

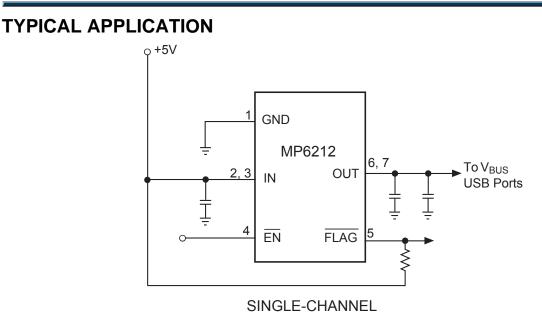
The Future of Analog IC Technology

DESCRIPTION

The MP62 11/MP6212 single -channel Powe r Distribution Switch fe atures internal current limiting to prevent damage to host devices due to faulty load conditions. The MP6211/MP6212 Analog switch has 90m Ω on-resistance and operates from 2.7V to 5.5V input. It is a vailable with guarantee d current limits, making it ideal for load switching ap plications. The MP6211/MP6212 ha s bui It-in prote ction for both over current and increased thermal stress. For over current, the device will limit the current by changing to a constant current mode.

As the temperatur e increases as a result of short circuit, the device will shut off. The device will recover on ce the device temperature reduces to approx 120°C.

The MP621 1/MP6212 is available in an 8-PIN MSOP and SOIC package with exposed pad.

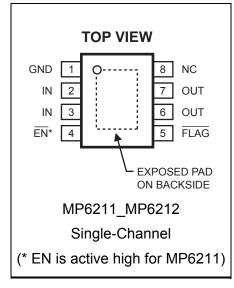

FEATURES

- 1A CortinuousCurrent
- Accu rate Current Limit
- 2.7V to 5.5V Supply Range
- 90uA Quiescent Current
- 90m Ω MOSFET
- Therm al-Shutdown Protection
- Und er-Voltage Lockout
- 8ms FLAG Deglitch Time
- No FLAG Glitch During Power Up
- Reverse Current Blocking
- Active High & Active Low Options
- MSOP8E and SOIC8E package
- UL Recognized: E322138

APPLICATIONS

- Smartpho ne and PDA
- Portable GPS Device
- N otebook PC
- Set-top-box
- Telecom and Network Systems
- USB Power Distribution

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.



Part Number*	Enable S	witch	Maximum Continuous Load Current	Typical Short- Circuit Current @ T _A =25C	Package	Top Marking	Temperature
MP6211DN	Active High	Single 1	.0A	1.5A	SOIC8E	6211D	40°C to +85°C
MP6211DH	Active High	Single 1	.0A	1.5A MSO	P8E	02110	
MP6212DN	Active Low	Single 1	.0A	1.5A	SOIC8E	6212D	-40 C 10 +65 C
MP6212DH	Active Low	Single 1	.0A	1.5A MSO	P8E	02120	

ORDERING INFORMATION

* For Tape & Reel, add suffix –Z (eg. MP6211_MP6212DN–Z). For RoHS Compliant Packaging, add suffix –LF. (eg. MP6211_MP6212DN–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

IN EN, FLAG, OUT to GND Continuous Power Dissipation.	0.3V to +6.0V
SOIC8E	
MSOP8E	2.3W
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	-65°C to +150°C
Operating Temperature	.–40°C to +85°C

Thermal Resistance ⁽³⁾	$\boldsymbol{\theta}_{JA}$	$\boldsymbol{\theta}_{JC}$	
SOIC8E	50	10	°C/W
MSOP8E	55	12	°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature r J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power r dissipation will cause excessive die temperature, and the regulator will g o into thermal shutdown. Internal thermal shutdown circuitr y pr otects the device from permanent damage.
- 3) Measured on JESD51-7 4-layer PCB.

ELECTRICAL CHARACTERISTICS (4)

 V_{IN} =5V, T_A =+25°C, unless otherwise noted.

Parameter	Condition	Min	Тур	Max	Units
IN Voltage Range	2.7			5.5	V
Supply Current	Single Channel		90	120	μA
Shutdown Current	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μA
Off Switch Leakage	Device Disable, V _{IN} =5.5V		1		μA
Current Limit		1.1	1.5	2.2	Α
Trip Current	Current Ramp (slew rate≤100A/s) on Output	1.7		2.4	А
Under-voltage Lockout	Rising Edge	1.95		2.65	V
Under-voltage Hysteresis			250		mV
FET On Resistance	I _{OUT} =100mA (-40°C≤T _A ≤85°C)		90	130	mΩ
EN Input Logic High Voltage	2				V
EN Input Logic Low Voltage				0.8	V
FLAG Output Logic Low Voltage	I _{SINK} =5mA			0.4	V
FLAG Output High Leakage Current	V _{IN} =V _{FLAG} =5.5V			1	μA
Thermal Shutdown			140		°C
Thermal Shutdown Hysteresis			20		°C
V _{OUT} Rising Time, Tr ⁽⁵⁾	V _{IN} =5.5V, CL=1uF, RL=5.5Ω		0.9		ms
	V _{IN} =2.7V, CL=1uF, RL=5.5Ω		1.7		ms
V _{OUT} Falling Time, Tf ⁽⁶⁾	V _{IN} =5.5V, CL=1uF, RL=5.5Ω			0.5	ms
	V _{IN} =2.7V, CL=1uF, RL=5.5Ω			0.5	ms
Turn On Time, Ton ⁽⁷⁾	C _L =100μF, RL=5.5Ω			3	ms
Turn Off Time, Toff ⁽⁸⁾	C _L =100μF, RL=5.5Ω			10	ms
FLAG Deglitch Time		4	8	15	ms
ENx Input Leakage		1			μA
Reverse Leakage Current	OUT=5.5V, IN=GND		0.2		μA

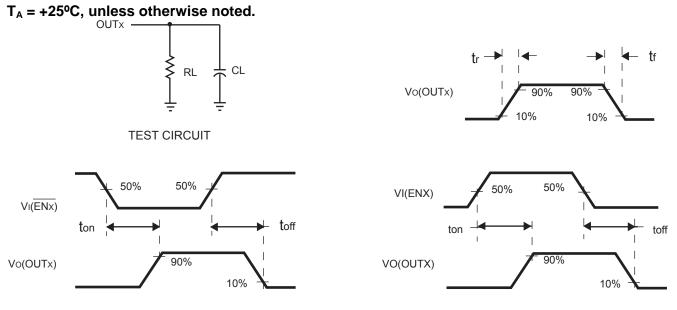
NOTES:

4) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

5) Measured from 10% to 90%.

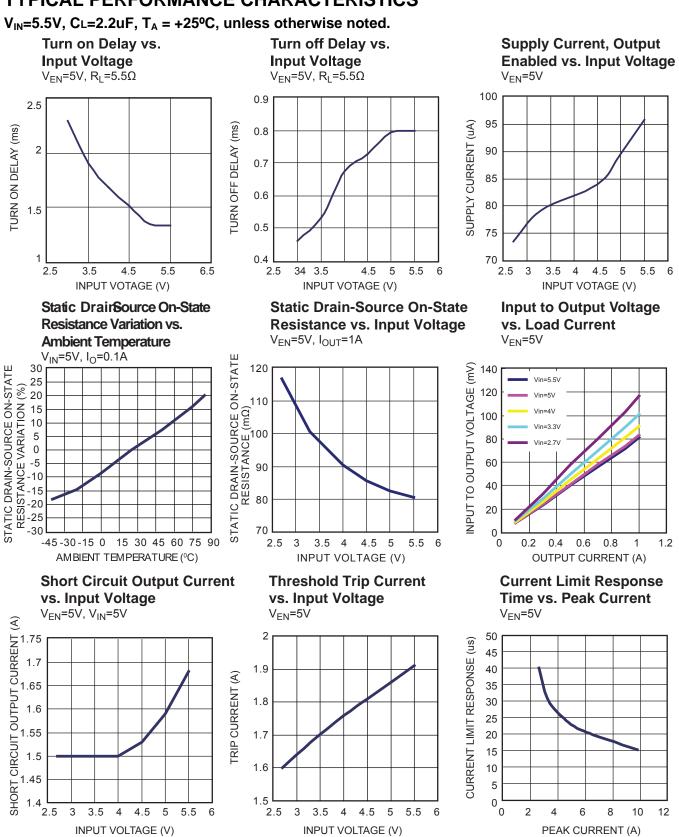
6) Measured from 90% to 10%

Measured from (50%) EN signal to (90%) output signal. Measured from (50%) EN signal to (10%) output signal. 7)

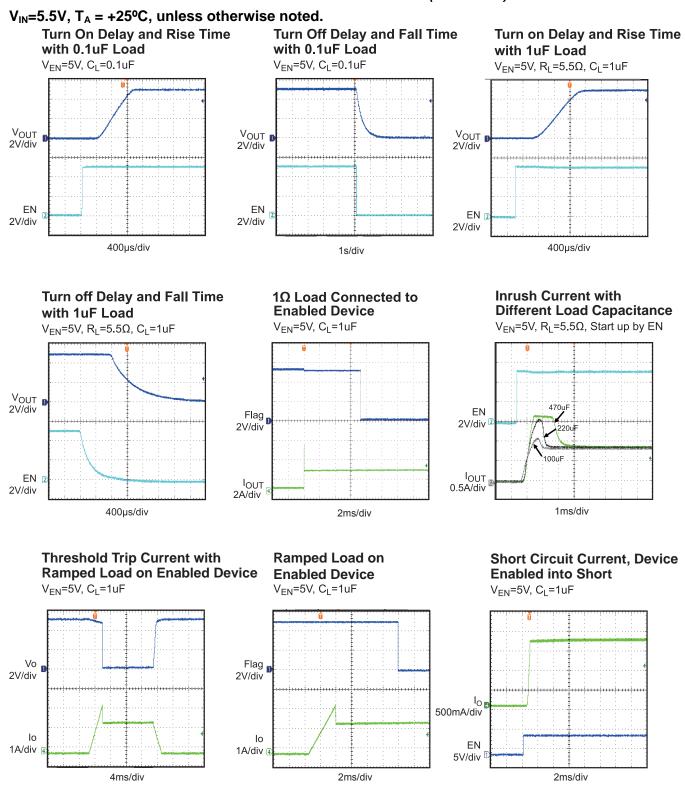

8)

PIN FUNCTIONS

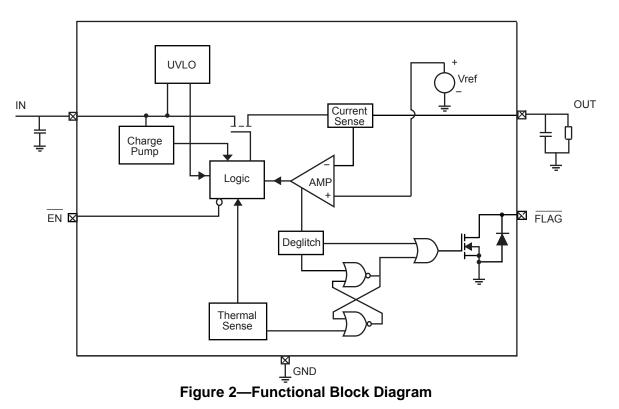
SOIC8 MSOP8E	Name	Description
1	GND Expose Pad	Ground. Connect exposed pad to GND plane for optimal thermal performance.
2, 3	IN	Input Voltage. Accepts 2.7V to 5.5V input.
4	EN	Enable Input, Active Low: (MP6212), Active High: (MP6211)
5	FLAG	IN-to-OUT Over-current, active-low output flag. Open-Drain.
6, 7	OUT	Power-Distribution Switch Output.
8	N/C	No Connect. Not internally connected.


TYPICAL PERFORMANCE CHARACTERISTICS

VOLTAGE WAVEFORMS
Figure 1—Test Circuit and Voltage Waveforms


TYPICAL PERFORMANCE CHARACTERISTICS

MP6211_MP6212 Rev. 1.1 9/18/2009 www.MonolithicPower.com MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2009 MPS. All Rights Reserved.



TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTION BLOCK DIAGRAM

DETAILED DESCRIPTION

Over Current

When the load exceeds trip curre nt (minimu m threshold current triggering co nstant-current mode) or a short is pr esent, MP6211/MP6212 switches into to a constant-current mode (current limit value). MP6211/MP6212 will be shutdown only if the overcurrent condit ion stays lo ng enough to trigger thermal protection.

Trigger overcurrent protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the d evice is enabled or input applied. MP MP6211/MP6212 detects the short or overload and immediately switches into a constant-current mode.
- 2) A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may flow for a short period of time before the current-limit circuit can react.
- 3) Output current has bee n gradually increased beyond the recommend ed operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exce eded. The MP6211/ MP6212 is capable of delivering current up to the trip cur rent thresh old without damaging the device. Once the trip threshold has been reached, t he device switches into its constant-current mode.

Flag Response

The FLAG pin is an open drain configuration. This FAULT will report a fail mode after an 8ms deglitch timeout. This is used to e nsure that no false fau It signals are reported. This intern al deglitch circuit elimina tes the ne ed for extend components. The FLAG pin is n ot deglitche d during an over temp. or a voltage lockout.

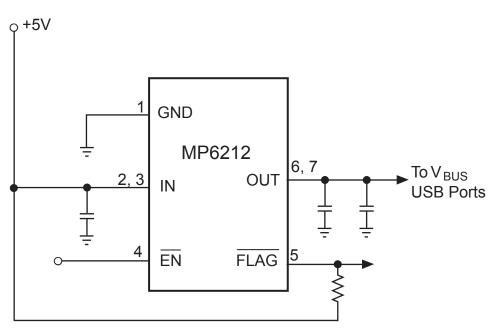
Thermal Protection

The purpose of thermal protect ion is to prevent damage in the IC by allowing exceptive current to flow and he ating the junction. The die temp. is internally monitored un til the ther mal limit is reached. Once this temp. is reached, the sw itch will turn off and allow the chip to cool. The switch has a built-in hysteresis.

Under-voltage Lockout (UVLO)

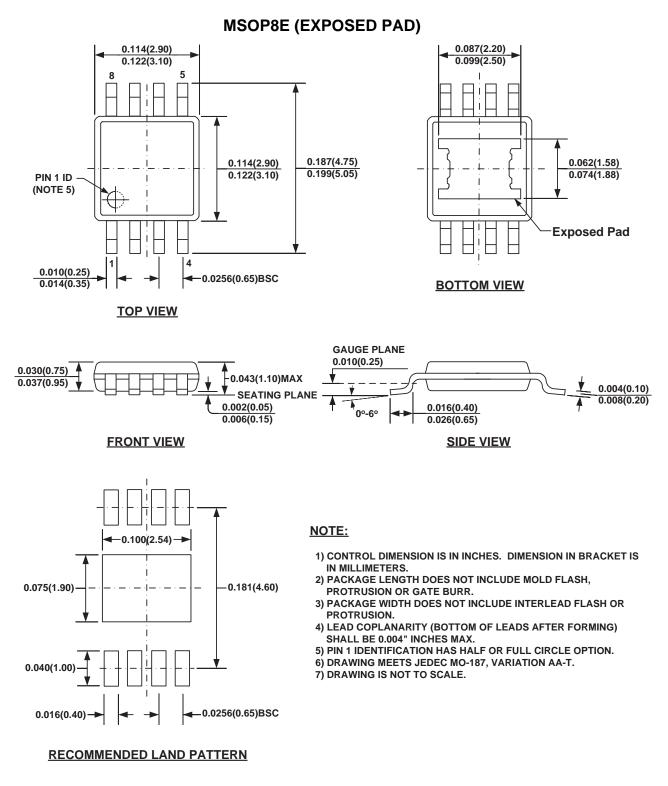
This circuit is used to monitor the input voltage t o ensure that the MP6211/6212 is operating correctly. This UVLO circuit a lso ensures that there is no operation until the input voltage reaches the minimum spec.

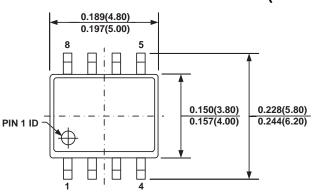
Enable


The logic p in disab les the ch ip t o reduce t he supply current. The device will oper ate once th e enable signal reaches t he appropriate level. The input is compatible with both COMS and TTL.

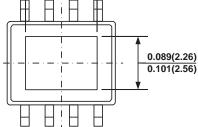
APPLICATION INFORMATION

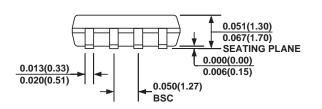
Power-Supply Considerations


Over 10 μ F capacitor between IN and GND is recommended. This pr ecaution re duces powersupply transients that may cause ringing on the input and improves the immunit y of the device to short-circuit transients. In order to achieve smaller output load transie nt ripple, placing a high-value electro lytic capacitor on the out put pin(s) is recommended when the load is heavy.


SINGLE-CHANNEL Figure 3—Application Circuit

PACKAGE INFORMATION



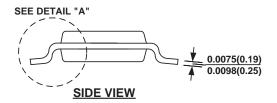


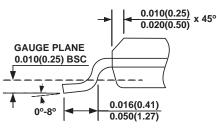
TOP VIEW

BOTTOM VIEW

0.050(1.27)

0.103(2.62)

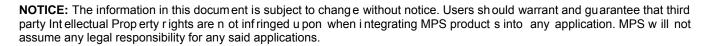

FRONT VIEW


0.138(3.51)

RECOMMENDED LAND PATTERN

0.024(0.61)

▲ 0.063(1.60) ↓



DETAIL "A"

NOTE:

0.213(5.40)

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION BA.
- 6) DRAWING IS NOT TO SCALE.

