VLMR51Z1AA, VLMK51Z1AA, VLMY51Z1AA

Vishay Semiconductors

AUTOMOTIVE

RoHS

COMPLIANT

HALOGEN

FREE

GREEN

(5-2008)

Power SMD LED PLCC-2 Plus

DESCRIPTION

The VLMR51.., VLMK51.., and VLMY51.. LED series in PLCC2 plus package are an advanced product in terms of high luminous flux and low thermal resistance.

In combination with the small package outline (3.5 mm x 3.5 mm x 1.2 mm) the PLCC2 plus is an ideal choice for backlighting, signage, exterior and interior automotive lighting as well as decorative lighting.

PRODUCT GROUP AND PACKAGE DATA

• Product group: LED

Package: SMD PLCC-2 plus
Product series: power
Angle of half intensity: ± 60°

FEATURES

- High efficient AllnGaP technology
- Compact package outline 3.5 mm x 3.5 mm x 1.2 mm
- Angle of half intensity $\varphi = \pm 60^{\circ}$
- Luminous intensity and color categorized per packing unit
- Luminous intensity ratio per packing unit φ_{min.}/φ_{max.} < 1.6
- ESD-withstand voltage: Up to 2 kV (HBM) according to JESD22-A114-B
- Preconditioning according to JEDEC level 2a
- Compatible with IR-reflow soldering profiles according to J-STD-020
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- Interior and exterior automotive lighting: Dashboard, brake lights, turn lights, backlighting
- Signal and symbol luminaire
- · Decorative lighting
- Architectural lighting
- Backlighting: LCDs, switches, keys, illuminated advertising
- Marker lights
- · Traffic lights

PARTS TABLE														
PART	COLOR		JMINOI TENSI (mcd)		at I _F (mA)	WA	VELEN((nm)	GTH	at I _F	FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY	
		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		
VLMR51Z1AA-GS08	Red	4500	7100	9000	140	620	-	630	140	1.9	2.2	2.65	140	AllnGaP on Si
VLMK51Z1AA-GS08	Amber	4500	7100	9000	140	610	-	621	140	1.9	2.2	2.65	140	AllnGaP on Si
VLMY51Z1AA-GS08	Yellow	4500	7100	9000	140	585	_	594	140	1.9	2.2	2.65	140	AllnGaP on Si

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLMR51, VLMK51, VLMY51								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
Reverse voltage	I _R = 10 μA	V_{R}	12	V				
DC forward current		I _F	200	mA				
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1000	mA				
Power dissipation		P _V	530	mW				
Junction temperature		Tj	125	°C				
Operating temperature range		T _{amb}	- 40 to + 110	°C				
Storage temperature range		T _{stg}	- 40 to + 110	°C				
Thermal resistance junction/solder point		R _{thJS}	50	K/W				
Thermal resistance junction/ambient	Mounted on PCB, total Cu area > 900 mm ²	R _{thJA}	100	K/W				

VLMR51Z1AA, VLMK51Z1AA, VLMY51Z1AA

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

VLIVING I, NED							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 140 mA	VLMR51Z1AA	l _V	4500	7100	9000	mcd
Luminous flux	I _F = 140 mA	VLMR51Z1AA	φV	-	20	-	lm
Dominant wavelength	I _F = 140 mA		λ_{d}	620	-	630	nm
Angle of half intensity	I _F = 140 mA		φ	-	± 60	-	deg
Forward voltage	I _F = 140 mA		V_{F}	1.9	2.2	2.65	V
Temperature coefficient I _V	$I_F = 140 \text{ mA}, \ 0 \ ^{\circ}\text{C} \le T \le 100 \ ^{\circ}\text{C}$		TC _{IV}	-	- 26.8	-	mcd/K
Temperature coefficient V _F	$I_F = 140 \text{ mA}, \ 0 \ ^{\circ}\text{C} \le T \le 100 \ ^{\circ}\text{C}$		TC _V	-	- 3.5	-	mV/K
Temperature coefficient λ_d	$I_F = 140$ mA, 0 °C $\leq T \leq 100$ °C		$TC_{\lambda d}$	-	0.06	-	nm/K

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) VLMK51... AMBER

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 140 mA	VLMK51Z1AA	l _V	4500	7100	9000	mcd
Luminous flux	I _F = 140 mA	VLMK51Z1AA	φV	-	20	-	lm
Dominant wavelength	I _F = 140 mA		λ_{d}	610	-	621	nm
Angle of half intensity	I _F = 140 mA		φ	-	± 60	-	deg
Forward voltage	I _F = 140 mA		V_{F}	1.9	2.2	2.65	V
Temperature coefficient I _V	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TC _{IV}	-	- 35.3	-	mcd/K
Temperature coefficient V _F	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TC _V	-	- 2.9	-	mV/K
Temperature coefficient λ_d	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		$TC_{\lambda d}$	-	0.07	-	nm/K

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) VLMY51... YELLOW

VEINIOIII, IEEEOW								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous intensity	I _F = 140 mA	VLMY51Z1AA	l _V	4500	7100	9000	mcd	
Luminous flux	I _F = 140 mA	VLMY51Z1AA	φV	-	20	-	lm	
Dominant wavelength	I _F = 140 mA		λ_{d}	585	-	594	nm	
Angle of half intensity	I _F = 140 mA		φ	-	± 60	-	deg	
Forward voltage	I _F = 140 mA		V_{F}	1.9	2.2	2.65	V	
Temperature coefficient I _V	$I_F = 140 \text{ mA}, 0 \text{ °C} \le T \le 100 \text{ °C}$		TC _{IV}	-	- 55.5	-	mcd/K	
Temperature coefficient V _F	$I_F = 140 \text{ mA}, 0 \text{ °C} \le T \le 100 \text{ °C}$		TC _V	-	- 2.9	-	mV/K	
Temperature coefficient λ_d	$I_F = 140 \text{ mA}, 0 \text{ °C} \le T \le 100 \text{ °C}$		$TC_{\lambda d}$	-	0.09	-	nm/K	

LUMINOUS INTENSITY CLASSIFICATION									
GROUP	LIGHT INTENSITY (mcd)								
STANDARD	MIN.	MAX.							
Z1	4500	5600							
Z2	5600	7150							
AA	7150	9000							

Note

 Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel)

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel.

In order to ensure availability, single wavelength groups will not be orderable.

COLOR CLASSIFICATION								
DOM. WAVELENGTH (nm)								
GROUP	AMBER YELLOW							
	MIN.	MAX.	MIN.	MAX.				
W	610	615	=	=				
Х	615	621	585	588				
Y	-	-	588	591				
Z	-	-	591	594				

Note

 Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm. www.vishay.com

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

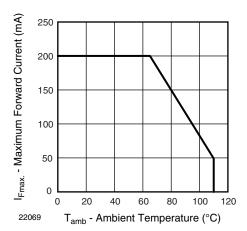


Fig. 1 - Forward Current vs. Ambient Temperature

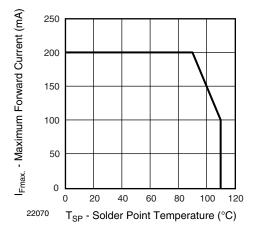


Fig. 2 - Maximum Forward Current vs. Solder Point Temperature

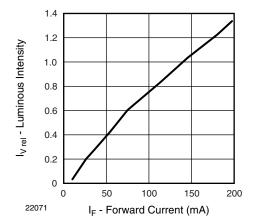


Fig. 3 - Relative Luminous Intensity vs. Forward Current

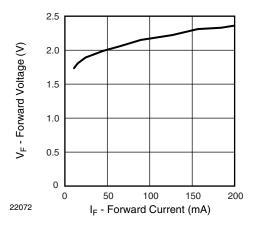


Fig. 4 - Relative Forward Voltage vs. Forward Current

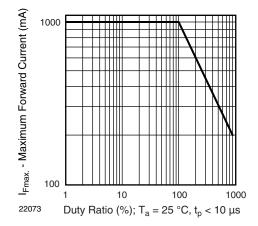


Fig. 5 - Forward Current vs. Duty Ratio

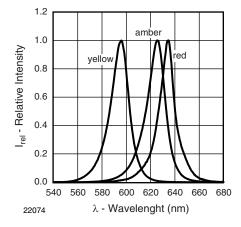


Fig. 6 - Relative Intensity vs. Wavelength

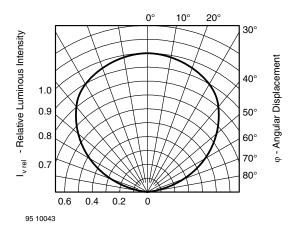
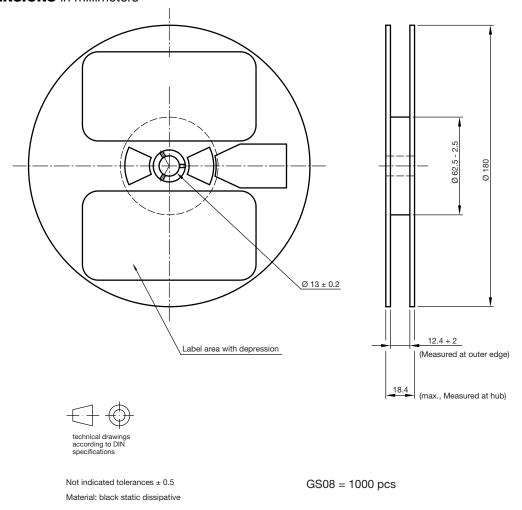
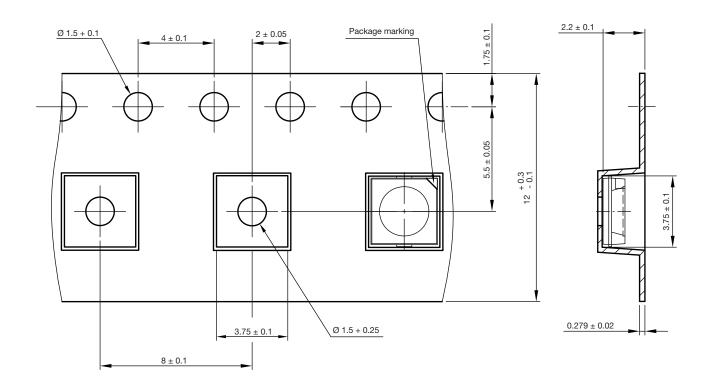



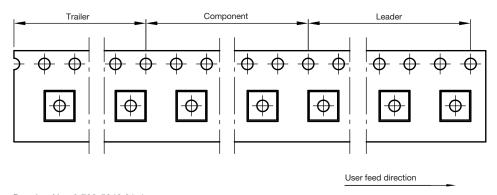
Fig. 7 - Relative Luminous Intensity vs. Angular Displacement

REEL DIMENSIONS in millimeters

Drawing-No.: 9.800-5104.01-4


Issue: 2; 19.03.10

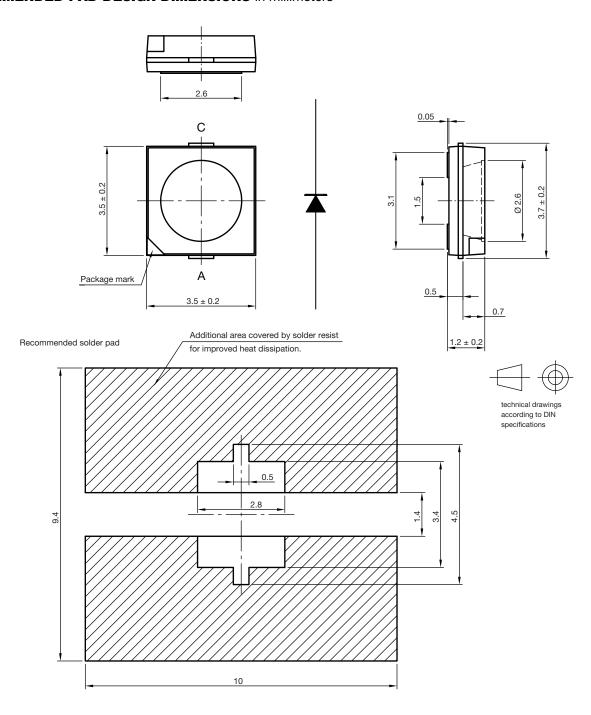
22067


TAPING AND ORIENTATION DIMENSIONS in millimeters

Reels come in quantity of 1000 units.

200 mm min. for Ø 180 reel

480 mm min. for Ø 180 reel


Drawing-No.: 9.700-5348.01-4

Issue: 1; 01.03.10

22066

RECOMMENDED PAD DESIGN DIMENSIONS in millimeters

Drawing-No.: 6.541-5084.01-4

Issue: 1; 13.04.10

22103

SOLDERING PROFILE

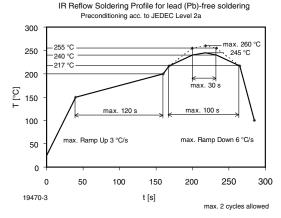
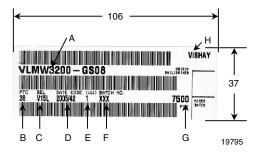
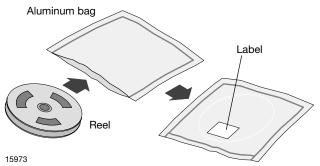



Fig. 8 - Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020)

BAR CODE PRODUCT LABEL (example)


- A) Type of component
- B) Manufacturing plant
- C) SEL selection code (bin):

e.g.: V1 = code for luminous intensity group 5L = code for chrom. coordinate group

- D) Date code year/week
- E) Day code (e.g. 1: Monday)
- F) Batch no.
- G) Total quantity
- H) Company code

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

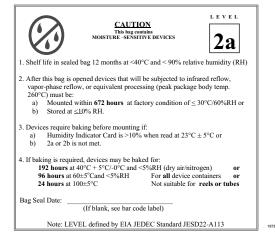
The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 672 h under these conditions moisture content will be too high for reflow soldering.


In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JESD22-A112 level 2a label is included on all dry bags.

Example of JESD22-A112 Level 2a Label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000