FDC608PZ ### **Features** - -5.8 A, -20 V. $R_{DS(ON)} = 30 \ m\Omega \ @ \ V_{GS} = -4.5 \ V$ $R_{DS(ON)} = 43 \ m\Omega \ @ \ V_{GS} = -2.5 \ V$ - Low Gate Charge - High performance trench technology for extremely low R_{DS(ON)} - SuperSOT [™] –6 package: small footprint (72% smaller than standard SO–8) low profile (1mm thick). $\begin{tabular}{lll} \textbf{Absolute Maximum Ratings} & $T_A=25^{\circ}$C unless otherwise noted \end{tabular}$ | Symbol | Parameter | | Ratings | Units | |-----------------------------------|--|-----------|-------------|-------| | V _{DSS} | Drain-Source Voltage | | -20 | V | | V _{GSS} | Gate-Source Voltage | | ±12 | V | | I _D | Drain Current - Continuous | (Note 1a) | -5.8 | Α | | | - Pulsed | | -20 | | | P _D | Maximum Power Dissipation | (Note 1a) | 1.6 | W | | | | (Note 1b) | 0.8 | | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | | -55 to +150 | °C | ## **Thermal Characteristics** | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 78 | °C/W | |-----------------|---|-----------|----|------| | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | (Note 1) | 30 | °C/W | Package Marking and Ordering Information | Device Marking | Device | Reel Size | Tape width | Quantity | |----------------|----------|-----------|------------|------------| | .608Z | FDC608PZ | 7" | 8mm | 3000 units | # FDC608PZ | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |---------------------------------------|---|--|------|----------------|----------|-------| | Off Char | acteristics | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$ | -20 | | | V | | ΔBV _{DSS}
ΔT _J | Breakdown Voltage Temperature
Coefficient | $I_D = -250 \mu A$, Referenced to 25°C | | -10 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$ | | | -1 | μΑ | | I _{GSS} | Gate-Body Leakage | $V_{GS} = \pm 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$ | | | ±10 | μΑ | | On Char | acteristics (Note 2) | | | • | | | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$ | -0.4 | -1.0 | -1.5 | V | | $\frac{\Delta VGS(th)}{\Delta T_J}$ | Gate Threshold Voltage
Temperature Coefficient | $I_D = -250 \mu A$, Referenced to 25°C | | 3 | | mV/°C | | R _{DS(on)} | Static Drain–Source
On–Resistance | $V_{GS} = -4.5V, I_D = -5.8 \text{ A}$
$V_{GS} = -2.5V, I_D = -5.0 \text{ A}$
$V_{GS} = -4.5V, I_D = -5.8A, T_J = 125^{\circ}\text{C}$ | | 26
38
35 | 30
43 | mΩ | | I _{D(on)} | On-State Drain Current | $V_{GS} = -4.5 \text{ V}, \qquad V_{DS} = -5 \text{ V}$ | -20 | | | Α | | g _{FS} | Forward Transconductance | $V_{DS} = -10 \text{ V}, \qquad I_{D} = -5.8 \text{ A}$ | | 22 | | S | | Dynamic | Characteristics | | | | | | | C _{iss} | Input Capacitance | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ | | 1330 | | pF | | C _{oss} | Output Capacitance | f = 1.0 MHz | | 270 | | pF | | C _{rss} | Reverse Transfer Capacitance | 7 | | 230 | | pF | | R _G | Gate Resistance | V _{GS} = 15 mV, f = 1.0 MHz | | 12 | | Ω | | Switchir | ng Characteristics (Note 2) | | | | | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = -10 \text{ V}, \qquad I_{D} = -1 \text{ A}, $ $V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$ | | 13 | 24 | ns | | t _r | Turn-On Rise Time | $V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$ | | 8 | 16 | ns | | t _{d(off)} | Turn-Off Delay Time | 7 | | 91 | 145 | ns | | t _f | Turn-Off Fall Time | | | 60 | 96 | ns | | Q _g | Total Gate Charge | $V_{DS} = -10 \text{ V}, \qquad I_{D} = -5.8 \text{ A}, \\ V_{GS} = -4.5 \text{ V}$ | | 17 | 23 | nC | | Q _{gs} | Gate-Source Charge | | | 3 | | nC | | Q_{gd} | Gate-Drain Charge | | | 6 | | nC | | Drain-S | ource Diode Characteristics | and Maximum Ratings | | | | | | Is | Maximum Continuous Drain–Source | | | | -1.3 | Α | | V _{SD} | Drain–Source Diode Forward
Voltage | $V_{GS} = 0 \text{ V}, I_{S} = -1.3 \text{ A} \text{(Note 2)}$ | | -0.7 | -1.2 | V | | t _{rr} | Diode Reverse Recovery Time | $I_F = -5.8 \text{ A}, d_{iF}/d_t = 100 \text{A}/\mu \text{s}$ | | 40 | 60 | ns | | Q _{rr} | Diode Reverse Recovery Charge | $I_F = -5.8 \text{ A}, d_{iF}/d_t = 100 \text{A}/\mu \text{s}$ | | 15 | 23 | nC | #### Notes R_{0JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design. a. 78°C/W when mounted on a 1in² pad of 2oz copper on FR-4 board. b. 156°C/W when mounted on a minimum pad. ^{2.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%