 2} & \multicolumn{7}{|l|}{RT1280A Device} \\
\hline & 172-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline & \multicolumn{7}{|l|}{A1280A Device (Prototyping Use)} \\
\hline & 172-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline \multirow[t]{12}{*}{ACT 3} & \multicolumn{7}{|l|}{RT1425A Device} \\
\hline & 132-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline & \multicolumn{7}{|l|}{A1425A Device (Prototyping Use)} \\
\hline & 132-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & \multicolumn{7}{|l|}{RT1460A Device} \\
\hline & 196-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline & \multicolumn{7}{|l|}{A1460A Device (Prototyping Use)} \\
\hline & 196-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & \multicolumn{7}{|l|}{RT14100A Device} \\
\hline & 256-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline & \multicolumn{7}{|l|}{A14100A Device (Prototyping Use)} \\
\hline & 256-Pin Ceramic Quad Flat Pack (CQFP) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline
\end{tabular}
\(\begin{aligned} \text { Note: } & \text { Contact your Actel sales representative for product availability. Availability: } \boldsymbol{V}=\text { Available, }- \text { Symbol }=\text { Not Planned } \\ & \text { * Speed Grade: }-1=\text { Approx. } 15 \% \text { faster than Standard }\end{aligned}\)

\section*{Table of Contents}
RadTolerant FPGAs
General Description ..... 1-1
Radiation Survivability ..... 1-1
QML Certification ..... 1-2
Disclaimer ..... 1-2
Development Tool Support ..... 1-2
RadTolerant Architecture ..... 1-2
Logic Modules ..... 1-2
The RT1020 Logic Module ..... 1-4
Absolute Maximum Ratings ..... 1-7
Package Thermal Characteristics ..... 1-8
Power Dissipation ..... 1-8
Parameter Measurement ..... 1-14
Sequential Timing Characteristics ..... 1-15
RT1020, A1020B Timing Characteristics ..... 1-17
RT1280A, A1280A Timing Characteristics ..... 1-19
RT1425A, A1425A Timing Characteristics ..... 1-22
RT1460A, A1460A Timing Characteristics ..... 1-25
RT14100A, A14100A Timing Characteristics ..... 1-28
Pin Descriptions ..... 1-31
Package Pin Assignments
84-Pin CQFP ..... 2-1
132-Pin CQFP ..... 2-3
172-Pin CQFP ..... 2-6
196-Pin CQFP ..... 2-9
256-Pin CQFP ..... 2-12
Datasheet Information
List of Changes ..... 3-1
Datasheet Categories ..... 3-1
Export Administration Regulations (EAR) or International Traffic in Arms Regulations (ITAR) ..... 3-1

\section*{RadTolerant FPGAs}

\section*{General Description}

Actel builds the most reliable field programmable gate arrays (FPGAs) in the industry, with overall antifuse reliability ratings of less than 10 failures-in-time (FITs), corresponding to a useful life of more than 40 years. Actel FPGAs are production-proven, with more than five million devices shipped and more than one trillion antifuses manufactured. Actel devices are fully tested prior to shipment, with an outgoing defect level of only 122 ppm (further reliability data is available in the Actel Device Reliability Report).
Additionally, the programmable architecture of these devices offers high performance, design flexibility, and fast and inexpensive prototyping-all without the expense of test vectors, NRE charges, long lead times, and schedule and cost penalties for design refinements.

\section*{Device Description}

The RT1020 device contains the same architecture as the A1020, A1020A, and A1020B devices. The architecture, a combinatorial logic module, is a logic structure with 8 inputs and 1 output. The logic itself is comprised of a 4 -input MUX, as described in Figure 1-3 on page 1-4. In addition, since the RT1020 device contains the same number of gates and I/Os and has the same operating voltage as its commercial equivalent (A1020B), an inexpensive commercial grade A1020B-CQ84 device can be used during the prototype phase, and replaced by the RT1020 in the flight units.
The RT1280A device uses the A1280A die from the ACT 2 family of FPGAs. It utilizes a two-module architecture, consisting of combinatorial modules (C-modules) and sequential modules (S-modules) optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the RT1280A has 8,000 ASIC-equivalent gates and 140 user I/Os.
The RT1280A device is fully pin- and function-compatible with the commercially-equivalent A1280A-CQ172C device for easy, inexpensive prototyping.
The RT1425A, RT1460A and RT14100A devices use the A1425A, A1460A and A14100A dies, respectively. These devices are derived from the ACT 3 family of FPGAs, which also utilizes the two-module channeled array architecture, and offers faster performance than the RT1280A.

These devices also have fully pin- and functioncompatible commercially-equivalent devices for easy and inexpensive prototyping. The A1425A-CQ132C is used for the RT1425A, the A1460A-CQ196C is used for the RT1460A, and the A14100A-CQ256C is used for the RT14100A.

\section*{Radiation Survivability}

Total dose results are summarized in two ways. The first method summarizes by the maximum total dose level that is reached when the parts fail to meet a device specification but remain functional. For Actel FPGAs, the parameter that exceeds the specification first is the standby supply current ( \(\mathrm{I}_{\mathrm{CC}}\) ). The second method summarizes by the maximum total dose that is reached prior to the functional failure of the device.
The Actel RT devices have varying total-dose radiation survivability. The ability of these devices to survive radiation effects is both device- and lot-dependent. The user must evaluate and determine the applicability of these devices for specific design and environmental requirements.
Typical results for the RT1020 device are \(\sim 100 \mathrm{krads}\) (Si) for standby \(\mathrm{I}_{\mathrm{CC}}\) and \(>100 \mathrm{krads}\) for functional failure. The RT1280A device has results from 4 to 10krads (Si) for standby \(\mathrm{I}_{\mathrm{CC}}\), and 7 to 18 krads for functional failure. Typical results for ACT 3 devices are 10 to 28 krads for \(\mathrm{I}_{\mathrm{CC}}\), and 20 to 77 krads for functional failure.
Actel will provide total dose radiation testing along with the test data on each pedigreed lot that is available for sale. These reports are available on our website, or you can contact your local sales representative to receive a copy. A listing of available lots and devices is also provided. These results are provided only for reference and for customer information.
For a radiation performance summary, see Radiation Performance of Actel Products on the Actel Website. This summary also shows single event upset (SEU) and single event latch-up (SEL) testing that has been performed on Actel FPGAs.

\section*{RadTolerant FPGAs}

\section*{QML Certification}

Actel has achieved full QML certification, demonstrating that quality management, procedures, processes, and controls are in place and comply with MIL-PRF-38535, the performance specification used by the Department of Defense for monolithic integrated circuits. QML certification is an example of Actel's commitment to supplying the highest quality products for all types of high-reliability, military and space applications.
Many suppliers of microelectronics components have implemented QML as their primary worldwide business system. Appropriate use of this system not only helps in the implementation of advanced technologies, but also allows for quality, reliable and cost-effective logistics support throughout the QML products life cycles.

\section*{Disclaimer}

All radiation performance information is provided for information purposes only and is not guaranteed. The total dose effects are lot-dependent, and Actel does not guarantee that future devices will continue to exhibit similar radiation characteristics. In addition, actual performance can vary widely due to a variety of factors, including but not limited to characteristics of the orbit, radiation environment, proximity to satellite exterior, amount of inherent shielding from other sources within the satellite, and actual bare die variations. For these reasons, Actel does not guarantee any level of radiation survivability, and it is solely the responsibility of the customer to determine whether the device will meet the requirements of the specific design.

\section*{Development Tool Support}

The HiRel devices are fully supported by both the Actel Libero \({ }^{\text {TM }}\) Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify \({ }^{\circledR}\) for Actel from Synplicity \({ }^{\circledR}\), ViewDraw \({ }^{\circledR}\) for Actel from Mentor Graphics, ModelSim \({ }^{\circledR}\) HDL Simulator from Mentor Graphics \({ }^{\circledR}\), WaveFormer Lite \({ }^{\text {™ }}\) from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow diagram for more information.

Actel's Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the ACTgen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

\section*{RadTolerant Architecture}

The Actel architecture is composed of fine-grained logic modules that produce fast, efficient logic designs. All devices are composed of logic modules, routing resources, clock networks, and I/O modules, which are the building blocks for fast logic designs.

\section*{Logic Modules}

These RadTolerant devices contain two types of logic modules, combinatorial (C-modules) and sequential (S-modules). RT1020 and A1020B devices contain only Cmodules.
The C-module, shown in Figure 1-1, implements EQ 1-1:
\[
Y=!S 1 *!S 0 * D 00+!S 1 * S 0 * D 01+S 1 *!S 0 * D 10+S 1 * S 0 * D 11
\]
where:
\[
\begin{aligned}
& S 0=A 0 * B 0 \\
& S 1=A 1+B 1
\end{aligned}
\]


Figure 1-1 • C-Module Implementation

The S-module, shown in Figure 1-2, is designed to implement high-speed sequential functions within a single logic module. The S-module implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-type flip-flop or a transparent latch. To increase flexibility, the S-module register can be bypassed so it implements purely combinatorial logic.

Flip-flops can also be created using two C-modules. The SEU characteristics differ between an S-module flip-flop and a flip-flop created using two C-modules. For details see the Design Techniques for RadHard Field Programmable Gate Arrays application note.


Figure 1-2 • S-Module Implementation

\section*{RadTolerant FPGAs}

\section*{The RT1020 Logic Module}

The RT1020 logic module is an 8-input, 1-output logic circuit chosen for the wide range of functions it implements and for its efficient use of interconnect routing resources (Figure 1-3).


Figure 1-3 • RT1020 Logic Module
The logic module can implement the four basic logic functions (NAND, AND, OR, and NOR) in gates of two, three, or four inputs. Each function may have many versions, with different combinations of active low inputs. The logic module can also implement a variety of D-latches, exclusivity functions, AND-ORs, and OR-ANDs. No dedicated hardwired latches or flip-flops are required in the array, since latches and flip-flops may be constructed from logic modules wherever needed in the application.

\section*{I/O Modules}

I/O modules provide the interface between the device pins and the logic array. A variety of user functions, determined by a library macro selection, can be implemented in the module (refer to the Macro Library Guide for more information). I/O modules contain a tristate buffer, and input and output latches that can be configured for input, output, or bidirectional pins (Figure 1-4).
The RadTolerant devices contain flexible I/O structures in that each output pin has a dedicated output enable control. The I/O module can be used to latch input and/or output data, providing a fast setup time. In addition, the Actel Designer software tools can build a D-flip-flop, using a C-module, to register input and/or output signals.

The Actel Designer software development tools provide a design library of I/O macros. The I/O macro library provides macro functions that can implement all I/O configurations supported by the RadTolerant FPGAs.


Figure 1-4 • I/O Module

\section*{Routing Structure}

The RadTolerant device architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Varying segment lengths allow over \(90 \%\) of the circuit interconnects to be made with only two antifuse connections. Segments can be joined together at the ends, using antifuses to increase their length up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses.

\section*{Horizontal Routing}

Horizontal channels are located between the rows of modules, and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 1-5 on page 1-5. Non-dedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks, and for power and ground tie-off tracks.

\section*{Vertical Routing}

Another set of routing tracks runs vertically through the module. There are three types of vertical tracks that can be divided into one or more segments: input, output, and long. Each segment in an input track is dedicated to the input of a particular module. Each segment in an
\(\qquad\)
output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 1-5.


\section*{Antifuse Structures}

An antifuse is a "normally open" structure as opposed to the normally closed fuse structure used in PROMs (programmable read-only memory) or PALs (programmed array logic). The use of antifuses to implement a PLD (programmable logic device) results in highly testable structures, as well as efficient programming algorithms. The structure is highly testable because there are no preexisting connections, enabling temporary connections to be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed, and also isolate individual circuit structures to be tested. This can be done both before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Figure 1-5 - Routing Structure
Table 1-1 • Actel MIL-STD-883 Product Flow
\begin{tabular}{|c|c|c|c|}
\hline Step & Screen & 883 Method & 883 - Class B Requirement \\
\hline 1. & Internal Visual & 2010, Test Condition B & 100\% \\
\hline 2. & Temperature Cycling & 1010, Test Condition C & 100\% \\
\hline 3. & Constant Acceleration & 2001, Test Condition D or E, Y \({ }_{1}\), Orientation Only & 100\% \\
\hline 4. & \begin{tabular}{l}
Seal \\
a. Fine \\
b. Gross
\end{tabular} & 1014 & \[
\begin{aligned}
& \text { 100\% } \\
& \text { 100\% }
\end{aligned}
\] \\
\hline 5. & Visual Inspection & 2009 & 100\% \\
\hline 6. & Pre-Burn-In Electrical Parameters & In accordance with applicable Actel device specification & 100\% \\
\hline 7. & Burn-in Test & 1015 , Condition D, 160 hours @ \(125^{\circ} \mathrm{C}\) or 80 hours @ \(150^{\circ} \mathrm{C}\) & 100\% \\
\hline 8. & Interim (Post-Burn-In) Electrical Parameters & In accordance with applicable Actel device specification & 100\% \\
\hline 9. & Percent Defective Allowable & 5\% & All Lots \\
\hline 10. & \begin{tabular}{l}
Final Electrical Test \\
a. Static Tests \\
(1) \(25^{\circ} \mathrm{C}\) (Subgroup 1, Table I) \\
(2) \(-55^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) \\
(Subgroups 2, 3, Table I) \\
b. Functional Tests \\
(1) \(25^{\circ} \mathrm{C}\) (Subgroup 7, Table I) \\
(2) \(-55^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) \\
(Subgroups 8A and 8B, Table I) \\
C. Switching Tests at \(25^{\circ} \mathrm{C}\) (Subgroup 9, Table I)
\end{tabular} & In accordance with applicable Actel device specification, which includes \(a, b\), and \(c\) :
\[
\begin{array}{r}
5005 \\
5005 \\
5005 \\
5005 \\
5005
\end{array}
\] & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \%
\end{aligned}
\] \\
\hline 11. & External Visual & 2009 & 100\% \\
\hline
\end{tabular}

Note: When Destructive Physical Analysis (DPA) is performed on Class B devices, the step coverage requirement as specified in Method 2018 must be waived.

\section*{RadTolerant FPGAs}

Table 1-2 • Actel Extended Flow \({ }^{1}\)
\begin{tabular}{|c|c|c|c|}
\hline Step & Screen & Method & Requirement \\
\hline 1. & Wafer Lot Acceptance \({ }^{2}\) & 5007 with Step Coverage Waiver & All Lots \\
\hline 2. & Destructive In-Line Bond Pull \({ }^{3}\) & 2011, Condition D & Sample \\
\hline 3. & Internal Visual & 2010, Condition A & 100\% \\
\hline 4. & Serialization & & 100\% \\
\hline 5. & Temperature Cycling & 1010, Condition C & 100\% \\
\hline 6. & Constant Acceleration & 2001, Condition D or E, Y 1 Orientation Only & 100\% \\
\hline 7. & Particle Impact Noise Detection & 2020, Condition A & 100\% \\
\hline 8. & Radiographic & 2012 & 100\% \\
\hline 9. & Pre-Burn-In Test & In accordance with applicable Actel device specification & 100\% \\
\hline 10. & Burn-in Test & 1015, Condition D, 240 hours @ \(125^{\circ} \mathrm{C}\) minimum & 100\% \\
\hline 11. & Interim (Post-Burn-In) Electrical Parameters & In accordance with applicable Actel device specification & 100\% \\
\hline 12. & Reverse Bias Burn-In & 1015, Condition C, 72 hours @ \(150^{\circ} \mathrm{C}\) minimum & 100\% \\
\hline 13. & Interim (Post-Burn-In) Electrical Parameters & In accordance with applicable Actel device specification & 100\% \\
\hline 14. & Percent Defective Allowable (PDA) Calculation & 5\%, 3\% Functional Parameters @ \(25^{\circ} \mathrm{C}\) & All Lots \\
\hline 15. & \begin{tabular}{l}
Final Electrical Test \\
a. Static Tests \\
(1) \(25^{\circ} \mathrm{C}\) (Subgroup 1, Table1) \\
(2) \(-55^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) \\
(Subgroups 2, 3, Table 1) \\
b. Functional Tests \\
(1) \(25^{\circ} \mathrm{C}\) (Subgroup 7, Table 15) \\
(2) \(-55^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) \\
(Subgroups 8A and B, Table 1) \\
c. Switching Tests at \(25^{\circ} \mathrm{C}\) (Subgroup 9, Table 1)
\end{tabular} & \begin{tabular}{l}
In accordance with Actel applicable device specification, which includes \(a, b\), and \(c\) :
\[
\begin{aligned}
& 5005 \\
& 5005 \\
& \\
& 5005 \\
& 5005
\end{aligned}
\] \\
5005
\end{tabular} & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \% \\
& 100 \%
\end{aligned}
\] \\
\hline 16. & \begin{tabular}{l}
Seal \\
a. Fine \\
b. Gross
\end{tabular} & 1014 & 100\% \\
\hline 17. & External Visual & 2009 & 100\% \\
\hline
\end{tabular}

\section*{Notes:}
1. Actel offers the extended flow for customers that require additional screening beyond the requirements of MIL-STD-883, Class B. Actel is compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-l-38535, Appendix A. Actel is offering this extended flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883 Class S. The exceptions to Method 5004 are shown in notes 2 and 3 below.
2. Wafer lot acceptance is performed to Method 5007; however, the step coverage requirement as specified in Method 2018 must be waived.
3. Method 5004 requires a 100 percent, non-destructive bond pull (Method 2023). Actel substitutes a destructive bond pull (Method 2011), Condition D on a sample basis only.
\(\qquad\)

\section*{Absolute Maximum Ratings}

Stresses beyond those listed in this table may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 1-3 - Free Air Temperature Range
\begin{tabular}{|l|l|c|c|}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & Limits & Units \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & DC Supply Voltage \({ }^{1,2,3}\) & -0.5 to +7.0 & V \\
\hline \(\mathrm{~V}_{\mathrm{I}}\) & Input Voltage & -0.5 to \(\mathrm{V}_{\mathrm{CC}}+0.5\) & V \\
\hline \(\mathrm{~V}_{\mathrm{O}}\) & Output Voltage & -0.5 to \(\mathrm{V}_{\mathrm{CC}}+0.5\) & V \\
\hline \(\mathrm{I}_{\mathrm{O}}\) & I/O Source Sink Current \({ }^{4}\) & \(\pm 20\) & mA \\
\hline \(\mathrm{~T}_{\text {STG }}\) & Storage Temperature & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. \(V_{P P}=V_{C C}\) except during device programming
2. \(V_{S V}=V_{C C}\), except during device programming
3. \(V_{K S}=G N D\), except during device programming
4. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than \(V_{C C}+0.5 \mathrm{~V}\) or less than GND -0.5 V , the internal protection diode will be forward-biased and can draw excessive current.
Table 1-4 • Recommended Operating Conditions
\begin{tabular}{|l|c|c|c|}
\hline Parameter & Commercial & Military & Units \\
\hline Temperature Range \(^{1}\) & 0 to +70 & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Supply Tolerance \(^{2}\) & \(\pm 5\) & \(\pm 10\) & \(\% \mathrm{~V}_{\mathrm{CC}}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Ambient temperature \(\left(T_{A}\right)\) is used for commercial and industrial; case temperature \(\left(T_{C}\right)\) is used for military
2. All power supplies must be in the recommended operating range. For more information, refer to the Power-Up and Power-Down Behavior of 54SX and RT54SX Devices application note.

Table 1-5 • Electrical Specifications
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Test Condition} & \multicolumn{2}{|l|}{Commercial} & \multicolumn{2}{|r|}{Military} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min. & Max. & Min. & Max. & \\
\hline \(\mathrm{V}_{\mathrm{OH}}{ }^{1,2}\) & HIGH Level Output & \(\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}(\mathrm{CMOS})\) & & & 3.7 & & V \\
\hline & & \(\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \mathrm{(CMOS)}\) & 3.84 & & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}{ }^{1,2}\) & LOW Level Output & \(\mathrm{I}_{\mathrm{OL}}=+6 \mathrm{~mA} \mathrm{(CMOS)}\) & & 0.33 & & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH Level Input & TTL Inputs & 2.0 & \(\mathrm{V}_{\mathrm{CC}}+0.3\) & 2.0 & \(\mathrm{V}_{\mathrm{CC}}+0.3\) & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW Level Input & TTL Inputs & -0.3 & 0.8 & -0.3 & 0.8 & V \\
\hline \({ }^{1 / N}\) & Input Leakage & \(\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}\) or GND & -10 & +10 & -10 & +10 & \(\mu \mathrm{A}\) \\
\hline loz & 3-State Output Leakage & \(\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}\) or GND & -10 & +10 & -10 & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{10}\) & I/O Capacitance \({ }^{3,4}\) & & & 10 & & 10 & pF \\
\hline \({ }^{\text {I CC(S) }}\) & Standby \(\mathrm{V}_{\text {CC }}\) Supply Current & \(\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}\) or \(\mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\) & & 2 & & 20 & mA \\
\hline \({ }^{\text {I CC( }{ }^{\text {D }} \text { ) }}\) & Dynamic \(\mathrm{V}_{\text {CC }}\) Supply Current & \multicolumn{6}{|c|}{See "Power Dissipation" on page 1-8.} \\
\hline
\end{tabular}

\section*{Notes:}
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of IIOs as TTL or CMOS is required.
2. Tested one output at a time, \(V_{C C}=\min\).
3. Not tested; for information only
4. \(V_{\text {OUT }}=O V, f=1 \mathrm{MHz}\)

\section*{Package Thermal Characteristics}

The device junction to case thermal characteristic is \(\theta_{\mathrm{j},}\), and the junction to ambient air characteristic is \(\theta_{\mathrm{ja}}\). The thermal characteristics for \(\theta_{\mathrm{ja}}\) are shown with two different air flow rates.

Maximum junction temperature is \(150^{\circ} \mathrm{C}\).
A sample calculation of the absolute maximum power dissipation allowed for a CQFP 172-pin package at military temperature is as follows:
\[
\frac{\text { Max. junction temp. }\left({ }^{\circ} \mathrm{C}\right)-\text { Max. military temp. }}{\theta_{\mathrm{ja}}\left({ }^{\circ} \mathrm{C} M\right)}=\frac{150^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{25^{\circ} \mathrm{C} / \mathrm{W}}=1.0 \mathrm{~W}
\]

Table 1-6 - Package Thermal Characteristics
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{3}{*}{ Package Type } & Pin Count & \(\theta_{\mathbf{j c}}\) & \begin{tabular}{c}
\(\theta_{\mathbf{j a}}\) \\
Stili Air
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{j a}}\) \\
\(\mathbf{3 0 0} \mathbf{f t . / m i n . ~}\)
\end{tabular} & Units \\
\hline \multirow{6}{*}{ Ceramic Quad Flat Pack } & 8 & 7.8 & 40 & 30 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\cline { 2 - 6 } & 132 & 7.2 & 35 & 25 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\cline { 2 - 6 } & 172 & 6.8 & 25 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\cline { 2 - 6 } & 196 & 6.4 & 23 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\cline { 2 - 6 } & 256 & 6.2 & 20 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{Power Dissipation}

\section*{General Power Equation}
\(P=\left[I_{C C}\right.\) standby \(+I_{C C}\) active \(] * V_{C C}+I_{O L} * V_{O L} * N+\) \(\mathrm{I}_{\mathrm{OH}} *\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}\right) * \mathrm{M}\)

EQ 1-3
where:
- I \({ }_{C C}\) standby is the current flowing when no inputs or outputs are changing.
- I \({ }_{C C}\) active is the current flowing due to CMOS switching.
- \(\mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{OH}}\) are TTL sink/source currents.
- \(\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}\) are TTL level output voltages.
- N equals the number of outputs driving TTL loads to \(\mathrm{V}_{\mathrm{OL}}\).
- M equals the number of outputs driving TTL loads to \(\mathrm{V}_{\mathrm{OH}}\).
Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

\section*{Static Power Component}

Actel FPGAs have small static power components that result in power dissipation lower than that of PALs or PLDs. By integrating multiple PALs or PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved.
The power due to standby current is typically a small component of the overall power. Standby power is calculated below for commercial, worst-case conditions.
\(I_{C C}\)
2 mA
\(\mathbf{V}_{\text {CC }}\)
5.25 V

Power
10.5 mW

The static power dissipated by TTL loads depends on the number of outputs driving HIGH or LOW and on the DC load current. Again, this value is typically small. For instance, a 32 -bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving LOW, and 140 mW with all outputs driving HIGH.

\section*{Active Power Component}

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency-dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

\section*{Equivalent Capacitance}

The power dissipated by a CMOS circuit can be expressed by EQ 1-4:
\[
\text { Power }(\mathrm{uW})=\mathrm{C}_{\mathrm{EQ}} * \mathrm{~V}_{\mathrm{CC}}{ }^{2} * \mathrm{~F}
\]
where:
\(C_{E Q}=\) Equivalent capacitance in pF
\(\mathrm{V}_{\mathrm{CC}}=\) Power supply in volts (V)
\(\mathrm{F}=\) Switching frequency in MHz
Equivalent capacitance is calculated by measuring \(\mathrm{I}_{\mathrm{CC}}\) active at a specified frequency and voltage for each circuit component of interest. Measurements are made over a range of frequencies at a fixed value of \(\mathrm{V}_{\mathrm{CC}}\). Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown in Table 1-7.

Table 1-7 • CEQ Values for Actel FPGAs
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
RT1020, \\
\(\mathbf{A 1 0 2 0 B}\)
\end{tabular} & \begin{tabular}{c} 
RT1280A, \\
A1280A
\end{tabular} & \begin{tabular}{c} 
RT1425A, A1425A, RT1460A, \\
A1460A, RT14100A, A14100A
\end{tabular} \\
\hline Modules (C \(\mathrm{CQM}_{\mathrm{EQ}}\) ) & 3.7 & 5.8 & 6.7 \\
\hline Input Buffers \(\left(\mathrm{C}_{\mathrm{EQI}}\right)\) & 22.1 & 12.9 & 7.2 \\
\hline Output Buffers \(\left(\mathrm{C}_{\mathrm{EQO}}\right)\) & 32.1 & 23.8 & 10.4 \\
\hline Routed Array Clock Buffer Loads \(\left(\mathrm{C}_{\mathrm{EQCR}}\right)\) & 4.6 & 3.9 & 1.6 \\
\hline Dedicated Clock Buffer Loads \(\left(\mathrm{C}_{\mathrm{EQCD}}\right)\) & \(\mathrm{n} / \mathrm{a}\) & \(\mathrm{n} / \mathrm{a}\) & 0.7 \\
\hline I/O Clock Buffer Loads \(\left(\mathrm{C}_{\mathrm{EQCI}}\right)\) & \(\mathrm{n} / \mathrm{a}\) & \(\mathrm{n} / \mathrm{a}\) & 0.9 \\
\hline
\end{tabular}

\section*{RadTolerant FPGAs}

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 1-5 shows a piece-wise linear summation over all components. Since the RT1280A and A1280A have two routed array clocks, the dedicated_Clk and IO_Clk terms do not apply. For all other devices all terms apply

\(\left.\left.{ }^{*} \mathrm{f}_{\mathrm{q} 1}\right)_{\text {routed_Clk } 1}+0.5 *\left(\mathrm{q}_{2} * \mathrm{C}_{\mathrm{EQCR}} * \mathrm{f}_{\mathrm{q} 2}\right)_{\text {routed_Clk2 }}+\left(\mathrm{r}_{2} * \mathrm{f}_{\mathrm{q} 2}\right)_{\text {routed_Clk2 }}+0.5 *\left(\mathrm{~s}_{1} * \mathrm{C}_{\mathrm{EQCD}} * \mathrm{f}_{\mathrm{s} 1}\right)_{\text {dedicated_CIk }}+\left(\mathrm{s}_{2} * \mathrm{C}_{\mathrm{EQCI}}{ }^{*} \mathrm{f}_{\mathrm{s} 2}\right)_{\mathrm{IO}} \mathrm{Clk}\right]\)
where:
\(m \quad=\quad\) Number of logic modules switching at \(f_{m}\)
\(n=\) Number of input buffers switching at \(f_{n}\)
\(p \quad=\) Number of output buffers switching at \(f_{p}\)
\(q_{1}=\) Number of clock loads on the first routed array clock
\(\mathrm{q}_{2}=\) Number of clock loads on the second routed array clock (not applicable for RT1020 or A1020B)
\(r_{1}=\) Fixed capacitance due to first routed array clock
\(r_{2}=\) Fixed capacitance due to second routed array clock (not applicable for RT1020 or A1020B)
\(s_{1}=\) Fixed number of clock loads on the dedicated array clock (not applicable for RT1020, A1020B, RT1280A, or A1280A)
\(s_{2}=\) Fixed number of clock loads on the dedicated I/O clock (not applicable for RT1020, A1020B, RT1280A, or A1280A)
\(\mathrm{C}_{\text {EQM }}=\) Equivalent capacitance of logic modules in pF
\(\mathrm{C}_{\mathrm{EQI}}=\) Equivalent capacitance of input buffers in pF
\(\mathrm{C}_{\mathrm{EQO}}=\) Equivalent capacitance of output buffers in pF
\(C_{\text {EQCR }}=\) Equivalent capacitance of routed array clock in pF
\(C_{\text {EQCD }}=\) Equivalent capacitance of dedicated array clock in pF
\(\mathrm{C}_{\mathrm{EQCI}}=\) Equivalent capacitance of dedicated I/O clock in pF
\(C_{L}=\) Output lead capacitance in pF
\(\mathrm{f}_{\mathrm{m}}=\) Average logic module switching rate in MHz
\(\mathrm{f}_{\mathrm{n}} \quad=\) Average input buffer switching rate in MHz
\(\mathrm{f}_{\mathrm{p}}=\) Average output buffer switching rate in MHz
\(\mathrm{f}_{\mathrm{q} 1}=\) Average first routed array clock rate in MHz
\(\mathrm{f}_{\mathrm{q} 2}=\) Average second routed array clock rate in MHz (not applicable for RT1020 or A1020B)
\(\mathrm{f}_{\mathrm{s} 1}=\) Average dedicated array clock rate in MHz (not applicable for RT1020, A1020B, RT1280A, or A1280A)
\(\mathrm{f}_{\mathrm{s} 2}=\) Average dedicated \(\mathrm{I} / \mathrm{O}\) clock rate in MHz (not applicable for RT1020, A1020B, RT1280A, or A1280A)

Table 1-8 • Fixed Capacitance Values for Actel FPGAs (pF)
\begin{tabular}{|l|c|c|}
\hline Device Type & \begin{tabular}{c}
\(\mathbf{r}_{\mathbf{1}}\) \\
routed_Clk1
\end{tabular} & \begin{tabular}{c}
\(\mathbf{r}_{\mathbf{2}}\) \\
routed_Clk2
\end{tabular} \\
\hline RT1020, A1020B & 69 & \(\mathrm{n} / \mathrm{a}\) \\
\hline RT1280A, A1280A & 168 & 168 \\
\hline RT1425A, A1425A & 75 & 75 \\
\hline RT1460A, A1460A & 165 & 165 \\
\hline RT14100A, A14100A & 195 & 195 \\
\hline
\end{tabular}

Table 1-9 • Fixed Clock Loads (s1/s2 - ACT 3 Only)
\begin{tabular}{|l|c|c|}
\hline Device Type & \begin{tabular}{c}
\(\mathbf{s}_{1}\) \\
Clock Loads \\
on Dedicated \\
Array Clock
\end{tabular} & \begin{tabular}{c}
\(\mathbf{s}_{\mathbf{2}}\) \\
Clock Loads \\
on Dedicated \\
I/O Clock
\end{tabular} \\
\hline RT1425A, A1425A & 160 & 100 \\
\hline RT1460A, A1460A & 432 & 168 \\
\hline RT14100A, A14100A & 697 & 228 \\
\hline
\end{tabular}

\section*{Determining Average Switching Frequency}

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The guidelines below are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation.

\section*{RT1020, A1020B, RT1280A, A1280A}
\begin{tabular}{ll} 
Logic Modules (m) & \(=80 \%\) of Combinatorial Modules \\
Input Switching (n) & \(=\#\) Inputs/4 \\
Outputs Switching (p) & \(=\#\) Outputs/4 \\
First Routed Array Clock Loads \(\left(q_{1}\right)\) & \(=40 \%\) of Sequential Modules \\
Second Routed Array Clock Loads \(\left(\mathrm{q}_{2}\right)\) & \(=40 \%\) of Sequential Modules \\
Load Capacitance (CL) & \(=35 \mathrm{pF}\) \\
Average Logic Module Switching Rate \(\left(\mathrm{f}_{\mathrm{m}}\right)\) & \(=\mathrm{F} / 10\) \\
Average Input Switching Rate \(\left(\mathrm{f}_{\mathrm{n}}\right)\) & \(=\mathrm{F} / 5\) \\
Average Output Switching Rate \(\left(\mathrm{f}_{\mathrm{p}}\right)\) & \(=\mathrm{F} / 10\) \\
Average First Routed Array Clock Rate \(\left(\mathrm{f}_{\mathrm{q} 1}\right)\) & \(=\mathrm{F}\) \\
Average Second Routed Array Clock Rate \(\left(\mathrm{f}_{\mathrm{q} 2}\right)\) & \(=\mathrm{F} / 2\) \\
Average Dedicated Array Clock Rate \(\left(\mathrm{f}_{\mathrm{s} 1}\right)\) & \(=\mathrm{n} / \mathrm{a}\) \\
Average Dedicated I/O Clock Rate \(\left(\mathrm{f}_{\mathrm{s} 2}\right)\) & \(=\mathrm{n} / \mathrm{a}\)
\end{tabular}

\section*{RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A}
\begin{tabular}{ll} 
Logic Modules (m) & \(=80 \%\) of Combinatorial Modules \\
Input Switching (n) & \(=\#\) Inputs \(/ 4\) \\
Outputs Switching (p) & \(=\) \# Outputs/4 \\
First Routed Array Clock Loads \(\left(q_{1}\right)\) & \(=40 \%\) of Sequential Modules \\
Second Routed Array Clock Loads \(\left(q_{2}\right)\) & \(=40 \%\) of Sequential Modules \\
Load Capacitance \(\left(C_{L}\right)\) & \(=35 \mathrm{pF}\) \\
Average Logic Module Switching Rate \(\left(f_{m}\right)\) & \(=F / 10\) \\
Average Input Switching Rate \(\left(f_{n}\right)\) & \(=F / 5\) \\
Average Output Switching Rate \(\left(f_{p}\right)\) & \(=F / 10\) \\
Average First Routed Array Clock Rate \(\left(f_{q 1}\right)\) & \(=F / 2\) \\
Average Second Routed Array Clock Rate \(\left(f_{q 2}\right)\) & \(=F / 2\) \\
Average Dedicated Array Clock Rate \(\left(f_{s 1}\right)\) & \(=F\) \\
Average Dedicated I/O Clock Rate \(\left(f_{s 2}\right)\) & \(=F\)
\end{tabular}

\section*{RadTolerant FPGAs}


Figure 1-6 • RT1020, A1020B Timing Model


\section*{Notes:}
1. *Values shown for RT1280A -1 at worst-case military conditions.
2. t Input module predicted routing delay

Figure 1-7 • RT1280A, A1280A Timing Model*


Note: *Values shown for RT14100A -1 at worst-case military conditions.
Figure 1-8 • RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A Timing Model*

\section*{Parameter Measurement}


\section*{Figure 1-9 • Output Buffer Delays}

Load 1
(Used to measure propagation delay)

Load 2
(Used to measure rising/falling edges)

To the Output under Test


Figure 1-10 • AC Test Load


\section*{Sequential Timing Characteristics}


D represents all data functions involving \(A, B\), and \(S\) for multiplexed flip-flops.

\section*{Figure 1-13 • Flip-Flops and Latches (RT1280A, A1280A)}


D represents all data functions involving \(A, B\), and \(S\) for multiplexed flip-flops.

\section*{RadTolerant FPGAs}


Figure 1-15 • Input Buffer Latches (R1280A, A1280A)


D


Figure 1-16 • Output Buffer Latches (RT1280A, A1280A)

Table 1-10 • RT1020, A1020B Logic and Input Modules
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|l|}{Std Speed} & \multirow[b]{2}{*}{Units} \\
\hline & & Min. & Max. & \\
\hline \multicolumn{5}{|l|}{Logic Module Propagation Delays} \\
\hline tpD1 & Single Module & & 3.6 & ns \\
\hline \(\mathrm{t}_{\text {PD2 }}\) & Dual Module Macros & & 8.4 & ns \\
\hline \(\mathrm{t}_{\mathrm{CO}}\) & Sequential Clock to Q & & 3.6 & ns \\
\hline \(\mathrm{t}_{\mathrm{GO}}\) & Latch G to Q & & 3.6 & ns \\
\hline \(\mathrm{t}_{\text {RS }}\) & Flip-Flop (Latch) Reset to Q & & 3.6 & ns \\
\hline \multicolumn{5}{|l|}{Logic Module Predicted Routing Delays \({ }^{\mathbf{1}}\)} \\
\hline \(\mathrm{t}_{\text {RD1 }}\) & \(\mathrm{FO}=1\) Routing Delay & & 1.1 & ns \\
\hline \(\mathrm{t}_{\text {RD2 }}\) & FO=2 Routing Delay & & 1.8 & ns \\
\hline \(\mathrm{t}_{\text {RD3 }}\) & \(\mathrm{FO}=3\) Routing Delay & & 2.6 & ns \\
\hline \(\mathrm{t}_{\text {RD4 }}\) & FO=4 Routing Delay & & 3.9 & ns \\
\hline \(\mathrm{t}_{\text {RD8 }}\) & FO=8 Routing Delay & & 8.1 & ns \\
\hline \multicolumn{5}{|l|}{Logic Module Sequential Timing \({ }^{\mathbf{2}}\)} \\
\hline \(\mathrm{t}_{\text {SUD }}\) & Flip-Flop (Latch) Data Input Setup & 6.9 & & ns \\
\hline \(\mathrm{thD}^{3}\) & Flip-Flop (Latch) Data Input Hold & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {suena }}\) & Flip-Flop (Latch) Enable Setup & 6.9 & & ns \\
\hline \(\mathrm{t}_{\text {HENA }}\) & Flip-Flop (Latch) Enable Hold & 0.0 & & ns \\
\hline \(t_{\text {WCLKA }}\) & Flip-Flop (Latch) Clock Active Pulse Width & 8.4 & & ns \\
\hline \(t_{\text {WASYN }}\) & Flip-Flop (Latch) Asynchronous Pulse Width & 8.4 & & ns \\
\hline \(\mathrm{t}_{\mathrm{A}}\) & Flip-Flop Clock Input Period & 17.5 & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Flip-Flop (Latch) Clock Frequency (FO = 128) & & 55 & MHz \\
\hline \multicolumn{5}{|l|}{Input Module Propagation Delays} \\
\hline \(\mathrm{t}_{\text {INYH }}\) & Pad to Y High & & 3.9 & ns \\
\hline \(\mathrm{t}_{\text {INYL }}\) & Pad to Y Low & & 3.9 & ns \\
\hline \multicolumn{5}{|l|}{Input Module Predicted Routing Delays \({ }^{\text {1,3 }}\)} \\
\hline \(\mathrm{t}_{\text {IRD1 }}\) & FO=1 Routing Delay & & 1.1 & ns \\
\hline \(\mathrm{t}_{\text {IRD2 }}\) & FO=2 Routing Delay & & 1.8 & ns \\
\hline \(\mathrm{t}_{\text {IRD3 }}\) & FO=3 Routing Delay & & 2.6 & ns \\
\hline \(\mathrm{t}_{\text {IRD4 }}\) & FO=4 Routing Delay & & 3.9 & ns \\
\hline \(\mathrm{t}_{\text {IRD8 }}\) & FO=8 Routing Delay & & 8.1 & ns \\
\hline
\end{tabular}

\section*{Notes:}
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
2. Setup times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. Optimization techniques may further reduce delays by 0 to \(4 n s\).
4. The hold time for the DFME1A macro may be greater than Ons. Use the Designer software 3.0 (or later) Timer to check the hold time for this macro.

\section*{RadTolerant FPGAs}

Table 1-11 • RT1020, A1020B Output Module
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{Std Speed} & \\
\hline Parameter & Description & Min. & Max. & Units \\
\hline \multicolumn{5}{|l|}{Global Clock Network} \\
\hline \({ }^{\text {t }}\) KH & \(\begin{array}{lc}\text { Input Low to High } & \mathrm{FO}=16 \\ \mathrm{FO}=128\end{array}\) & & \[
\begin{aligned}
& 6.0 \\
& 6.9
\end{aligned}
\] & ns \\
\hline \({ }^{\text {cKL }}\) & \(\begin{array}{lc}\text { Input High to Low } & \mathrm{FO}=16 \\ & \mathrm{FO}=128\end{array}\) & & \[
\begin{aligned}
& 7.9 \\
& 8.7
\end{aligned}
\] & ns \\
\hline \(\mathrm{t}_{\text {PWH }}\) & \(\begin{array}{lc}\text { Minimum Pulse Width High } & \text { FO }=16 \\ & \text { FO }=128\end{array}\) & \[
\begin{aligned}
& 8.0 \\
& 8.4
\end{aligned}
\] & & ns \\
\hline \(t_{\text {PWL }}\) & \(\begin{array}{lc}\text { Minimum Pulse Width Low } & \text { FO }=16 \\ & \text { FO }=128\end{array}\) & \[
\begin{aligned}
& 1.5 \\
& 2.2
\end{aligned}
\] & & ns \\
\hline \({ }_{\text {t CKSW }}\) & \(\begin{array}{lc}\text { Maximum Skew } & \mathrm{FO}=16 \\ \mathrm{FO}=128\end{array}\) & & \[
\begin{aligned}
& 1.5 \\
& 2.3
\end{aligned}
\] & ns \\
\hline \(t_{p}\) & \(\begin{array}{lc}\text { Minimum Period } & \mathrm{FO}=16 \\ & \mathrm{FO}=128\end{array}\) & \[
\begin{aligned}
& 16.3 \\
& 17.5
\end{aligned}
\] & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & \(\begin{array}{lc}\text { Maximum Frequency } & \mathrm{FO}=16 \\ & \mathrm{FO}=128\end{array}\) & & \[
\begin{aligned}
& 60 \\
& 50
\end{aligned}
\] & MHz \\
\hline
\end{tabular}

TTL Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|l|c|c|}
\hline \(\mathrm{t}_{\text {DLH }}\) & Data to Pad High & & 8.3 & ns \\
\hline \(\mathrm{t}_{\mathrm{DHL}}\) & Data to Pad Low & & 9.3 & ns \\
\hline \(\mathrm{t}_{\text {ENZH }}\) & Enable Pad Z to High & & 8.1 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable Pad Z to Low & & 9.8 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable Pad High to Z & & 12.3 & ns \\
\hline \(\mathrm{t}_{\text {ENLZ }}\) & Enable Pad Low to Z & & 11.1 & ns \\
\hline \(\mathrm{~d}_{\text {TLH }}\) & Delta Low to High & & 0.07 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THL }}\) & Delta High to Low & 0.10 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

CMOS Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|c|c|c|}
\hline \(\mathrm{t}_{\text {DLH }}\) & Data to Pad High & & 9.8 & ns \\
\hline \(\mathrm{t}_{\mathrm{DHL}}\) & Data to Pad Low & & 7.9 & ns \\
\hline \(\mathrm{t}_{\text {ENZH }}\) & Enable Pad Z to High & & 7.4 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable Pad Z to Low & & 10.2 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable Pad High to Z & & 12.3 & ns \\
\hline \(\mathrm{t}_{\text {ENLZ }}\) & Enable Pad Low to Z & & 11.1 & ns \\
\hline \(\mathrm{~d}_{\text {TLH }}\) & Delta Low to High & & 0.13 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THL }}\) & Delta High to Low & 0.07 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note.

\section*{RT1280A, A1280A Timing Characteristics}

Table 1-12 • RT1280A, A1280A Logic Module
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{-1 Speed} & \multicolumn{2}{|l|}{Std Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{7}{|l|}{Logic Module Propagation Delays \({ }^{1}\)} \\
\hline \(t_{\text {PD1 }}\) & Single Module & & 5.2 & & 6.1 & ns \\
\hline \(\mathrm{t}_{\mathrm{CO}}\) & Sequential Clock-to-Q & & 5.2 & & 6.1 & ns \\
\hline \(\mathrm{t}_{\mathrm{GO}}\) & Latch G-to-Q & & 5.2 & & 6.1 & ns \\
\hline \(\mathrm{t}_{\text {RS }}\) & Flip-Flop (Latch) Reset-to-Q & & 5.2 & & 6.1 & ns \\
\hline \multicolumn{7}{|l|}{Logic Module Predicted Routing Delays \({ }^{2}\)} \\
\hline \(t_{\text {RD1 }}\) & FO=1 Routing Delay & & 2.4 & & 2.8 & ns \\
\hline \(\mathrm{t}_{\text {RD2 }}\) & FO=2 Routing Delay & & 3.4 & & 4.0 & ns \\
\hline \(\mathrm{t}_{\text {RD3 }}\) & FO=3 Routing Delay & & 4.2 & & 4.9 & ns \\
\hline \(\mathrm{t}_{\text {RD4 }}\) & FO=4 Routing Delay & & 5.1 & & 6.0 & ns \\
\hline \(t_{\text {RD8 }}\) & FO=8 Routing Delay & & 9.2 & & 10.8 & ns \\
\hline
\end{tabular}

Logic Module Sequential Timing \({ }^{3,4}\)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {SUD }}\) & Flip-Flop (Latch) Data Input Setup & 0.5 & & 0.5 & & ns \\
\hline \(\mathrm{t}_{\text {HD }}\) & Flip-Flop (Latch) Data Input Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {SUENA }}\) & Flip-Flop (Latch) Enable Setup & 1.3 & & 1.3 & & ns \\
\hline \(\mathrm{t}_{\text {HENA }}\) & Flip-Flop (Latch) Enable Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {WCLKA }}\) & Flip-Flop (Latch) Clock Active Pulse Width & 7.4 & & 8.6 & & ns \\
\hline \(\mathrm{t}_{\text {WASYN }}\) & Flip-Flop (Latch) Asynchronous Pulse Width & 7.4 & & 8.6 & & ns \\
\hline \(\mathrm{t}_{\text {A }}\) & Flip-Flop Clock Input Period & 16.4 & & 22.1 & & ns \\
\hline \(\mathrm{t}_{\text {INH }}\) & Input Buffer Latch Hold & 2.5 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {INSU }}\) & Input Buffer Latch Setup & 3.5 & & 3.5 & & ns \\
\hline \(\mathrm{t}_{\text {OUTH }}\) & Output Buffer Latch Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {OUTSU }}\) & Output Buffer Latch Setup & 0.5 & & 0.5 & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Flip-Flop (Latch) Clock Frequency & & 60 & & 41 & MHz \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-module macros, use \(t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}\) or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the \(G\) input subtracts (adds) to the internal setup (hold) time.

\section*{RadTolerant FPGAs}

Table 1-13 • RT1280A, A1280A Input Module
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & eed & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline Input Modul & Propagation Delays & & & & & \\
\hline \(\mathrm{t}_{\text {INYH }}\) & Pad-to-Y HIGH & & 4.0 & & 4.7 & ns \\
\hline \(\mathrm{t}_{\text {INYL }}\) & Pad-to-Y LOW & & 3.6 & & 4.3 & ns \\
\hline \(\mathrm{t}_{\text {INGH }}\) & G-to-Y HIGH & & 6.9 & & 8.1 & ns \\
\hline \(\mathrm{t}_{\text {INGL }}\) & G-to-Y LOW & & 6.6 & & 7.7 & ns \\
\hline
\end{tabular}

Input Module Predicted Routing Delays \({ }^{1}\)
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {IRD1 }}\) & FO=1 Routing Delay & & 6.2 & & 7.3 & ns \\
\hline \(\mathrm{t}_{\text {IRD2 }}\) & FO=2 Routing Delay & & 7.2 & & 8.4 & ns \\
\hline \(\mathrm{t}_{\text {IRD3 }}\) & FO=3 Routing Delay & & 7.7 & & 9.1 & ns \\
\hline \(\mathrm{t}_{\text {IRD4 }}\) & FO=4 Routing Delay & & 8.9 & & 10.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD8 }}\) & FO=8 Routing Delay & & 12.9 & & 15.2 & ns \\
\hline
\end{tabular}

Global Clock Network
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {CKH }}\) & Input LOW to HIGH & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & & \[
\begin{aligned}
& 13.3 \\
& 17.9
\end{aligned}
\] & & \[
\begin{aligned}
& 15.7 \\
& 21.1
\end{aligned}
\] & ns \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Input HIGH to LOW & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & & \[
\begin{aligned}
& 13.3 \\
& 18.2
\end{aligned}
\] & & \[
\begin{aligned}
& 15.7 \\
& 21.4
\end{aligned}
\] & ns \\
\hline \(\mathrm{t}_{\text {PWH }}\) & Minimum Pulse Width HIGH & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & \[
\begin{aligned}
& 6.9 \\
& 7.9
\end{aligned}
\] & & \[
\begin{aligned}
& 8.1 \\
& 9.3
\end{aligned}
\] & & ns \\
\hline \(t_{\text {PWWL }}\) & Minimum Pulse Width LOW & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & \[
\begin{aligned}
& 6.9 \\
& 7.9
\end{aligned}
\] & & \[
\begin{aligned}
& 8.1 \\
& 9.3
\end{aligned}
\] & & ns \\
\hline \(\mathrm{t}_{\text {CKSW }}\) & Maximum Skew & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & & \[
\begin{aligned}
& 0.6 \\
& 3.1
\end{aligned}
\] & & \[
\begin{aligned}
& 0.6 \\
& 3.1
\end{aligned}
\] & ns \\
\hline \(\mathrm{t}_{\text {SUEXT }}\) & Input Latch External Setup & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & & ns \\
\hline \(t_{\text {HEXT }}\) & Input Latch External Hold & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & \[
\begin{gathered}
8.6 \\
13.8
\end{gathered}
\] & & \[
\begin{gathered}
8.6 \\
13.8
\end{gathered}
\] & & ns \\
\hline \(\mathrm{t}_{\mathrm{p}}\) & Minimum Period & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & \[
\begin{aligned}
& 13.7 \\
& 16.0
\end{aligned}
\] & & \[
\begin{aligned}
& 16.2 \\
& 18.9
\end{aligned}
\] & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Frequency & \[
\begin{gathered}
\mathrm{FO}=32 \\
\mathrm{FO}=384
\end{gathered}
\] & & \[
\begin{aligned}
& 73 \\
& 63
\end{aligned}
\] & & \[
\begin{aligned}
& 62 \\
& 53
\end{aligned}
\] & MHz \\
\hline
\end{tabular}

\section*{Note:}
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may further reduce delays by 0 to \(4 n s\).
\(\qquad\)

Table 1-14 • RT1280A, A1280A Output Module
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & eed & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline TTL Output & Module Timing \({ }^{1}\) & & & & & \\
\hline \(t_{\text {DLH }}\) & Data-to-Pad HIGH & & 11.0 & & 13.0 & ns \\
\hline \(\mathrm{t}_{\text {DHL }}\) & Data-to-Pad LOW & & 13.9 & & 16.4 & ns \\
\hline \(\mathrm{t}_{\text {ENZH }}\) & Enable-to-Pad Z to HIGH & & 12.3 & & 14.4 & ns \\
\hline \(t_{\text {ENZL }}\) & Enable-to-Pad Z to LOW & & 16.1 & & 19.0 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable-to-Pad HIGH to Z & & 9.8 & & 11.5 & ns \\
\hline \(\mathrm{t}_{\text {ENLZ }}\) & Enable-to-Pad LOW to Z & & 11.5 & & 13.6 & ns \\
\hline \(\mathrm{t}_{\text {GLH }}\) & G-to-Pad HIGH & & 12.4 & & 14.6 & ns \\
\hline \(\mathrm{t}_{\text {GHL }}\) & G-to-Pad LOW & & 15.5 & & 18.2 & ns \\
\hline \(\mathrm{d}_{\text {TLH }}\) & Delta LOW to HIGH & & 0.09 & & 0.11 & ns/pF \\
\hline \(\mathrm{d}_{\text {THL }}\) & Delta HIGH to LOW & & 0.17 & & 0.20 & ns/pF \\
\hline
\end{tabular}

CMOS Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DLH }}\) & Data-to-Pad HIGH & & 14.0 & & 16.5 & ns \\
\hline \(\mathrm{t}_{\text {DHL }}\) & Data-to-Pad LOW & & 11.7 & & 13.7 & ns \\
\hline \(\mathrm{t}_{\text {ENZH }}\) & Enable-to-Pad Z to HIGH & & 12.3 & & 14.4 & ns \\
\hline \(\mathrm{t}_{\text {ENZL }}\) & Enable-to-Pad Z to LOW & & 16.1 & & 19.0 & ns \\
\hline \(\mathrm{t}_{\text {ENHZ }}\) & Enable-to-Pad HIGH to Z & & 9.8 & & 11.5 & ns \\
\hline \(\mathrm{t}_{\text {ENLZ }}\) & Enable-to-Pad LOW to Z & & 11.5 & & 13.6 & ns \\
\hline \(\mathrm{t}_{\text {GLH }}\) & G-to-Pad HIGH & & 12.4 & & 14.6 & ns \\
\hline \(\mathrm{t}_{\text {GHL }}\) & G-to-Pad LOW & & 15.5 & & 18.2 & ns \\
\hline \(\mathrm{~d}_{\text {TLH }}\) & Delta LOW to HIGH & & 0.17 & & 0.20 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THL }}\) & Delta HIGH to LOW & & 0.12 & & 0.15 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Delays based on 50 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note.

\section*{RT1425A, A1425A Timing Characteristics}

Table 1-15 • RT1425A, A1425A Logic and Input Modules
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline Logic Modu & pagation Delays \({ }^{1}\) & & & & & \\
\hline \(t_{\text {PD }}\) & Internal Array Module & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{CO}}\) & Sequential Clock to Q & & 3.0 & & 3.5 & ns \\
\hline \({ }^{\text {t CLR }}\) & Asynchronous Clear to Q & & 3.0 & & 3.5 & ns \\
\hline Logic Modu & dicted Routing Delays \({ }^{2}\) & & & & & \\
\hline trD1 & FO=1 Routing Delay & & 1.3 & & 1.5 & ns \\
\hline trD2 & FO=2 Routing Delay & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {RD3 }}\) & FO=3 Routing Delay & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {RD4 }}\) & FO=4 Routing Delay & & 2.6 & & 2.9 & ns \\
\hline \(t_{\text {RD8 }}\) & FO=8 Routing Delay & & 4.2 & & 4.9 & ns \\
\hline
\end{tabular}

Logic Module Sequential Timing
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {SUD }}\) & Flip-Flop (Latch) Data Input Setup & 0.9 & & 1.0 & & ns \\
\hline \(\mathrm{t}_{\text {HD }}\) & Flip-Flop (Latch) Data Input Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {SUENA }}\) & Flip-Flop (Latch) Enable Setup & 0.9 & & 1.0 & & ns \\
\hline \(\mathrm{t}_{\text {HENA }}\) & Flip-Flop (Latch) Enable Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {WASYN }}\) & Asynchronous Pulse Width & 3.8 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {WCLKA }}\) & Flip-Flop Clock Pulse Width & 3.8 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {A }}\) & Flip-Flop Clock Input Period & 7.9 & & 9.3 & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Flip-Flop Clock Frequency & & 125 & & 100 & MHz \\
\hline
\end{tabular}

Input Module Propagation Delays
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline \(\mathrm{t}_{\text {INY }}\) & Input Data Pad to Y & & 4.2 & & 4.9 & ns \\
\hline \(\mathrm{t}_{\text {ICKY }}\) & Input Reg IOCLK Pad to Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {OCKY }}\) & Output Reg IOCLK Pad to Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {ICLRY }}\) & Input Asynchronous Clear to Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {OCLRY }}\) & Output Asynchronous Clear to Y & & 7.0 & & 8.2 & ns \\
\hline
\end{tabular}

Input Module Predicted Routing Delays \({ }^{2,3}\)
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline \(\mathrm{t}_{\text {IRD1 }}\) & FO=1 Routing Delay & & 1.3 & & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD2 }}\) & FO=2 Routing Delay & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {IRD3 }}\) & FO=3 Routing Delay & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD4 }}\) & FO=4 Routing Delay & & 2.6 & & 2.9 & ns \\
\hline \(\mathrm{t}_{\text {IRD8 }}\) & FO=8 Routing Delay & & 4.2 & & 4.9 & ns \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-module macros, use \(t_{P D}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}\), or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to \(4 n s\).

Table 1-16 • RT1425A, A1425A Logic and Input Modules
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{} & \multicolumn{2}{|c|}{-1 Speed } & \multicolumn{2}{c|}{ Std Speed } & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline
\end{tabular}

I/O Module Sequential Timing
\begin{tabular}{|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {INH }}\) & Input F-F Data Hold (w.r.t. IOCLK Pad) & 0.0 & & 0.0 & \\
\hline \(\mathrm{t}_{\text {INSU }}\) & Input F-F Data Setup (w.r.t. IOCLK Pad) & 2.1 & & 2.4 & \\
\hline \(\mathrm{t}_{\text {IDEH }}\) & Input Data Enable Hold (w.r.t. IOCLK Pad) & 0.0 & & 0.0 & ns \\
\hline \(\mathrm{t}_{\text {IDESU }}\) & Input Data Enable Setup (w.r.t. IOCLK Pad) & 8.7 & & 10.0 & ns \\
\hline \(\mathrm{t}_{\text {OUTH }}\) & Output F-F Data Hold (w.r.t. IOCLK Pad) & 1.1 & & 1.2 & ns \\
\hline \(\mathrm{t}_{\text {OUTSU }}\) & Output F-F Data Setup (w.r.t. IOCLK Pad) & 1.1 & & 1.2 & ns \\
\hline \(\mathrm{t}_{\text {ODEH }}\) & Output Data Enable Hold (w.r.t. IOCLK Pad) & 0.5 & & 0.6 & ns \\
\hline \(\mathrm{t}_{\text {ODESU }}\) & Output Data Enable Setup (w.r.t. IOCLK Pad) & 2.0 & & 2.4 & ns \\
\hline
\end{tabular}

TTL Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DHS }}\) & Data to Pad, High Slew & & 7.5 & & 8.9 & ns \\
\hline \(\mathrm{t}_{\text {DLS }}\) & Data to Pad, Low Slew & & 11.9 & & 14.0 & ns \\
\hline \(\mathrm{t}_{\text {ENZHS }}\) & Enable to Pad, Z to H/L, High Slew & & 6.0 & & 7.0 & ns \\
\hline \(\mathrm{t}_{\text {ENZLS }}\) & Enable to Pad, Z to H/L, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {ENHSZ }}\) & Enable to Pad, H/L to Z, High Slew & & & \\
\hline \(\mathrm{t}_{\text {ENLSZ }}\) & Enable to Pad, H/L to Z, Low Slew & & 9.9 & & 11.6 & ns \\
\hline \(\mathrm{t}_{\text {CKHS }}\) & IOCLK Pad to Pad H/L, High Slew & & & & 11.6 & ns \\
\hline \(\mathrm{t}_{\text {CKLS }}\) & IOCLK Pad to Pad H/L, Low Slew & 10.5 & & 11.6 & ns \\
\hline \(\mathrm{~d}_{\text {TLHHS }}\) & Delta Low to High, High Slew & & 15.7 & & 17.4 & ns \\
\hline \(\mathrm{~d}_{\text {TLHLS }}\) & Delta Low to High, Low Slew & & 0.04 & & 0.04 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLHS }}\) & Delta High to Low, High Slew & & 0.07 & & 0.08 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLLS }}\) & Delta High to Low, Low Slew & 0.05 & & 0.06 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline CMOS & & 0.07 & & 0.08 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

CMOS Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DHS }}\) & Data to Pad, High Slew & & 9.2 & & 10.8 & ns \\
\hline \(\mathrm{t}_{\text {DLS }}\) & Data to Pad, Low Slew & & 17.3 & & 20.3 & ns \\
\hline \(\mathrm{t}_{\text {ENZHS }}\) & Enable to Pad, Z to H/L, High Slew & & 7.7 & & 9.1 & ns \\
\hline \(\mathrm{t}_{\text {ENZLS }}\) & Enable to Pad, Z to H/L, Low Slew & & 13.1 & & 15.5 & ns \\
\hline \(\mathrm{t}_{\text {ENHSZ }}\) & Enable to Pad, H/L to Z, High Slew & & 9.9 & & 11.6 & ns \\
\hline \(\mathrm{t}_{\text {ENLSZ }}\) & Enable to Pad, H/L to Z, Low Slew & & 10.5 & & 11.6 & ns \\
\hline \(\mathrm{t}_{\text {CKHS }}\) & IOCLK Pad to Pad H/L, High Slew & & 12.5 & & 13.7 & ns \\
\hline \(\mathrm{t}_{\text {CKLS }}\) & IOCLK Pad to Pad H/L, Low Slew & & 18.1 & & 20.1 & ns \\
\hline \(\mathrm{~d}_{\text {TLHHS }}\) & Delta Low to High, High Slew & & 0.06 & & 0.07 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {TLHLS }}\) & Delta Low to High, Low Slew & & 0.11 & & 0.13 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLHS }}\) & Delta High to Low, High Slew & & 0.04 & & 0.05 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLLS }}\) & Delta High to Low, Low Slew & 0.05 & & 0.06 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

Note:
1. Delays based on 35 pF loading.

\section*{RadTolerant FPGAs}

Table 1-17 • RT1425A, A1425A Clock Networks
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & \multicolumn{2}{|c|}{\(\mathbf{- 1}\) Speed } & \multicolumn{2}{|c|}{ Std Speed } & \\
\hline Parameter & \multicolumn{1}{|c|}{ Description } & Min. & Max. & Min. & Max. & Units \\
\hline Dedicated (Hard-Wired) I/O Clock Network & \begin{tabular}{l} 
Input Low to High \\
(Pad to I/O Module Input)
\end{tabular} & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {IOCKH }}\) & Minimum Pulse Width High & 3.9 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {IOPWH }}\) & Minimum Pulse Width Low & 3.9 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {IOPWL }}\) & Minimum Asynchronous Pulse Width & 3.9 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {IOSAPW }}\) & Maximum Skew & & 0.5 & & 0.5 & ns \\
\hline \(\mathrm{t}_{\text {IOCKSW }}\) & Minimum Period & 7.9 & & 9.3 & & ns \\
\hline \(\mathrm{t}_{\text {IOP }}\) & Maximum Frequency & & 125 & & 100 & MHz \\
\hline \(\mathrm{f}_{\text {IOMAX }}\) & & & & \\
\hline
\end{tabular}

Dedicated (Hard-Wired) Array Clock Network
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {HCKH }}\) & \begin{tabular}{l} 
Input Low to High \\
(Pad to S-Module Input)
\end{tabular} & 4.6 & & 5.3 & ns \\
\hline \(\mathrm{t}_{\text {HCKL }}\) & \begin{tabular}{l} 
Input High to Low \\
(Pad to S-Module Input)
\end{tabular} & Minimum Pulse Width High & 4.6 & & 5.3 & ns \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width Low & 3.9 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Maximum Skew & 3.9 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {HCKSW }}\) & Minimum Period & & 0.4 & & 0.4 & ns \\
\hline \(\mathrm{t}_{\text {HP }}\) & Maximum Frequency & 7.9 & & 9.3 & & ns \\
\hline \(\mathrm{f}_{\text {HMAX }}\) & & 125 & & 100 & MHz \\
\hline
\end{tabular}

Routed Array Clock Networks
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(t_{\text {RCKH }}\) & Input Low to High (FO=64) & & 5.5 & & 6.4 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input High to Low (FO=64) & & 6.0 & & 7.0 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Minimum Pulse Width High (FO=64) & 4.9 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {RPWL }}\) & Minimum Pulse Width Low (FO=64) & 4.9 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {RCKSW }}\) & Maximum Skew (FO=128) & & 1.1 & & 1.2 & ns \\
\hline \(\mathrm{t}_{\text {RP }}\) & Minimum Period (FO=64) & 10.1 & & 11.6 & & ns \\
\hline \(\mathrm{f}_{\text {RMAX }}\) & Maximum Frequency (FO=64) & & 100 & & 85 & MHz \\
\hline
\end{tabular}

\section*{Clock-to-Clock Skews}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(t_{\text {IOHCKSW }}\) & I/O Clock to H-Clock Skew & 0.0 & 3.0 & 0.0 & 3.0 & ns \\
\hline \(\mathrm{t}_{\text {IORCKSW }}\) & I/O Clock to R-Clock Skew & 0.0 & 3.0 & 0.0 & 3.0 & ns \\
\hline \(\mathrm{t}_{\text {HRCKSW }}\) & H-Clock to R-Clock Skew & & & & & \\
& (FO = 64) & 0.0 & 1.0 & 0.0 & 1.0 & ns \\
& (FO =50\% max.) & 0.0 & 3.0 & 0.0 & 3.0 & ns \\
\hline
\end{tabular}

Note: SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note.

\section*{RT1460A, A1460A Timing Characteristics}

Table 1-18 • RT1460A, A1460A Logic and Input Modules
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline Logic Modu & pagation Delays \({ }^{1}\) & & & & & \\
\hline \(\mathrm{t}_{\text {PD }}\) & Internal Array Module & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{CO}}\) & Sequential Clock to Q & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {CLR }}\) & Asynchronous Clear to Q & & 3.0 & & 3.5 & ns \\
\hline Logic Modu & dicted Routing Delays \({ }^{2}\) & & & & & \\
\hline \(\mathrm{t}_{\text {RD1 }}\) & FO=1 Routing Delay & & 1.3 & & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {RD2 }}\) & FO=2 Routing Delay & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {RD3 }}\) & FO=3 Routing Delay & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {RD4 }}\) & \(\mathrm{FO}=4\) Routing Delay & & 2.6 & & 2.9 & ns \\
\hline \(\mathrm{t}_{\text {RD8 }}\) & FO=8 Routing Delay & & 4.2 & & 4.9 & ns \\
\hline
\end{tabular}

Logic Module Sequential Timing
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {SUD }}\) & Flip-Flop (Latch) Data Input Setup & 0.9 & & 1.0 & & ns \\
\hline \(\mathrm{t}_{\text {HD }}\) & Flip-Flop (Latch) Data Input Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {SUENA }}\) & Flip-Flop (Latch) Enable Setup & 0.9 & & 1.0 & & ns \\
\hline \(\mathrm{t}_{\text {HENA }}\) & Flip-Flop (Latch) Enable Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {WASYN }}\) & Asynchronous Pulse Width & 4.8 & & 5.6 & & ns \\
\hline \(\mathrm{t}_{\text {WCLKA }}\) & Flip-Flop Clock Pulse Width & 4.8 & & 5.6 & & ns \\
\hline \(\mathrm{t}_{\text {A }}\) & Flip-Flop Clock Input Period & 9.9 & & 11.6 & & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Flip-Flop Clock Frequency & & 100 & & 85 & MHz \\
\hline
\end{tabular}

Input Module Propagation Delays
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline \(\mathrm{t}_{\text {INY }}\) & Input Data Pad to Y & & 4.2 & & 4.9 & ns \\
\hline \(\mathrm{t}_{\mathrm{ICKY}}\) & Input Reg IOCLK Pad to Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {OCKY }}\) & Output Reg IOCLK Pad to Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {ICLRY }}\) & Input Asynchronous Clear to Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {OCLRY }}\) & Output Asynchronous Clear to Y & & 7.0 & & 8.2 & ns \\
\hline
\end{tabular}

Predicted Input Routing Delays \({ }^{2,3}\)
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline \(\mathrm{t}_{\text {IRD1 }}\) & FO=1 Routing Delay & & 1.3 & & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD2 }}\) & FO=2 Routing Delay & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {IRD3 }}\) & FO=3 Routing Delay & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD4 }}\) & FO=4 Routing Delay & & 2.6 & & 2.9 & ns \\
\hline \(\mathrm{t}_{\text {IRD8 }}\) & FO=8 Routing Delay & & 4.2 & & 4.9 & ns \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-module macros, use \(t_{P D}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}\), or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to \(4 n s\).

\section*{RadTolerant FPGAs}

Table 1-19 • RT1460A, A1460A I/O and Output Modules
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline I/O Module & uential Timing & & & & & \\
\hline tinh & Input F-F Data Hold (w.r.t. IOCLK Pad) & 0.0 & & 0.0 & & ns \\
\hline tinsu & Input F-F Data Setup (w.r.t. IOCLK Pad) & 2.1 & & 2.4 & & ns \\
\hline tider & Input Data Enable Hold (w.r.t. IOCLK Pad) & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {IDESU }}\) & Input Data Enable Setup (w.r.t. IOCLK Pad) & 8.7 & & 10.0 & & ns \\
\hline \(\mathrm{t}_{\text {OUTH }}\) & Output F-F Data Hold (w.r.t. IOCLK Pad) & 1.1 & & 1.2 & & ns \\
\hline toutsu & Output F-F Data Setup (w.r.t. IOCLK Pad) & 1.1 & & 1.2 & & ns \\
\hline \(\mathrm{t}_{\text {ODEH }}\) & Output Data Enable Hold (w.r.t. IOCLK Pad) & 0.5 & & 0.6 & & ns \\
\hline todesu & Output Data Enable Setup (w.r.t. IOCLK Pad) & 2.0 & & 2.4 & & ns \\
\hline
\end{tabular}

\section*{TTL Output Module Timing \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DHS }}\) & Data to Pad, High Slew & & 7.5 & & 8.9 & ns \\
\hline \(\mathrm{t}_{\text {DLS }}\) & Data to Pad, Low Slew & & 11.9 & & 14.0 & ns \\
\hline \(\mathrm{t}_{\text {ENZHS }}\) & Enable to Pad, Z to H/L, High Slew & & 6.0 & & 7.0 & ns \\
\hline \(\mathrm{t}_{\text {ENZLS }}\) & Enable to Pad, Z to H/L, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {ENHSZ }}\) & Enable to Pad, H/L to Z, High Slew & & 11.5 & & 13.5 & ns \\
\hline \(\mathrm{t}_{\text {ENLSZ }}\) & Enable to Pad, H/L to Z, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {CKHS }}\) & IOCLK Pad to Pad H/L, High Slew & & 11.6 & & 13.4 & ns \\
\hline \(\mathrm{t}_{\text {CKLS }}\) & IOCLK Pad to Pad H/L, Low Slew & & 17.8 & & 19.8 & ns \\
\hline \(\mathrm{~d}_{\text {TLHHS }}\) & Delta Low to High, High Slew & & 0.04 & & 0.04 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {TLHLS }}\) & Delta Low to High, Low Slew & & 0.07 & & 0.08 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLHS }}\) & Delta High to Low, High Slew & & 0.05 & & 0.06 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLLS }}\) & Delta High to Low, Low Slew & & 0.07 & & 0.08 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline clos & & & & & \\
\hline
\end{tabular}

CMOS Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DHS }}\) & Data to Pad, High Slew & & 9.2 & & 10.8 & ns \\
\hline \(\mathrm{t}_{\text {DLS }}\) & Data to Pad, Low Slew & & 17.3 & & 20.3 & ns \\
\hline \(\mathrm{t}_{\text {ENZHS }}\) & Enable to Pad, Z to H/L, High Slew & & 7.7 & & 9.1 & ns \\
\hline \(\mathrm{t}_{\text {ENZLS }}\) & Enable to Pad, Z to H/L, Low Slew & & 13.1 & & 15.5 & ns \\
\hline \(\mathrm{t}_{\text {ENHSZ }}\) & Enable to Pad, H/L to Z, High Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {ENLSZ }}\) & Enable to Pad, H/L to Z, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {CKHS }}\) & IOCLK Pad to Pad H/L, High Slew & & 14.1 & & 16.0 & ns \\
\hline \(\mathrm{t}_{\text {CKLS }}\) & IOCLK Pad to Pad H/L, Low Slew & & 20.2 & & 22.4 & ns \\
\hline \(\mathrm{~d}_{\text {TLHHS }}\) & Delta Low to High, High Slew & & 0.06 & & 0.07 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {TLHLS }}\) & Delta Low to High, Low Slew & & 0.11 & & 0.13 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLHS }}\) & Delta High to Low, High Slew & & 0.04 & & 0.05 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLLS }}\) & Delta High to Low, Low Slew & & 0.05 & & 0.06 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

\section*{Note:}
1. Delays based on 35 pF loading.
\(\qquad\)
RadTolerant FPGAs

Table 1-20 • RT1460A, A1460A Clock Networks
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & \multicolumn{2}{|c|}{-1 Speed } & \multicolumn{2}{c|}{ Std Speed } & \\
\hline Parameter & \multicolumn{1}{|c|}{ Description } & Min. & Max. & Min. & Max. & Units \\
\hline Dedicated (Hard-Wired) I/O Clock Network & Input Low to High (Pad to I/O Module Input) & & 3.5 & & 4.1 & ns \\
\hline \(\mathrm{t}_{\text {IOCKH }}\) & Minimum Pulse Width High & 4.8 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {IOPWH }}\) & Minimum Pulse Width Low & 4.8 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {IOPWL }}\) & Minimum Asynchronous Pulse Width & 3.9 & & 4.4 & & ns \\
\hline \(\mathrm{t}_{\text {IOSAPW }}\) & Maximum Skew & & 0.9 & & 1.0 & ns \\
\hline \(\mathrm{t}_{\text {IOCKSW }}\) & Minimum Period & 9.9 & & 11.6 & & ns \\
\hline \(\mathrm{t}_{\text {IOP }}\) & Maximum Frequency & & 100 & & 85 & MHz \\
\hline \(\mathrm{f}_{\text {IOMAX }}\) & & & & & \\
\hline
\end{tabular}

Dedicated (Hard-Wired) Array Clock Network
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {HCKH }}\) & \begin{tabular}{l} 
Input Low to High \\
(Pad to S-Module Input)
\end{tabular} & & 5.5 & & 6.4 & ns \\
\hline \(\mathrm{t}_{\text {HCKL }}\) & \begin{tabular}{l} 
Input High to Low \\
(Pad to S-Module Input)
\end{tabular} & Minimum Pulse Width High & 4.8 & & & 6.4 \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width Low & 4.8 & & 5.7 & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Maximum Skew & & 0.9 & & ns \\
\hline \(\mathrm{t}_{\text {HCKSW }}\) & Minimum Period & 9.9 & & 11.6 & ns \\
\hline \(\mathrm{t}_{\text {HP }}\) & Maximum Frequency & & 100 & & ns \\
\hline \(\mathrm{f}_{\text {HMAX }}\) & & & 85 & MHz \\
\hline
\end{tabular}

\section*{Routed Array Clock Networks}
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(t_{\text {RCKH }}\) & Input Low to High (FO=256) & & 9.0 & & 10.5 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input High to Low (FO=256) & & 9.0 & & 10.5 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Min. Pulse Width High (FO=256) & 6.3 & & 7.1 & & ns \\
\hline \(\mathrm{t}_{\text {RPWL }}\) & Min. Pulse Width Low (FO=256) & 6.3 & & 7.1 & & ns \\
\hline \(\mathrm{t}_{\text {RCKSW }}\) & Maximum Skew (FO=128) & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {RP }}\) & Minimum Period (FO=256) & 12.9 & & 14.5 & & ns \\
\hline \(\mathrm{f}_{\text {RMAX }}\) & Maximum Frequency (FO=256) & & 75 & & 65 & MHz \\
\hline
\end{tabular}

Clock-to-Clock Skews
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(t_{\text {IOHCKSW }}\) & I/O Clock to H-Clock Skew & 0.0 & 3.0 & 0.0 & 3.0 & ns \\
\hline \(\mathrm{t}_{\text {IORCKSW }}\) & I/O Clock to R-Clock Skew & 0.0 & 5.0 & 0.0 & 5.0 & ns \\
\hline \(\mathrm{t}_{\text {HRCKSW }}\) & H-Clock to R-Clock Skew & & & & & \\
& (FO = 64) & 0.0 & 1.0 & 0.0 & 1.0 & ns \\
& (FO =50\% max.) & 0.0 & 3.0 & 0.0 & 3.0 & ns \\
\hline
\end{tabular}

Note: SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note.

\section*{RT14100A, A14100A Timing Characteristics}

Table 1-21 • RT14100A, A14100A Logic and Input Modules Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{-1 Speed} & \multicolumn{2}{|l|}{Std Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{7}{|l|}{Logic Module Propagation Delays \({ }^{1}\)} \\
\hline \(\mathrm{t}_{\text {PD }}\) & Internal Array Module & & 3.0 & & 3.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{CO}}\) & Sequential Clock-to-Q & & 3.0 & & 3.5 & ns \\
\hline \({ }_{\text {t }}^{\text {CLR }}\) & Asynchronous Clear-to-Q & & 3.0 & & 3.5 & ns \\
\hline \multicolumn{7}{|l|}{Logic Module Predicted Routing Delays \({ }^{2}\)} \\
\hline \(\mathrm{t}_{\text {RD1 }}\) & FO=1 Routing Delay & & 1.3 & & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {RD2 }}\) & FO=2 Routing Delay & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {RD3 }}\) & FO=3 Routing Delay & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {RD4 }}\) & FO=4 Routing Delay & & 2.6 & & 2.9 & ns \\
\hline \(\mathrm{t}_{\text {RD8 }}\) & FO=8 Routing Delay & & 4.2 & & 4.9 & ns \\
\hline
\end{tabular}

Logic Module Sequential Timing
\begin{tabular}{|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {SUD }}\) & Flip-Flop (Latch) Data Input Setup & 1.0 & & 1.0 & \\
\hline \(\mathrm{t}_{\text {HD }}\) & Flip-Flop (Latch) Data Input Hold & 0.6 & & 0.6 & \\
\hline \(\mathrm{t}_{\text {SUENA }}\) & Flip-Flop (Latch) Enable Setup & 1.0 & & 1.0 & \\
\hline \(\mathrm{t}_{\text {HENA }}\) & Flip-Flop (Latch) Enable Hold & 0.6 & & 0.6 & ns \\
\hline \(\mathrm{t}_{\text {WASYN }}\) & Asynchronous Pulse Width & 4.8 & & 5.6 & \\
\hline \(\mathrm{t}_{\text {WCLKA }}\) & Flip-Flop Clock Pulse Width & 4.8 & & 5.6 & ns \\
\hline \(\mathrm{t}_{\text {A }}\) & Flip-Flop Clock Input Period & 9.9 & & 11.6 & ns \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Flip-Flop Clock Frequency & & 100 & & ns \\
\hline
\end{tabular}

Input Module Propagation Delays
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline \(\mathrm{t}_{\text {INY }}\) & Input Data Pad-to-Y & & 4.2 & & 4.9 & ns \\
\hline \(\mathrm{t}_{\text {ICKY }}\) & Input Reg IOCLK Pad-to-Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {OCKY }}\) & Output Reg IOCLK Pad-to-Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {ICLRY }}\) & Input Asynchronous Clear-to-Y & & 7.0 & & 8.2 & ns \\
\hline \(\mathrm{t}_{\text {OCLRY }}\) & Output Asynchronous Clear-to-Y & & 7.0 & & 8.2 & ns \\
\hline
\end{tabular}

Input Module Predicted Routing Delays \({ }^{2,3}\)
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline \(\mathrm{t}_{\text {IRD1 }}\) & FO=1 Routing Delay & & 1.3 & & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD2 }}\) & FO=2 Routing Delay & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {IRD3 }}\) & FO=3 Routing Delay & & 2.1 & & 2.5 & ns \\
\hline \(\mathrm{t}_{\text {IRD4 }}\) & \(\mathrm{FO}=4\) Routing Delay & & 2.6 & & 2.9 & ns \\
\hline \(\mathrm{t}_{\text {IRD8 }}\) & \(\mathrm{FO}=8\) Routing Delay & & 4.2 & & 4.9 & ns \\
\hline
\end{tabular}

\section*{Notes:}
1. For dual-module macros, use \(t_{P D}+t_{R D 1}+t_{P D n^{\prime}} t_{C O}+t_{R D 1}+t_{P D n}\), or \(t_{P D 1}+t_{R D 1}+t_{S U D}\), whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to \(4 n s\).

Table 1-22 • RT14100A, A14100A I/O and Output Modules
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & eed & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline I/O Module & quential Timing & & & & & \\
\hline tinh & Input Flip-Flop Data Hold & 0.0 & & 0.0 & & ns \\
\hline tinsu & Input Flip-Flop Data Setup & 2.1 & & 2.4 & & ns \\
\hline \(\mathrm{t}_{\text {IDEH }}\) & Input Data Enable Hold & 0.0 & & 0.0 & & ns \\
\hline \(\mathrm{t}_{\text {IDESU }}\) & Input Data Enable Setup & 8.7 & & 10.0 & & ns \\
\hline \(\mathrm{t}_{\text {OUTH }}\) & Output Flip-Flop Data Hold & 1.2 & & 1.2 & & ns \\
\hline toutsu & Output Flip-Flop Data Setup & 1.2 & & 1.2 & & ns \\
\hline \(\mathrm{t}_{\text {ODEH }}\) & Output Data Enable Hold & 0.6 & & 0.6 & & ns \\
\hline todesu & Output Data Enable Setup & 2.4 & & 2.4 & & ns \\
\hline
\end{tabular}

TTL Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DHS }}\) & Data-to-Pad, High Slew & & 7.5 & & 8.9 & ns \\
\hline \(\mathrm{t}_{\text {DLS }}\) & Data-to-Pad, Low Slew & & 11.9 & & 14.0 & ns \\
\hline \(\mathrm{t}_{\text {ENZHS }}\) & Enable-to-Pad, Z to H/L, High Slew & & 6.0 & & 7.0 & ns \\
\hline \(\mathrm{t}_{\text {ENZLS }}\) & Enable-to-Pad, Z to H/L, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {ENHSZ }}\) & Enable-to-Pad, H/L to Z, High Slew & & 11.9 & & 14.0 & ns \\
\hline \(\mathrm{t}_{\text {ENLSZ }}\) & Enable-to-Pad, H/L to Z, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {CKHS }}\) & IOCLK Pad-to-Pad H/L, High Slew & & 12.2 & & 14.0 & ns \\
\hline \(\mathrm{t}_{\text {CKLS }}\) & IOCLK Pad-to-Pad H/L, Low Slew & & 17.8 & & 17.8 & ns \\
\hline \(\mathrm{~d}_{\text {TLHHS }}\) & Delta LOW to HIGH, High Slew & & 0.04 & & 0.04 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {TLHLS }}\) & Delta LOW to HIGH, Low Slew & & 0.07 & & 0.08 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLHS }}\) & Delta HIGH to LOW, High Slew & & 0.05 & & 0.06 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLLS }}\) & Delta HIGH to LOW, Low Slew & & 0.07 & & 0.08 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline c & & & & & \\
\hline
\end{tabular}

CMOS Output Module Timing \({ }^{1}\)
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline \(\mathrm{t}_{\text {DHS }}\) & Data-to-Pad, High Slew & & 9.2 & & 10.8 & ns \\
\hline \(\mathrm{t}_{\text {DLS }}\) & Data-to-Pad, Low Slew & & 17.3 & & 20.3 & ns \\
\hline \(\mathrm{t}_{\text {ENZHS }}\) & Enable-to-Pad, Z to H/L, High Slew & & 7.7 & & 9.1 & ns \\
\hline \(\mathrm{t}_{\text {ENZLS }}\) & Enable-to-Pad, Z to H/L, Low Slew & & 13.1 & & 15.5 & ns \\
\hline \(\mathrm{t}_{\text {ENHSZ }}\) & Enable-to-Pad, H/L to Z, High Slew & & 11.6 & & 14.0 & ns \\
\hline \(\mathrm{t}_{\text {ENLSZ }}\) & Enable-to-Pad, H/L to Z, Low Slew & & 10.9 & & 12.8 & ns \\
\hline \(\mathrm{t}_{\text {CKHS }}\) & IOCLK Pad-to-Pad H/L, High Slew & & 14.4 & & 16.0 & ns \\
\hline \(\mathrm{t}_{\text {CKLS }}\) & IOCLK Pad-to-Pad H/L, Low Slew & & 20.2 & & 22.4 & ns \\
\hline \(\mathrm{~d}_{\text {TLHHS }}\) & Delta LOW to HIGH, High Slew & & 0.06 & & 0.07 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {TLHLS }}\) & Delta LOW to HIGH, Low Slew & & 0.11 & & 0.13 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLHS }}\) & Delta HIGH to LOW, High Slew & & 0.04 & & 0.05 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline \(\mathrm{d}_{\text {THLLS }}\) & Delta HIGH to LOW, Low Slew & & 0.05 & & 0.06 & \(\mathrm{~ns} / \mathrm{pF}\) \\
\hline
\end{tabular}

\section*{Note:}
1. Delays based on 35 pF loading.

\section*{RadTolerant FPGAs}

Table 1-23 • RT14100A, A14100A Clock Networks
Worst-Case Military Conditions, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{-1 Speed} & \multicolumn{2}{|l|}{Std Speed} & \\
\hline Parameter & Description & Min. & Max. & Min. & Max. & Units \\
\hline \multicolumn{7}{|l|}{Dedicated (Hard-Wired) I/O Clock Network} \\
\hline \(\mathrm{t}_{\text {IOCKH }}\) & \begin{tabular}{l}
Input LOW to HIGH \\
(Pad to I/O Module Input)
\end{tabular} & & 3.5 & & 4.1 & ns \\
\hline tIOPWH & Minimum Pulse Width HIGH & 4.8 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {IOPWL }}\) & Minimum Pulse Width LOW & 4.8 & & 5.7 & & ns \\
\hline t IOSAPW & Minimum Asynchronous Pulse Width & 3.9 & & 4.4 & & ns \\
\hline tIocksw & Maximum Skew & & 0.9 & & 1.0 & ns \\
\hline \(\mathrm{t}_{\text {IOP }}\) & Minimum Period & 9.9 & & 11.6 & & ns \\
\hline fiomax & Maximum Frequency & & 100 & & 85 & MHz \\
\hline
\end{tabular}

Dedicated (Hard-Wired) Array Clock Network
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(t_{\text {HCKH }}\) & \begin{tabular}{l} 
Input LOW to HIGH \\
(Pad to S-Module Input)
\end{tabular} & & 5.5 & & 6.4 & ns \\
\hline \(\mathrm{t}_{\text {HCKL }}\) & \begin{tabular}{c} 
Input HIGH to LOW \\
(Pad to S-Module Input)
\end{tabular} & & 5.5 & & 6.4 & ns \\
\hline \(\mathrm{t}_{\text {HPWH }}\) & Minimum Pulse Width HIGH & 4.8 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {HPWL }}\) & Minimum Pulse Width LOW & 4.8 & & 5.7 & & ns \\
\hline \(\mathrm{t}_{\text {HCKSW }}\) & Maximum Skew & & 0.9 & & 1.0 & ns \\
\hline \(\mathrm{t}_{\text {HP }}\) & Minimum Period & 9.9 & & 11.6 & & ns \\
\hline\(f_{\text {HMAX }}\) & Maximum Frequency & & 100 & & 85 & MHz \\
\hline
\end{tabular}

Routed Array Clock Networks
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(t_{\text {RCKH }}\) & Input LOW to HIGH (FO=256) & & 9.0 & & 10.5 & ns \\
\hline \(\mathrm{t}_{\text {RCKL }}\) & Input HIGH to LOW (FO=256) & & 9.0 & & 10.5 & ns \\
\hline \(\mathrm{t}_{\text {RPWH }}\) & Min. Pulse Width HIGH (FO=256) & 6.3 & & 7.1 & & ns \\
\hline \(\mathrm{t}_{\text {RPWL }}\) & Min. Pulse Width LOW (FO=256) & 6.3 & & 7.1 & & ns \\
\hline \(\mathrm{t}_{\text {RCKSW }}\) & Maximum Skew (FO=128) & & 1.9 & & 2.1 & ns \\
\hline \(\mathrm{t}_{\text {RP }}\) & Minimum Period (FO=256) & 12.9 & & 14.5 & & ns \\
\hline \(\mathrm{f}_{\text {RMAX }}\) & Maximum Frequency (FO=256) & & 75 & & 65 & MHz \\
\hline
\end{tabular}

\section*{Clock-to-Clock Skews}
\begin{tabular}{|l|l|l|l|l|l|c|}
\hline\(t_{\text {IOHCKSW }}\) & I/O Clock to H-Clock Skew & 0.0 & 3.5 & 0.0 & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {IORCKSW }}\) & I/O Clock to R-Clock Skew & 0.0 & 5.0 & 0.0 & 5.0 & ns \\
\hline \(\mathrm{t}_{\text {HRCKSW }}\) & H-Clock to R-Clock Skew & & & & & ns \\
& (FO = 64) & 0.0 & 1.0 & 0.0 & 1.0 & \\
& (FO = 50\% max.) & 0.0 & 3.0 & 0.0 & 3.0 & \\
\hline
\end{tabular}

Note: SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note.

\section*{Pin Descriptions}

\section*{CLK Clock (Input)}

RT1020 and A1020B only. TTL clock input for global clock distribution networks. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

\section*{CLKA Clock A (Input)}

Not applicable for RT1020 and A1020B. TTL clock input for global clock distribution networks. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

\section*{CLKB}

\section*{Clock B (Input)}

Not applicable for RT1020 and A1020B. TTL clock input for global clock distribution networks. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

\section*{DCLK Diagnostic Clock (Input)}

TTL clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

\section*{GND Ground}

LOW supply voltage.

\section*{HCLK Dedicated (Hard-Wired) Array Clock (Input)}

Not applicable for RT1020, A1020B, RT1280A and A1280A. TTL clock input for sequential modules. This input is directly wired to each S-module, offering clock speeds independent of the number of S-modules being driven. This pin can also be used as an I/O.

\section*{I/O \\ Input/Output (Input, Output)}

I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. In the RT1020, A1020B, RT1280, and A1280A devices, unused I/O pins are automatically driven LOW. In the RT1425, A1425A, RT1460, A1460A, RT14100, and A14100A devices, unused I/O pins are automatically tristated.

\section*{IOCLK Dedicated (Hard-Wired) I/O Clock (Input)}

Not applicable for RT1020, A1020B, RT1280A and A1280A. TTL clock input for I/O modules. This input is directly wired to each I/O module, offering clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

\section*{IOPCL Dedicated (Hard-Wired) I/O Preset/Clear (Input)}

Not applicable for RT1020, A1020B, RT1280A and A1280A. TTL input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

\section*{MODE Mode (Input)}

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide debugging capability, the MODE pin should be terminated to GND through a \(10 \mathrm{k} \Omega\) resistor so that the MODE pin can be pulled HIGH when required.

\section*{NC \\ No Connection}

This pin is not connected to circuitry within the device.

\section*{PRA, I/O Probe A (Output)}

The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

\section*{PRB, I/O Probe B (Output)}

The Probe \(B\) pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

\section*{SDI Serial Data Input (Input)}

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.
\(\mathbf{v}_{\mathbf{C c}}\)
5.0 V Supply Voltage

HIGH supply voltage.

\section*{Package Pin Assignments}

\section*{84-Pin CQFP}


Figure 2-1 • 84-Pin CQFP (Top View)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{84-Pin CQFP} & \multicolumn{3}{|c|}{84-Pin CQFP} \\
\hline Pin Number & A1020B Function & RT1020 Function & Pin Number & A1020B Function & RT1020 Function \\
\hline 1 & NC & NC & 36 & I/O & I/O \\
\hline 2 & I/O & I/O & 37 & I/O & I/O \\
\hline 3 & I/O & I/O & 38 & I/O & I/O \\
\hline 4 & I/O & I/O & 39 & I/O & I/O \\
\hline 5 & 1/O & I/O & 40 & I/O & I/O \\
\hline 6 & I/O & I/O & 41 & I/O & I/O \\
\hline 7 & GND & GND & 42 & I/O & I/O \\
\hline 8 & GND & GND & 43 & I/O & I/O \\
\hline 9 & I/O & I/O & 44 & I/O & I/O \\
\hline 10 & I/O & I/O & 45 & I/O & I/O \\
\hline 11 & I/O & I/O & 46 & I/O & 1/O \\
\hline 12 & I/O & I/O & 47 & I/O & I/O \\
\hline 13 & I/O & I/O & 48 & I/O & I/O \\
\hline 14 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 49 & GND & GND \\
\hline 15 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 50 & GND & GND \\
\hline 16 & I/O & I/O & 51 & I/O & I/O \\
\hline 17 & I/O & I/O & 52 & I/O & I/O \\
\hline 18 & I/O & I/O & 53 & CLKA, I/O & CLKA, I/O \\
\hline 19 & I/O & I/O & 54 & I/O & I/O \\
\hline 20 & I/O & I/O & 55 & MODE & MODE \\
\hline 21 & I/O & I/O & 56 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 22 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{Cc}}\) & 57 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 23 & I/O & I/O & 58 & I/O & I/O \\
\hline 24 & I/O & I/O & 59 & I/O & I/O \\
\hline 25 & I/O & I/O & 60 & I/O & I/O \\
\hline 26 & I/O & I/O & 61 & SDI, I/O & SDI, Input \\
\hline 27 & I/O & I/O & 62 & DCLK, I/O & DCLK, Input \\
\hline 28 & I/O & I/O & 63 & PRA, I/O & PRA, I/O \\
\hline 29 & GND & GND & 64 & PRB, I/O & PRB, I/O \\
\hline 30 & I/O & I/O & 65 & I/O & I/O \\
\hline 31 & I/O & I/O & 66 & I/O & I/O \\
\hline 32 & I/O & I/O & 67 & I/O & I/O \\
\hline 33 & I/O & I/O & 68 & I/O & I/O \\
\hline 34 & I/O & I/O & 69 & I/O & I/O \\
\hline 35 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 70 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ 84-Pin CQFP } \\
\hline \begin{tabular}{c} 
Pin \\
Number
\end{tabular} & \begin{tabular}{c} 
A1020B \\
Function
\end{tabular} & \begin{tabular}{c} 
RT1020 \\
Function
\end{tabular} \\
\hline 71 & GND & GND \\
\hline 72 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 73 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 74 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 75 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 76 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 77 & V CC & V CC \\
\hline 78 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 79 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 80 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 81 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 82 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 83 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 84 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline
\end{tabular}


Figure 2-2 • 132-Pin CQFP (Top View)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{132-Pin CQFP} & \multicolumn{3}{|c|}{132-Pin CQFP} & \multicolumn{3}{|c|}{132-Pin CQFP} \\
\hline Pin Number & \begin{tabular}{l}
A1425A \\
Function
\end{tabular} & RT1425A Function & Pin Number & A1425A Function & RT1425A Function & Pin Number & A1425A Function & RT1425A Function \\
\hline 1 & NC & NC & 36 & GND & GND & 71 & I/O & I/O \\
\hline 2 & GND & GND & 37 & I/O & I/O & 72 & I/O & I/O \\
\hline 3 & SDI, I/O & SDI, I/O & 38 & I/O & I/O & 73 & I/O & I/O \\
\hline 4 & I/O & I/O & 39 & 1/0 & 1/0 & 74 & GND & GND \\
\hline 5 & I/O & I/O & 40 & I/O & I/O & 75 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 6 & I/O & I/O & 41 & I/O & I/O & 76 & I/O & I/O \\
\hline 7 & I/O & I/O & 42 & GND & GND & 77 & 1/O & 1/O \\
\hline 8 & I/O & I/O & 43 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 78 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 9 & MODE & MODE & 44 & I/O & I/O & 79 & I/O & I/O \\
\hline 10 & GND & GND & 45 & I/O & I/O & 80 & I/O & I/O \\
\hline 11 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 46 & I/O & I/O & 81 & I/O & I/O \\
\hline 12 & I/O & I/O & 47 & I/O & I/O & 82 & I/O & I/O \\
\hline 13 & I/O & I/O & 48 & PRB, I/O & PRB, I/O & 83 & I/O & I/O \\
\hline 14 & I/O & 1/0 & 49 & I/O & I/O & 84 & I/O & 1/0 \\
\hline 15 & I/O & I/O & 50 & HCLK, I/O & HCLK, I/O & 85 & I/O & I/O \\
\hline 16 & I/O & I/O & 51 & I/O & I/O & 86 & I/O & I/O \\
\hline 17 & I/O & I/O & 52 & I/O & I/O & 87 & I/O & I/O \\
\hline 18 & I/O & I/O & 53 & I/O & I/O & 88 & I/O & I/O \\
\hline 19 & 1/O & I/O & 54 & I/O & I/O & 89 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\text {CC }}\) \\
\hline 20 & I/O & I/O & 55 & I/O & I/O & 90 & GND & GND \\
\hline 21 & I/O & 1/O & 56 & 1/O & I/O & 91 & \(V_{\text {cc }}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 22 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 57 & I/O & I/O & 92 & GND & GND \\
\hline 23 & I/O & I/O & 58 & GND & GND & 93 & I/O & I/O \\
\hline 24 & I/O & I/O & 59 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 94 & I/O & 1/O \\
\hline 25 & I/O & I/O & 60 & I/O & I/O & 95 & I/O & I/O \\
\hline 26 & GND & GND & 61 & I/O & I/O & 96 & I/O & I/O \\
\hline 27 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 62 & 1/0 & I/O & 97 & I/O & I/O \\
\hline 28 & I/O & I/O & 63 & I/O & I/O & 98 & IOCLK, I/O & IOCLK, I/O \\
\hline 29 & I/O & 1/O & 64 & IOPCL, I/O & IOPCL, I/O & 99 & NC & NC \\
\hline 30 & I/O & I/O & 65 & GND & GND & 100 & NC & NC \\
\hline 31 & I/O & I/O & 66 & NC & NC & 101 & GND & GND \\
\hline 32 & I/O & I/O & 67 & NC & NC & 102 & I/O & I/O \\
\hline 33 & I/O & I/O & 68 & I/O & I/O & 103 & I/O & I/O \\
\hline 34 & NC & NC & 69 & I/O & I/O & 104 & I/O & 1/O \\
\hline 35 & I/O & I/O & 70 & I/O & I/O & 105 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{132-Pin CQFP} \\
\hline \begin{tabular}{l}
Pin \\
Number
\end{tabular} & \begin{tabular}{l}
A1425A \\
Function
\end{tabular} & \begin{tabular}{l}
RT1425A \\
Function
\end{tabular} \\
\hline 106 & GND & GND \\
\hline 107 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 108 & I/O & I/O \\
\hline 109 & I/O & I/O \\
\hline 110 & I/O & I/O \\
\hline 111 & 1/0 & 1/O \\
\hline 112 & I/O & I/O \\
\hline 113 & I/O & I/O \\
\hline 114 & 1/0 & I/O \\
\hline 115 & 1/O & 1/O \\
\hline 116 & CLKA, I/O & CLKA, I/O \\
\hline 117 & CLKB, I/O & CLKB, I/O \\
\hline 118 & PRA, I/O & PRA, I/O \\
\hline 119 & I/O & I/O \\
\hline 120 & I/O & I/O \\
\hline 121 & 1/O & I/O \\
\hline 122 & GND & GND \\
\hline 123 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 124 & I/O & I/O \\
\hline 125 & I/O & I/O \\
\hline 126 & I/O & I/O \\
\hline 127 & 1/O & 1/0 \\
\hline 128 & I/O & I/O \\
\hline 129 & I/O & I/O \\
\hline 130 & I/O & I/O \\
\hline 131 & DCLK, I/O & DCLK, I/O \\
\hline 132 & NC & NC \\
\hline
\end{tabular}

\section*{172-Pin CQFP}


Figure 2-3 • 172-Pin CQFP (Top View)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{172-Pin CQFP} & \multicolumn{3}{|c|}{172-Pin CQFP} & \multicolumn{3}{|c|}{172-Pin CQFP} \\
\hline Pin Number & A1280A Function & RT1280A Function & Pin Number & A1280A Function & RT1280A Function & Pin Number & A1280A Function & RT1280A Function \\
\hline 1 & MODE & MODE & 36 & I/O & I/O & 71 & I/O & I/O \\
\hline 2 & I/O & I/O & 37 & GND & GND & 72 & I/O & I/O \\
\hline 3 & I/O & I/O & 38 & I/O & I/O & 73 & I/O & I/O \\
\hline 4 & I/O & I/O & 39 & I/O & I/O & 74 & I/O & I/O \\
\hline 5 & I/O & I/O & 40 & I/O & I/O & 75 & GND & GND \\
\hline 6 & I/O & I/O & 41 & I/O & I/O & 76 & I/O & I/O \\
\hline 7 & GND & GND & 42 & I/O & I/O & 77 & I/O & I/O \\
\hline 8 & I/O & I/O & 43 & I/O & I/O & 78 & I/O & I/O \\
\hline 9 & I/O & I/O & 44 & I/O & I/O & 79 & I/O & I/O \\
\hline 10 & I/O & I/O & 45 & I/O & I/O & 80 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{Cc}}\) \\
\hline 11 & 1/O & 1/0 & 46 & I/O & I/O & 81 & I/O & I/O \\
\hline 12 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 47 & 1/O & 1/O & 82 & 1/O & 1/0 \\
\hline 13 & I/O & I/O & 48 & I/O & I/O & 83 & I/O & I/O \\
\hline 14 & I/O & I/O & 49 & I/O & I/O & 84 & I/O & I/O \\
\hline 15 & I/O & I/O & 50 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 85 & I/O & 1/0 \\
\hline 16 & I/O & I/O & 51 & I/O & I/O & 86 & I/O & I/O \\
\hline 17 & GND & GND & 52 & 1/O & I/O & 87 & I/O & I/O \\
\hline 18 & I/O & I/O & 53 & I/O & I/O & 88 & I/O & I/O \\
\hline 19 & 1/O & I/O & 54 & I/O & I/O & 89 & I/O & I/O \\
\hline 20 & 1/0 & I/O & 55 & GND & GND & 90 & I/O & I/O \\
\hline 21 & I/O & I/O & 56 & I/O & I/O & 91 & I/O & I/O \\
\hline 22 & GND & GND & 57 & I/O & I/O & 92 & I/O & I/O \\
\hline 23 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 58 & I/O & I/O & 93 & I/O & I/O \\
\hline 24 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 59 & 1/O & 1/O & 94 & 1/O & 1/O \\
\hline 25 & I/O & I/O & 60 & I/O & I/O & 95 & I/O & I/O \\
\hline 26 & I/O & I/O & 61 & I/O & I/O & 96 & I/O & I/O \\
\hline 27 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 62 & I/O & I/O & 97 & I/O & I/O \\
\hline 28 & I/O & I/O & 63 & I/O & I/O & 98 & GND & GND \\
\hline 29 & I/O & I/O & 64 & I/O & I/O & 99 & I/O & I/O \\
\hline 30 & 1/O & I/O & 65 & GND & GND & 100 & I/O & I/O \\
\hline 31 & I/O & I/O & 66 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 101 & I/O & I/O \\
\hline 32 & GND & GND & 67 & I/O & I/O & 102 & I/O & I/O \\
\hline 33 & I/O & I/O & 68 & I/O & I/O & 103 & GND & GND \\
\hline 34 & I/O & I/O & 69 & I/O & I/O & 104 & I/O & I/O \\
\hline 35 & I/O & I/O & 70 & I/O & 1/O & 105 & I/O & 1/0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{172-Pin CQFP} & \multicolumn{3}{|c|}{172-Pin CQFP} \\
\hline Pin Number & A1280A Function & RT1280A Function & Pin Number & A1280A Function & RT1280A Function \\
\hline 106 & GND & GND & 141 & GND & GND \\
\hline 107 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 142 & I/O & I/O \\
\hline 108 & GND & GND & 143 & I/O & I/O \\
\hline 109 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\text {CC }}\) & 144 & I/O & I/O \\
\hline 110 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 145 & I/O & I/O \\
\hline 111 & I/O & I/O & 146 & I/O & I/O \\
\hline 112 & I/O & I/O & 147 & I/O & I/O \\
\hline 113 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 148 & PRA, I/O & PRA, I/O \\
\hline 114 & I/O & I/O & 149 & I/O & I/O \\
\hline 115 & I/O & I/O & 150 & CLKA, I/O & CLKA, I/O \\
\hline 116 & I/O & I/O & 151 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 117 & I/O & I/O & 152 & GND & GND \\
\hline 118 & GND & GND & 153 & I/O & I/O \\
\hline 119 & I/O & I/O & 154 & CLKB, I/O & CLKB, I/O \\
\hline 120 & I/O & I/O & 155 & I/O & I/O \\
\hline 121 & I/O & I/O & 156 & PRB, I/O & PRB, I/O \\
\hline 122 & I/O & I/O & 157 & I/O & I/O \\
\hline 123 & GND & GND & 158 & I/O & I/O \\
\hline 124 & I/O & I/O & 159 & I/O & I/O \\
\hline 125 & I/O & I/O & 160 & I/O & I/O \\
\hline 126 & I/O & I/O & 161 & GND & GND \\
\hline 127 & I/O & I/O & 162 & I/O & I/O \\
\hline 128 & I/O & I/O & 163 & I/O & I/O \\
\hline 129 & I/O & I/O & 164 & I/O & I/O \\
\hline 130 & I/O & I/O & 165 & I/O & I/O \\
\hline 131 & SDI, I/O & SDI, I/O & 166 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 132 & I/O & I/O & 167 & I/O & I/O \\
\hline 133 & I/O & I/O & 168 & I/O & I/O \\
\hline 134 & I/O & I/O & 169 & I/O & I/O \\
\hline 135 & I/O & I/O & 170 & I/O & I/O \\
\hline 136 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 171 & DCLK, I/O & DCLK, I/O \\
\hline 137 & I/O & I/O & 172 & I/O & I/O \\
\hline 138 & I/O & I/O & & & \\
\hline 139 & I/O & I/O & & & \\
\hline 140 & I/O & I/O & & & \\
\hline
\end{tabular}

\section*{196-Pin CQFP}


Figure 2-4 • 196-Pin CQFP (Top View)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{196-Pin CQFP} & \multicolumn{3}{|c|}{196-Pin CQFP} & \multicolumn{3}{|c|}{196-Pin CQFP} \\
\hline Pin Number & A1460A Function & RT1460A Function & Pin Number & A1460A Function & RT1460A Function & Pin Number & A1460A Function & RT1460A Function \\
\hline 1 & GND & GND & 36 & I/O & I/O & 71 & I/O & I/O \\
\hline 2 & SDI, I/O & SDI, I/O & 37 & GND & GND & 72 & I/O & I/O \\
\hline 3 & I/O & I/O & 38 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 73 & I/O & 1/O \\
\hline 4 & I/O & 1/0 & 39 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 74 & I/O & I/O \\
\hline 5 & I/O & I/O & 40 & I/O & I/O & 75 & PRB, I/O & PRB, I/O \\
\hline 6 & I/O & I/O & 41 & I/O & I/O & 76 & I/O & I/O \\
\hline 7 & I/O & I/O & 42 & I/O & 1/O & 77 & HCLK, I/O & HCLK, I/O \\
\hline 8 & I/O & I/O & 43 & I/O & I/O & 78 & I/O & I/O \\
\hline 9 & I/O & I/O & 44 & I/O & I/O & 79 & I/O & I/O \\
\hline 10 & I/O & I/O & 45 & I/O & I/O & 80 & I/O & I/O \\
\hline 11 & MODE & MODE & 46 & I/O & I/O & 81 & I/O & I/O \\
\hline 12 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 47 & I/O & I/O & 82 & I/O & I/O \\
\hline 13 & GND & GND & 48 & I/O & I/O & 83 & I/O & I/O \\
\hline 14 & I/O & I/O & 49 & I/O & I/O & 84 & I/O & I/O \\
\hline 15 & I/O & I/O & 50 & I/O & I/O & 85 & I/O & I/O \\
\hline 16 & I/O & I/O & 51 & GND & GND & 86 & GND & GND \\
\hline 17 & I/O & I/O & 52 & GND & GND & 87 & I/O & I/O \\
\hline 18 & I/O & I/O & 53 & I/O & I/O & 88 & I/O & I/O \\
\hline 19 & 1/O & I/O & 54 & 1/O & I/O & 89 & I/O & I/O \\
\hline 20 & I/O & I/O & 55 & I/O & I/O & 90 & I/O & I/O \\
\hline 21 & I/O & I/O & 56 & I/O & I/O & 91 & I/O & I/O \\
\hline 22 & I/O & I/O & 57 & I/O & I/O & 92 & I/O & I/O \\
\hline 23 & I/O & I/O & 58 & I/O & I/O & 93 & I/O & 1/O \\
\hline 24 & I/O & 1/O & 59 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 94 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 25 & I/O & I/O & 60 & I/O & I/O & 95 & I/O & I/O \\
\hline 26 & I/O & I/O & 61 & I/O & I/O & 96 & I/O & I/O \\
\hline 27 & I/O & I/O & 62 & I/O & I/O & 97 & I/O & I/O \\
\hline 28 & I/O & I/O & 63 & I/O & I/O & 98 & GND & GND \\
\hline 29 & I/O & I/O & 64 & GND & GND & 99 & I/O & I/O \\
\hline 30 & I/O & I/O & 65 & I/O & I/O & 100 & IOPCL, I/O & IOPCL, I/O \\
\hline 31 & I/O & I/O & 66 & I/O & I/O & 101 & GND & GND \\
\hline 32 & I/O & I/O & 67 & I/O & I/O & 102 & I/O & I/O \\
\hline 33 & I/O & I/O & 68 & I/O & I/O & 103 & I/O & I/O \\
\hline 34 & I/O & I/O & 69 & I/O & I/O & 104 & I/O & 1/O \\
\hline 35 & I/O & I/O & 70 & I/O & I/O & 105 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{196-Pin CQFP} \\
\hline Pin Number & A1460A Function & RT1460A Function \\
\hline 106 & I/O & I/O \\
\hline 107 & I/O & I/O \\
\hline 108 & I/O & I/O \\
\hline 109 & I/O & I/O \\
\hline 110 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 111 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 112 & GND & GND \\
\hline 113 & I/O & I/O \\
\hline 114 & I/O & I/O \\
\hline 115 & I/O & I/O \\
\hline 116 & I/O & I/O \\
\hline 117 & I/O & I/O \\
\hline 118 & I/O & I/O \\
\hline 119 & I/O & I/O \\
\hline 120 & I/O & I/O \\
\hline 121 & I/O & I/O \\
\hline 122 & I/O & I/O \\
\hline 123 & I/O & I/O \\
\hline 124 & I/O & I/O \\
\hline 125 & I/O & I/O \\
\hline 126 & I/O & I/O \\
\hline 127 & I/O & I/O \\
\hline 128 & I/O & I/O \\
\hline 129 & I/O & I/O \\
\hline 130 & I/O & I/O \\
\hline 131 & I/O & I/O \\
\hline 132 & I/O & I/O \\
\hline 133 & I/O & I/O \\
\hline 134 & I/O & I/O \\
\hline 135 & I/O & I/O \\
\hline 136 & I/O & I/O \\
\hline 137 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 138 & GND & GND \\
\hline 139 & GND & GND \\
\hline 140 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{196-Pin CQFP} \\
\hline Pin Number & A1460A Function & RT1460A Function \\
\hline 141 & I/O & I/O \\
\hline 142 & I/O & I/O \\
\hline 143 & I/O & I/O \\
\hline 144 & I/O & I/O \\
\hline 145 & I/O & I/O \\
\hline 146 & I/O & I/O \\
\hline 147 & I/O & I/O \\
\hline 148 & IOCLK, I/O & IOCLK, I/O \\
\hline 149 & GND & GND \\
\hline 150 & I/O & I/O \\
\hline 151 & 1/O & I/O \\
\hline 152 & I/O & I/O \\
\hline 153 & I/O & I/O \\
\hline 154 & 1/O & I/O \\
\hline 155 & \(\mathrm{V}_{\mathrm{Cc}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 156 & I/O & I/O \\
\hline 157 & I/O & I/O \\
\hline 158 & 1/O & I/O \\
\hline 159 & I/O & I/O \\
\hline 160 & I/O & I/O \\
\hline 161 & I/O & I/O \\
\hline 162 & GND & GND \\
\hline 163 & I/O & I/O \\
\hline 164 & I/O & I/O \\
\hline 165 & I/O & I/O \\
\hline 166 & I/O & I/O \\
\hline 167 & I/O & I/O \\
\hline 168 & 1/O & I/O \\
\hline 169 & I/O & I/O \\
\hline 170 & I/O & I/O \\
\hline 171 & I/O & I/O \\
\hline 172 & CLKA, I/O & CLKA, I/O \\
\hline 173 & CLKB, I/O & CLKB, I/O \\
\hline 174 & PRA, I/O & PRA, I/O \\
\hline 175 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ 196-Pin CQFP } \\
\hline \begin{tabular}{c} 
Pin \\
Number
\end{tabular} & \begin{tabular}{c} 
A1460A \\
Function
\end{tabular} & \begin{tabular}{c} 
RT1460A \\
Function
\end{tabular} \\
\hline 176 & I/O & I/O \\
\hline 177 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 178 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 179 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 180 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 181 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 182 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 183 & GND & GND \\
\hline 184 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 185 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 186 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 187 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 188 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 189 & V CC & V CC \\
\hline 190 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 191 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 192 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 193 & GND & GND \\
\hline 194 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 195 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 196 & \(\mathrm{DCLK}, \mathrm{I} / \mathrm{O}\) & \(\mathrm{DCLK}, \mathrm{I} / \mathrm{O}\) \\
\hline
\end{tabular}

\section*{256-Pin CQFP}


Figure 2-5 • 256-Pin CQFP (Top View)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{256-Pin CQFP} \\
\hline Pin Number & A14100A Function & RT14100A Function \\
\hline 1 & GND & GND \\
\hline 2 & SDI, I/O & SDI, I/O \\
\hline 3 & //O & I/O \\
\hline 4 & //O & //O \\
\hline 5 & 1/0 & //0 \\
\hline 6 & 1/0 & //0 \\
\hline 7 & I/O & //0 \\
\hline 8 & I/O & //O \\
\hline 9 & 1/0 & //0 \\
\hline 10 & 1/0 & //O \\
\hline 11 & MODE & MODE \\
\hline 12 & I/O & I/O \\
\hline 13 & //0 & //0 \\
\hline 14 & 1/0 & //0 \\
\hline 15 & 1/0 & I/O \\
\hline 16 & 1/0 & //0 \\
\hline 17 & I/O & I/O \\
\hline 18 & I/O & //O \\
\hline 19 & 1/0 & I/O \\
\hline 20 & I/O & I/O \\
\hline 21 & I/O & I/O \\
\hline 22 & //0 & I/O \\
\hline 23 & //0 & I/O \\
\hline 24 & 1/0 & I/O \\
\hline 25 & 1/0 & I/O \\
\hline 26 & 1/0 & I/O \\
\hline 27 & //O & I/O \\
\hline 28 & \(\mathrm{V}_{\text {cc }}\) & \(\mathrm{V}_{\text {cc }}\) \\
\hline 29 & GND & GND \\
\hline 30 & \(V_{\text {cc }}\) & \(\mathrm{V}_{\text {cc }}\) \\
\hline 31 & GND & GND \\
\hline 32 & I/O & I/O \\
\hline 33 & 1/0 & //0 \\
\hline 34 & I/O & I/O \\
\hline 35 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{256-Pin CQFP} \\
\hline \[
\begin{gathered}
\hline \text { Pin } \\
\text { Number }
\end{gathered}
\] & A14100A Function & RT14100A Function \\
\hline 36 & I/O & I/O \\
\hline 37 & //O & 1/0 \\
\hline 38 & //0 & //0 \\
\hline 39 & //O & //O \\
\hline 40 & //O & //O \\
\hline 41 & I/O & //O \\
\hline 42 & //0 & //0 \\
\hline 43 & 1/0 & //0 \\
\hline 44 & //O & //O \\
\hline 45 & 1/0 & //O \\
\hline 46 & \(\mathrm{V}_{\text {cc }}\) & \(\mathrm{V}_{\text {cc }}\) \\
\hline 47 & I/O & //O \\
\hline 48 & 1/0 & I/O \\
\hline 49 & //0 & //0 \\
\hline 50 & //0 & //O \\
\hline 51 & //0 & //0 \\
\hline 52 & 1/0 & //0 \\
\hline 53 & //O & //0 \\
\hline 54 & //O & //O \\
\hline 55 & //O & I/O \\
\hline 56 & //0 & //O \\
\hline 57 & I/O & //O \\
\hline 58 & //O & //O \\
\hline 59 & GND & GND \\
\hline 60 & //O & //O \\
\hline 61 & I/O & //O \\
\hline 62 & //O & //O \\
\hline 63 & //0 & I/O \\
\hline 64 & //0 & I/O \\
\hline 65 & //0 & I/O \\
\hline 66 & I/O & I/O \\
\hline 67 & //O & //O \\
\hline 68 & //O & //O \\
\hline 69 & //0 & //O \\
\hline 70 & 1/0 & //O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{256-Pin CQFP} \\
\hline Pin Number & A14100A Function & RT14100A Function \\
\hline 71 & I/O & I/O \\
\hline 72 & I/O & I/O \\
\hline 73 & I/O & I/O \\
\hline 74 & I/O & I/O \\
\hline 75 & I/O & I/O \\
\hline 76 & I/O & I/O \\
\hline 77 & I/O & I/O \\
\hline 78 & I/O & I/O \\
\hline 79 & I/O & I/O \\
\hline 80 & I/O & I/O \\
\hline 81 & I/O & I/O \\
\hline 82 & I/O & I/O \\
\hline 83 & I/O & I/O \\
\hline 84 & I/O & I/O \\
\hline 85 & I/O & I/O \\
\hline 86 & I/O & I/O \\
\hline 87 & I/O & I/O \\
\hline 88 & I/O & I/O \\
\hline 89 & I/O & I/O \\
\hline 90 & PRB, I/O & PRB, I/O \\
\hline 91 & GND & GND \\
\hline 92 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 93 & GND & GND \\
\hline 94 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 95 & I/O & I/O \\
\hline 96 & HCLK, I/O & HCLK, I/O \\
\hline 97 & I/O & I/O \\
\hline 98 & I/O & I/O \\
\hline 99 & I/O & I/O \\
\hline 100 & I/O & I/O \\
\hline 101 & I/O & I/O \\
\hline 102 & I/O & I/O \\
\hline 103 & I/O & I/O \\
\hline 104 & I/O & I/O \\
\hline 105 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{256-Pin CQFP} & \multicolumn{3}{|c|}{256-Pin CQFP} & \multicolumn{3}{|c|}{256-Pin CQFP} \\
\hline Pin Number & A14100A Function & RT14100A Function & Pin Number & A14100A Function & RT14100A Function & Pin Number & A14100A Function & RT14100A Function \\
\hline 106 & I/O & I/O & 141 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 176 & GND & GND \\
\hline 107 & I/O & I/O & 142 & I/O & I/O & 177 & I/O & I/O \\
\hline 108 & I/O & I/O & 143 & I/O & 1/O & 178 & I/O & I/O \\
\hline 109 & I/O & I/O & 144 & I/O & I/O & 179 & I/O & I/O \\
\hline 110 & GND & GND & 145 & I/O & I/O & 180 & I/O & I/O \\
\hline 111 & I/O & I/O & 146 & I/O & I/O & 181 & I/O & I/O \\
\hline 112 & 1/O & 1/0 & 147 & I/O & 1/0 & 182 & I/O & I/O \\
\hline 113 & 1/O & I/O & 148 & I/O & 1/0 & 183 & 1/O & I/O \\
\hline 114 & I/O & I/O & 149 & I/O & I/O & 184 & I/O & I/O \\
\hline 115 & I/O & I/O & 150 & I/O & I/O & 185 & I/O & I/O \\
\hline 116 & I/O & I/O & 151 & I/O & I/O & 186 & I/O & I/O \\
\hline 117 & I/O & I/O & 152 & I/O & I/O & 187 & I/O & I/O \\
\hline 118 & I/O & I/O & 153 & I/O & I/O & 188 & IOCLK, I/O & IOCLK, I/O \\
\hline 119 & I/O & I/O & 154 & I/O & I/O & 189 & GND & GND \\
\hline 120 & I/O & I/O & 155 & I/O & I/O & 190 & I/O & I/O \\
\hline 121 & I/O & I/O & 156 & I/O & I/O & 191 & I/O & I/O \\
\hline 122 & 1/0 & 1/O & 157 & I/O & I/O & 192 & I/O & I/O \\
\hline 123 & I/O & I/O & 158 & GND & GND & 193 & I/O & I/O \\
\hline 124 & I/O & 1/O & 159 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\text {CC }}\) & 194 & I/O & I/O \\
\hline 125 & I/O & I/O & 160 & GND & GND & 195 & I/O & I/O \\
\hline 126 & I/O & I/O & 161 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 196 & I/O & I/O \\
\hline 127 & IOPCL, I/O & IOPCL, I/O & 162 & I/O & I/O & 197 & I/O & I/O \\
\hline 128 & GND & GND & 163 & I/O & 1/0 & 198 & 1/O & I/O \\
\hline 129 & I/O & I/O & 164 & 1/0 & I/O & 199 & I/O & I/O \\
\hline 130 & I/O & 1/O & 165 & I/O & I/O & 200 & I/O & I/O \\
\hline 131 & I/O & I/O & 166 & I/O & 1/O & 201 & I/O & I/O \\
\hline 132 & I/O & I/O & 167 & I/O & I/O & 202 & I/O & I/O \\
\hline 133 & I/O & 1/O & 168 & I/O & 1/O & 203 & 1/O & I/O \\
\hline 134 & I/O & I/O & 169 & I/O & I/O & 204 & I/O & I/O \\
\hline 135 & I/O & 1/O & 170 & I/O & I/O & 205 & I/O & I/O \\
\hline 136 & I/O & I/O & 171 & I/O & I/O & 206 & I/O & I/O \\
\hline 137 & I/O & I/O & 172 & I/O & I/O & 207 & I/O & I/O \\
\hline 138 & I/O & I/O & 173 & I/O & I/O & 208 & I/O & I/O \\
\hline 139 & I/O & I/O & 174 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\text {CC }}\) & 209 & 1/O & I/O \\
\hline 140 & I/O & 1/0 & 175 & GND & GND & 210 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{256-Pin CQFP} \\
\hline Pin Number & A14100A Function & RT14100A Function \\
\hline 211 & I/O & I/O \\
\hline 212 & I/O & I/O \\
\hline 213 & I/O & I/O \\
\hline 214 & I/O & 1/0 \\
\hline 215 & I/O & I/O \\
\hline 216 & I/O & I/O \\
\hline 217 & I/O & I/O \\
\hline 218 & I/O & I/O \\
\hline 219 & CLKA, I/O & CLKA, I/O \\
\hline 220 & CLKB, I/O & CLKB, I/O \\
\hline 221 & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\text {CC }}\) \\
\hline 222 & GND & GND \\
\hline 223 & \(\mathrm{V}_{\text {CC }}\) & \(\mathrm{V}_{\text {CC }}\) \\
\hline 224 & GND & GND \\
\hline 225 & PRA, I/O & PRA, I/O \\
\hline 226 & I/O & I/O \\
\hline 227 & I/O & I/O \\
\hline 228 & I/O & I/O \\
\hline 229 & I/O & 1/O \\
\hline 230 & I/O & I/O \\
\hline 231 & I/O & I/O \\
\hline 232 & I/O & I/O \\
\hline 233 & I/O & I/O \\
\hline 234 & I/O & I/O \\
\hline 235 & I/O & I/O \\
\hline 236 & I/O & I/O \\
\hline 237 & I/O & I/O \\
\hline 238 & I/O & I/O \\
\hline 239 & I/O & I/O \\
\hline 240 & GND & GND \\
\hline 241 & I/O & I/O \\
\hline 242 & I/O & I/O \\
\hline 243 & I/O & 1/O \\
\hline 244 & I/O & I/O \\
\hline 245 & I/O & I/O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ 256-Pin CQFP } \\
\hline \begin{tabular}{c} 
Pin \\
Number
\end{tabular} & \begin{tabular}{c} 
A14100A \\
Function
\end{tabular} & \begin{tabular}{c} 
RT14100A \\
Function
\end{tabular} \\
\hline 246 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 247 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 248 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 249 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 250 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 251 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 252 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 253 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 254 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 255 & \(\mathrm{I} / \mathrm{O}\) & \(\mathrm{I} / \mathrm{O}\) \\
\hline 256 & \(\mathrm{DCLK}, \mathrm{I} / \mathrm{O}\) & \(\mathrm{DCLK}, \mathrm{I} / \mathrm{O}\) \\
\hline
\end{tabular}

\section*{Datasheet Information}

\section*{List of Changes}

The following table lists critical changes that were made in the current version of the document.
\begin{tabular}{|c|l|c|}
\hline Previous Version & Changes in Current Version (v3.1) & Page \\
\hline \multirow{2}{*}{ v3.0 } & \begin{tabular}{c} 
The following pins changed in the "84-Pin CQFP" table: \\
\(\bullet\) \\
\(\bullet\) \\
\\
\end{tabular} & \begin{tabular}{c} 
The following pins changed in the "256-Pin CQFP" table: \\
\(\bullet \quad\) Pin 124 change to I/O for the A14100A and RT14100A devices. \\
\(\bullet\) \\
\end{tabular}
\end{tabular}

\section*{Datasheet Categories}

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

\section*{Product Brief}

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

\section*{Advanced}

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

\section*{Unmarked (production)}

This datasheet version contains information that is considered to be final.

\section*{Datasheet Supplement}

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

\section*{Export Administration Regulations (EAR) or International Traffic in Arms Regulations (ITAR)}

The product described in this datasheet could be subject to either the Export Administration Regulations (EAR) or in some cases the International Traffic in Arms Regulations (ITAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Corporation
2061 Stierlin Court Mountain View, CA 94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.
Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom
Phone +44 (0)1276401450 Fax +44 (0)1276401490

\section*{Actel Japan}

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

\section*{Actel Hong Kong}

39th Floor, One Pacific Place 88 Queensway, Admiralty
Hong Kong
Phone +852.227.35712
Fax +852.227.35999```

