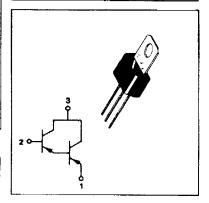
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

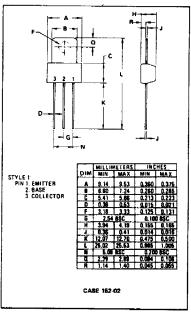

MPS-U95 (SILICON)

PNP SILICON DARLINGTON AMPLIFIER TRANSISTOR

... designed for amplifier and driver applications.

- High DC Current Gain –
 hFE = 25,000 (Min) @ IC = 200 mAdc
 15,000 (Min) @ IC = 500 mAdc
- Collector-Emitter Breakdown Voltage →
 BVCES = 40 Vdc (Min) @ IC = 100 µAdc
- Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc @ IC = 1.0 Adc
- Monolithic Construction for High Reliability
- Complement to NPN MPS-U45

PNP SILICON DARLINGTON TRANSISTOR



MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	V _{C8}	50	Vdc
Emitter-Base Voltage	VEB	10	Vdc
Collector Current -Continuous	Iс	2.0	Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0	Watt mW/ ⁰ C
Total Power Dissipation ® T _C = 25°C Derate above 25°C	PD	10	Watts

THERMAL CHARACTERISTICS				
Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Ambient	R _{0JA}	125	°C/W	
Thermal Resistance, Junction to Case	R θ _{JC} (1)	12.5	°C/W	

-55 to +150

(1) $R_{\theta,JA}$ is measured with the device soldered into a typical printed circuit board.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Operating and Storage Junction

Temperature Range

MPS-U95 (continued)

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breekdown Voltage (IC = 100 µAdc, VBE = 0)	BVCES	40	-	-	Vdc
Collector-Base Breekdown Voltage (IC = 100 µAdc, IE = 0)	в∨сво	50	-		Vdc
Emitter-Base Breakdown Voltage (IE = 10 µAdc, IC = 0)	B∨EBO	10	-	-	Vdc
Collector Cutoff Current (VCB = 30 Vdc, IE = 0)	¹ CBO	-	-	100	nAdc
Emitter Cutoff Current (VEB = 8.0 Vdc, IC = 0)	IEBO	-	-	100	nAdc
N CHARACTERISTICS(1)			<u> </u>	<u>. </u>	<u></u>
DC Current Gain (IC = 200 mAdc, VCE = 5.0 Vdc) (IC = 500 mAdc, VCE = 5.0 Vdc) (IC = 1.0 Adc, VCE = 5.0 Vdc)	pŁE	25,000 15,000 4,000	43,000 41,000 35,000	150,000 - -	
Collector-Emitter Saturation Voltage (IC = 1.0 Adc, Ig = 2.0 mAdc)	VCE(set)	-	1.0	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 2.0 mAdc)	VBE (sat)	-	1.85	2.0	Vdc
Base-Emitter On Voltage (IC = 1.0 Adc, V _{CE} = 5.0 Vdc)	V8E(on)	-	1.7	2.0	Vdc
YNAMIC CHARACTERISTICS		-			
Small-Signel Current Gain (1) (IC = 200 mAdc, VCE = 5.0 Vdc, f = 100 MHz)	h _{fe}	0.5	1.6	_	-
Collector Base Capacitance (VCB = 10 Vdc, ig = 0, f = 1.0 MHz)	C _{cb}	_	2.5	12	pF

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

Uniwett derlington transistors can be used in any number of low power applications, such as relay drivers, motor control and as general purpose amplifiers. As an audio amplifier these devices, when used as a complementary pair, can drive 3.5 watto into a 3.2 ohm speaker using a 14 volt supply with less than one per cent distortion. Because of the high gain the base drive requirement is as low as 1 mA in this application. They are also useful as power drivers for high current application such as voltage regulators.