Bi-CMOS IC

Surround Processor ICs for Electronic Volume Control

Overview

The LV1115/M are a sound processor ICs developed for use in TV sets.
They incorporate surround processing function (AViSS), pseudo stereo function, auto gain control, and the major functional blocks of an electronic volume control IC.

Features

- Input gain control ($-9 \mathrm{~dB},-6 \mathrm{~dB}, 0 \mathrm{~dB}, 4 \mathrm{~dB}, 6 \mathrm{~dB}: 5$ positions)
- AViSS (ON/OFF/6-stage level control)
- Tone control (BASS: $\pm 20 \mathrm{~dB}$, TREBLE: $\pm 18 \mathrm{~dB}$ [in 2 dB steps])
- Master volume control (0 dB to $-14 \mathrm{~dB}: 1 \mathrm{~dB}$ steps $/-14 \mathrm{~dB}$ to $-80 \mathrm{~dB}: 2 \mathrm{~dB}$ steps $/-\infty=-82 \mathrm{~dB}$)
- Balance control
- Through mode/MUTE mode
- Pseudo stereo function (ON/OFF/MONO control)
- Auto gain control function
- $\mathrm{I}^{2} \mathrm{C}$ bus control

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \max$		10.5	V
Allowable power dissipation 1	$\mathrm{Pd} \max 1$	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}{ }^{*}, \mathrm{DIP}$	700	mW
Allowable power dissipation 2	$\mathrm{Pd} \max 2$	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}^{*}, \mathrm{MFP}$	450	mW
Operating temperature	Topr		-25 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Note *: Mounted on a specified board: $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board
\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
\square Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Operating Condtions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		9.0	V
Operating supply voltage 1	$\mathrm{~V}_{\mathrm{CC}}$ opg1	DIP	8.0 to 10.0	V
Operating supply voltage 2	V_{CC} opg2	MFP	8.0 to 9.0	V
Control data				
"H" level voltage	V_{IH}		2.0 to 3.3	V
"L" level voltage	$\mathrm{V}_{\text {IL }}$		0.0 to 1.0	V
Pulse width	tфw		1.0	$\mu \mathrm{~s}$
Hold time	thold		$\mu \mathrm{s}$	
Operating frequency	fopg		1.0	l

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$, fin $=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=300 \mathrm{mVrms}=0 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (Output=L/R-VROUT, VCA circuit though)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Quiescent current	ICCO			50		mA
Total through (Total through mode, Volume control: 0 dB)						
Voltage gain	VGT		-1.5	-0.5	+0.5	dB
Maximum output voltage	$\mathrm{VO}_{\text {T }}$	THD=1\%	2.00	2.45		Vrms
Total harmonic distortion	THD ${ }_{\text {T }}$	DIN AUDIO		0.01	0.1	\%
Output noise voltage	$\mathrm{VNO}_{\text {T }}$	DIN AUDIO		-94	-85	dBV
Cross talk	${ }^{\text {CT }}$ T	DIN AUDIO	80	90		dB
Matrix through (Matrix mode, Volume control: OdB)						
Voltage gain	VGF		-1.6	-0.6	+0.6	dB
Maximum output voltage	VO_{M}	THD=1\%	1.50	1.85		Vrms
Total harmonic distortion	$\mathrm{THD}_{\mathrm{M}}$	DIN AUDIO		0.05	0.1	\%
Output noise voltage	$\mathrm{VNO}_{\mathrm{M}}$	DIN AUDIO		-92	-85	dBV
Cross talk	CT_{M}	DIN AUDIO	80	90		dB
MONO mode (MONO mode, Volume control: OdB)						
Maximum output voltage	VO_{S}	THD=1\%	1.50	1.85		Vrms
Total harmonic distortion	THDS	DIN AUDIO		0.05	0.5	\%
Output noise voltage	VNO_{S}	DIN AUDIO		-92	-85	dBV
Surround (Surround mode-A, Volume control: OdB)						
Maximum output voltage	VO_{S}	THD=1\%	1.50	1.85		Vrms
Total harmonic distortion	THDS	DIN AUDIO		0.26	0.5	\%
Output noise voltage	VNO_{S}	DIN AUDIO		-90	-80	dBV
Pseudo stereo (Pseudo mode, Volume control: OdB)						
Maximum output voltage	VO_{S}	THD=1\%	1.50	1.85		Vrms
Total harmonic distortion	THDS	DIN AUDIO		0.06	0.5	\%
Output noise voltage	VNOS	DIN AUDIO		-92	-85	dBV
Bass band EQR (Matrix through mode, Volume control: 0 dB)						
Control range	$\mathrm{Geq}_{\mathrm{B}}$	Max. Boost/Cut	± 17	± 20	± 23	dB
Step resolution	Estep ${ }_{\text {B }}$		1.0	2.0	3.0	dB
Treble band EQR (Matrix through mode, Volume control: OdB)						
Control range	GeqT	Max. Boost/Cut	± 15	± 18	± 21	dB
Step resolution	EstepT		1.0	2.0	3.0	dB

Note: The output wave form becomes big depending on the surround or tone control setting. Please make sure the output waveform is not distorted. If the waveform is distorted, reduce the gain setting of surround, tone control, or input signal level.

Package Dimensions

unit : mm (typ)
3067B

Package Dimensions

unit : mm (typ)
3112B

Block Diagram

$I^{2} C$ BUS Control Signal

Figure 1. $\mathrm{I}^{2} \mathrm{C}$ BUS Control Signal timing chart

$I^{2} C$ BUS register

1) The explanation of $I^{2} C$ Bus

$I^{2} \mathrm{C}$ Bus (Inter IC Bus) is the bus system which the PHILIPS company developed.
It does controls such as the start, the stop by two control signals of SDA (Serial Data) and SCL (Serial Clock).
The output of each signal is open drain and forms out of wired OR.

SCL

S: Start condition
P: Stop condition
ACK: Acknowledge

Data is transmitted in the MSB first.
1 unit is composed of 8 bits and ACK is put back from the slave to confirm.
Slave IC reads data with rising edge of SCL.
Master IC changes data by falling edge in SCL.

2) The control register

Table1 Slave Address
MSB

1	1	1	0	1	1	1	0

Note; LV1115/M are reception exclusive use. It depends and it uses LSB by the " 0 " fixation.
Table2 $\mathrm{I}^{2} \mathrm{C}$ Bus transmission

Function	Sub Address		Data							
	BINARY	HEX	D7	D6	D5	D4	D3	D2	D1	D0
Input Gain/AVL (On-Off) control	00000001	01	0	0	Gain			AVL MODE		
Volume control	00000010	02	Channel		Volume					
AVL detection level/Surround/MODE control	00000011	03	AVL DET LEVEL			Surround			MODE	
Tone control [Bass]	00000100	04	0	0	0	Bass				
Tone control [TREBLE]	00000101	05	0	0	0	TREBLE				
AVL CONTROL	00000110	06	0	0	0	0	0	AVL SLOPE		

Table3 AVL MODE

				Sub	ress											
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Mute	0	0	0	0	0	0	0	1	0	0	*	*	*	0	0	0
AVL ON									0	0	*	*	*	0	0	1
AVL OFF									0	0	*	*	*	0	1	0
Mute									0	0	*	*	*	0	1	1
Mute									0	0	*	*	*	1	0	0

Table4 Gain control

				Sub	ress											
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
-9dB	0	0	0	0	0	0	0	1	0	0	0	1	1	*	*	*
-6dB									0	0	0	1	0	*	*	*
OdB									0	0	0	0	0	*	*	*
+4dB									0	0	1	1	0	*	*	*
+6dB									0	0	1	1	1	*	*	*

Table5 Mode control

				Sub	ress											
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Bypass (Total)	0	0	0	0	0	0	1	1	*	*	*	*	*	*	0	0
Matrix									*	*	*	*	*	*	0	1
Mono									*	*	*	*	*	*	1	0
Pseudo Stereo									*	*	*	*	*	*	1	1

Table6 Surround control

				Sub	ress											
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	0	0	0	0	0	1	1	*	*	*	0	0	0	*	*
MODE-C									*	*	*	0	1	1	*	*
MODE-B									*	*	*	0	1	0	*	*
MODE-A									*	*	*	0	0	1	*	*
MODE-F												1	1	1		
MODE-E												1	1	0		
MODE-D									*	*	*	1	0	1	*	*

Note: At the time of forced mono mode, there is not Surround effect.
Note: Output gain = Step $1<$ Step 7
Note: The output wave form becomes big depending on the surround or tone control setting. Please make sure the output waveform is not distorted. If the waveform is distorted, reduce the gain setting of surround, tone control, or input signal level.

Table7 AVL DETECTION LEVEL

	Sub Address								Data							
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	0	0	0	0	0	1	1	0	0	0	*	*	*	*	*
100 mV									0	0	1	*	*	*	*	*
200 mV									0	1	0	*	*	*	*	*
300 mV									0	1	1	*	*	*	*	*
400 mV									1	0	0	*	*	*	*	*
500 mV									1	0	1	*	*	*	*	*
600 mV									1	1	0	*	*	*	*	*
700 mV									1	1	1	*	*	*	*	*

Table8 AVL SLOPE

	Sub Address								Data							
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
LEVEL1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
LEVEL2									0	0	0	0		0	0	1
LEVEL3									0	0	0	0	0	0	1	0
LEVEL4									0	0	0	0	0	0	1	1
LEVEL5									0	0	0	0	0	1	0	0
LEVEL6									0	0	0	0	0	1	0	1

Table9 Tone control [Bass control]

	Sub Address								Data							
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
+20dB	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0
+18dB									0	0	0	0	1	0	0	1
+16dB									0	0	0	0	1	0	0	0
+14dB									0	0	0	0	0	1	1	1
+12dB									0	0	0	0	0	1	1	0
+10dB									0	0	0	0	0	1	0	1
$+8 \mathrm{~dB}$									0	0	0	0	0	1	0	0
+6dB									0	0	0	0	0	0	1	1
+4dB									0	0	0	0	0	0	1	0
+2dB									0	0	0	0	0	0	0	1
OdB									0	0	0	0	0	0	0	0
-2dB									0	0	0	1	0	0	0	1
-4dB									0	0	0	1	0	0	1	0
-6dB									0	0	0	1	0	0	1	1
-8dB									0	0	0	1	0	1	0	0
-10dB									0	0	0	1	0	1	0	1
-12dB									0	0	0	1	0	1	1	0
-14dB									0	0	0	1	0	1	1	1
-16dB									0	0	0	1	1	0	0	0
-18dB									0	0	0	1	1	0	0	1
-20dB									0	0	0	1	1	0	1	0

Note: The output wave form becomes big depending on the surround or tone control setting. Please make sure the output waveform is not distorted. If the waveform is distorted, reduce the gain setting of surround, tone control, or input signal level.

Table10 Tone control [TREBLE control]

	Sub Address								Data							
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
+18dB	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1
+16dB									0	0	0	0	1	0	0	0
+14dB									0	0	0	0	0	1	1	1
+12dB									0	0	0	0	0	1	1	0
+10dB									0	0	0	0	0	1	0	1
+8dB									0	0	0	0	0	1	0	0
+6dB									0	0	0	0	0	0	1	1
+4dB									0	0	0	0	0	0	1	0
+2dB									0	0	0	0	0	0	0	1
OdB									0	0	0	0	0	0	0	0
-2dB									0	0	0	1	0	0	0	1
-4dB									0	0	0	1	0	0	1	0
-6dB									0	0	0	1	0	0	1	1
-8dB									0	0	0	1	0	1	0	0
-10dB									0	0	0	1	0	1	0	1
-12dB									0	0	0	1	0	1	1	0
-14dB									0	0	0	1	0	1	1	1
-16dB									0	0	0	1	1	0	0	0
-18dB									0	0	0	1	1	0	0	1

Note: The output wave form becomes big depending on the surround or tone control setting. Please make sure the output waveform is not distorted. If the waveform is distorted, reduce the gain setting of surround, tone control, or input signal level.

Table11 Volume control

Table12 Volume channel control

	Sub Address								Data							
	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
L-ch	0	0	0	0	0	0	1	0	0	1	*	*	*	*	*	*
R-ch									1	0	*	*	*	*	*	*
L/R									1	1	*	*	*	*	*	*

Pin Functions

LV1115/1115M
Continued from preceding page.

Pin No	Function	Voltage	Internal equivalent circuit	Remarks
10	EVR-OUT(R)	VREF	Output Impedance $r o=500 \Omega$	
15	EVR-OUT(L)			
11	VREF	0.5 VCC	Reference voltage	
12	V_{CC}	V_{CC}		
13	$I^{2} \mathrm{C}$-DATA	0/Hi-Z	$I^{2} \mathrm{C}$ control data input	(13)
14	$1^{2} \mathrm{C}$-CLK	0/Hi-Z	$I^{2} \mathrm{C}$ control data input	
20	AViSS HPF	VREF		
24	DET-OUT	4.5 V	AVL DET OUT	

LV1115/1115M

Treble / Bass Band Block Equivalent Circuit Diagram

During boost, SW1 and SW3 are ON, during cut, SW2 and SW4 are ON, when 0dB, 0dBSW and SW2 and SW3 are ON.

Tone Circuit Constant Calculation Examples

Treble Band Circuit: The shelving characteristics can be obtained for the treble band.
The equivalent circuit and calculation formula during boost are indicated below.

$$
\begin{aligned}
& \text { - Calculation example 1: Specification } \\
& \qquad \begin{array}{l}
\text { Set frequency: } \mathrm{f}=24000 \mathrm{~Hz} \\
\\
\text { Gain during maximum boost: } \mathrm{G}_{+18 \mathrm{~dB}}=17.5 \mathrm{~dB} \\
\\
\text { Let us use } \mathrm{R} 1=6.51 \mathrm{k} \Omega \text { and } \mathrm{R} 2=45.19 \mathrm{k} \Omega \\
\\
\text { The above constants are inserted in the following formula }
\end{array} \\
& \mathrm{G}=20 \times \log _{10}\left(1+\frac{\mathrm{R} 2}{\sqrt{\mathrm{R} 1^{2}+(1 / \omega \mathrm{C})^{2}}}\right) \\
& =\frac{2 \pi \mathrm{f} \sqrt{\left[\frac{\mathrm{R} 2}{\left.10^{\mathrm{G} / 20}-1\right]^{2}-\mathrm{R} 1^{2}}\right.}}{\sqrt{2 \pi 24000 \sqrt{\left[\frac{45190}{7.50-1}\right]^{2}-6510^{2}}}} \approx 2700(\mathrm{pF})
\end{aligned}
$$

LV1115/1115M

Bass Band Circuit: The equivalent circuit and the formula for calculating the external RC with a mean frequency of 100 Hz are shown below.

- Calculation example 1: specification

Mean frequency: $\mathrm{f0}=100 \mathrm{~Hz}$
Gain during maximum boost: $\mathrm{G}_{+20 \mathrm{~dB}}=20 \mathrm{~dB}$
Let us use $\mathrm{R} 1=0 \mathrm{k} \Omega$ and $\mathrm{R} 2=66.7 \mathrm{k} \Omega$, and $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}$.
We obtain $R 2$ from $G=20 \mathrm{~dB}$
$\mathrm{G}=20 \times \log _{10}\left(1+\frac{\mathrm{R} 2}{2 \mathrm{R} 3}\right)$

$$
\mathrm{R} 3=\frac{\mathrm{R} 2}{2\left(10^{\mathrm{G}+2 \mathrm{~dB} / 20}-1\right)}=\frac{66700}{2(10-1)} \approx 3.6 \mathrm{k} \Omega
$$

We obtain C from mean frequency $\mathrm{f} 0=100 \mathrm{~Hz}$

$$
\begin{aligned}
& \mathrm{f} 0=\frac{1}{2 \pi \sqrt{(\mathrm{R} 3 \mathrm{R} 2 \mathrm{C} 1 \mathrm{C} 2)}} \\
& \mathrm{C}=\frac{1}{2 \pi \mathrm{f} 0 \sqrt{\mathrm{R} 3 \mathrm{R} 2}}=\frac{1}{2 \pi \times 100 \sqrt{66700 \times 3600}} \approx 0.1 \mu \mathrm{~F}
\end{aligned}
$$

We obtain Q

$$
\mathrm{Q}=\frac{\mathrm{R} 3 \mathrm{R} 2}{2 \mathrm{R} 3} \times \frac{1}{\sqrt{\mathrm{R} 3 \mathrm{R} 2}} \approx 2.15
$$

Note item when using
(1) When turning on the power, the setting inside is unsettled. Before setting control data, it does a mute.
(2) To prevent the digital noise of the high frequency influence a terminal (SCL, SDA).

It can be protected by a signal line in the ground pattern or by the shielding cable.
(3) To prevent the noise in changing a mode, please set the mute ON.

Sample Application Circuit

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of January, 2008. Specifications and information herein are subject to change without notice.

