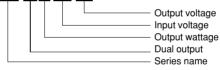
ZU SERIES DC/DC CONVERTER

ZUW6



Thin profile

- Isolated between input-output
- Built-in overcurrent protection circuit
- ■UL recognized, TÜV approved, CSA certified
- Five-year warranty

■ ORDERING INFORMATION ZUW61212

SPECIFICATIONS

Output pins can be connected in seris to make a 24V/30V output.

	MODEL		ZUW60512	ZUW60515	ZUW61212	ZUW61215	ZUW62412	ZUW62415	ZUW64812	ZUW64815
	VOLTAGE	[V]	DC4	.5~9	DC9	~18	DC18	8~36	DC3	6~72
INPUT	CURRENT	[A]※1	1.60 typ	1.60 typ	0.65 typ	0.65 typ	0.33 typ	0.33 typ	0.17 typ	0.17 typ
	EFFICIENCY	[%]※1	75 typ	75 typ	77 typ	77 typ	77 typ	77 typ	77 typ	77 typ
	VOLTAGE	[V]	±12 (+24)	±15 (+30)	±12 (+24)	±15 (+30)	±12 (+24)	±15 (+30)	±12 (+24)	±15 (+30)
	CURRENT	[A]	0.25	0.20	0.25	0.20	0.25	0.20	0.25	0.20
	LINE REGULATION	[mV]	60max	75max	60max	75max	60max	75max	60max	75max
	LOAD REGULATION	[mV]	600max	750max	600max	750max	600max	750max	600max	750max
	RIPPLE %3 [mVp-p]	120max	120max	120max	120max	120max	120max	120max	120max
OUTPUT	RIPPLE NOISE %3 [150max	150max	150max	150max	150max	150max	150max	150max
	TEMPERATURE REGULATION -20~+5	_{i5℃} [mV]	150max	180max	150max	180max	150max	180max	150max	180max
	DRIFT [I	mV]※2	50max	60max	50max	60max	50max	60max	50max	60max
	START-UP TIME	[ms]	20max (Mir	imum input,lo	=100 %)				L	
	OUTPUT VOLTAGE ADJUSTMENT RANG	E [V]	FIXED							
	OUTPUT VOLTAGE SETTING		11.40~12.60	14.25~15.75	11.40~12.60	14.25~15.75	11.40~12.60	14.25~15.75	11.40~12.60	14.25~15.75
PROTECTION	OVERCURRENT PROTECTION		Works over	105 % of ratir	g and recover	s automatically	/.			
CIRCUIT										
	INPUT-OUTPUT		AC500V, 1minute, Cutoff current=10mA, DC500V, 50MΩ min. (At Room Temperature)							
ISOLATION	INPUT-CASE		AC500V, 11	minute, Cutoff	current=10m/	A, DC500V, 5	0MΩ min. (At	Room Temper	ature)	
	OUTPUT-CASE		AC500V, 1	AC500V, 1minute, Cutoff current=10mA, DC500V, 50MΩ min. (At Room Temperature)						
	OPERATING TEMP., HUMID. AND ALTITU	DE	-20~+71°C, 20~95%RH (Non condensing) (Refer to DERATING CURVE), 3,000m (10,000feet) max							
	STORAGE TEMP., HUMID. AND ALTITU	DE	-40~+85°C, 20~95%RH (Non condensing), 9,000m (30,000feet) max							
ENVIRONMENT	VIBRATION		10~55Hz, 98.0m/s ² (10G) , 3 minutes period, 60 minutes each along X, Y and Z axis							
	IMPACT		490.3m/s ²	(50G), 11m	s, once each X	(, Y and Z axis				
SAFETY	AGENCY APPROVALS	5	UL1950, El	160950, CSA	C22.2 No.9	50 Complies v	ith IEC60950)		

*11 Rated input 5V, 12V, 24V or 48V DC, Io=100%.
*22 The drift is a change at 25°C of ambient temperature and 30 minutes ~8 hours after the input voltage applied at rated input/output.
*33 Measured by 20MHz oscilloscope.
* The output specification is at ±12V and ±15V.
* Series/Parallel operation with other model is not possible.

COSEL

DC/DC CONVERTER (DUAL OUTPUT)

MODEL		ZU	W6		ZUW6			
WODEL	0512	1212	2412	4812	0515	1215	2415	4815
MAX OUTPUT WATTAGE		6	W		6W			
DC OUTPUT VOLTAGE		±12V o	r +24V		±15V or +30V			
DC OUTPUT CURRENT		0.2	25A		0.20A			

- 10 0 10 20 30 40 50 60 70 80 90

AMBIENT TEMPERATURE [°C]

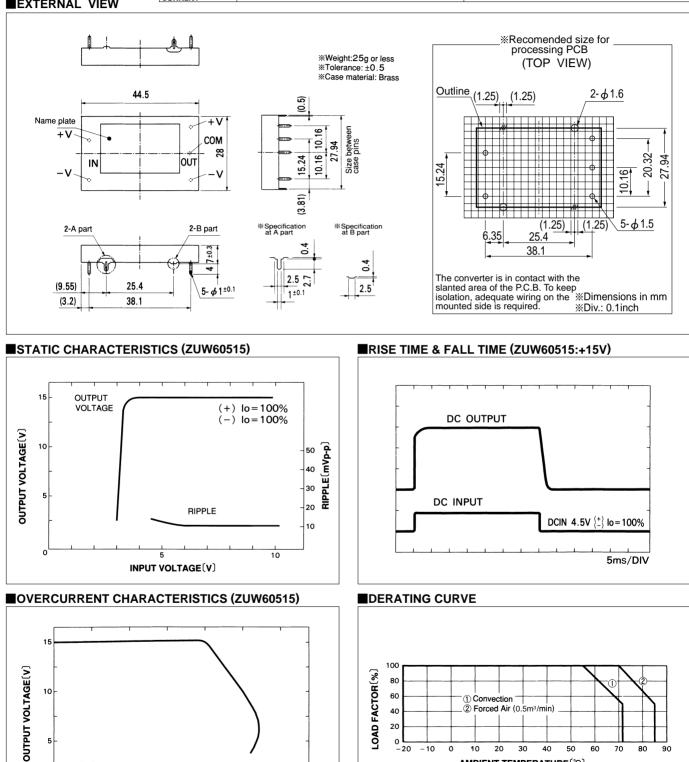
EXTERNAL VIEW

(-) lo=100%

0.2

0.3

OUTPUT CURRENT (+) (A)


0.4

0.5

0.6

0.1

0

ZU/ZT

Basic characteristics data

Model	Circuit method	Switching frequency	Input current	Rated input fuse		PCB/Pattern		Series/Parallel operation availability		
		[kHz]	[A]		protection	Material	Single sided	Double sided	Series operation	Parallel operation
ZUS1R5 ZUW1R5 ZTS1R5 ZTW1R5	Flyback converter	310~1600	- *1	Refer to table No.1	_	glass fabric base, epoxy resin		Yes	*2	*2
ZUS3 ZUW3 ZTS3 ZTW3	Flyback converter	200~1600			_	glass fabric base, epoxy resin		Yes	*2	*2
ZUS6 ZUW6	Flyback converter	150~1600			-	glass fabric base, epoxy resin		Yes	*2	*2
ZUS10 ZUW10	Flyback converter	100~ 200			_	glass fabric base, epoxy resin		Yes	Yes	*2
ZUS15 ZUW15	Single ended forward converter	330~ 400			_	glass fabric base, epoxy resin		Yes	Yes	*2
ZUS25 ZUW25	Single ended forward converter	330~ 400			_	glass fabric base, epoxy resin		Yes	Yes	*2

*1 Refer to Specification. *2 Refer to Instruction Manual.

Table 1. Rated Input Fuse

Output Power		Input \	/oltage	
Output I ower	5V	12V	24V	48V
1.5W	72V 1.2A	72V 0.8A	72V 0.8A	72V 0.8A
3 W	72V 2.0A	72V 1.2A	72V 0.8A	72V 0.8A
6 W	72V 4.0A	72V 2.0A	72V 1.2A	72V 0.8A
10 W	125V 6.3A	125V 3.5A	125V 2.0A	125V 1.0A
15 W	125V 8.0A	125V 5.0A	72V 2.0A	72V 2.0A
25 W	125V 10.0A	125V 6.3A	125V 3.15A	125V 2.0A

2W/2T

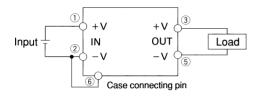
Instruction Manual

ZU1	R5 •	ZU3	۰ZUe	5 • Z	U10

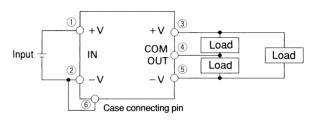
1	Pin Connection	. 422
2	Function	. 422
2.1		
2.2	Overcurrent protection	
2.3	Isolation	. 422
3	Wiring to Input/Output Pin.	. 423
4	Series Operation and Parallel Operation .	. 423
4.1	Series operation	
	Parallel redundancy operation	
5	Assembling and Installation Method .	424
-	Installation method	
	Derating	
6	Input Voltage/Current Range	
7	Cleaning	425
8	Soldering	
9	Input/Output Pin	
10	Peak Current (Pulse Load).	426
ΖL	J15 • ZU25	
1	Pin Connection	. 427
2	Function	427
21		

2		. 427
	Input voltage	
2.2	Overcurrent protection	. 427
	Overvoltage protection	
	Adjustable voltage range	
	Remote ON/OFF	
2.6	Isolation	. 428
3	Wiring to Input/Output Pin.	. 429
4	Series Operation and Parallel Operation	. 429
4.1	Series operation	
	Parallel redundancy operation	
5	Assembling and Installation Method .	. 430
5.1	Installation method	
5.2	Derating	.430
6	Input Voltage/Current Range	. 431
7	Cleaning	. 431
8	Soldering	.431
9	Input/Output Pin	
10	Peak Current (Pulse Load)	. 432

ZT1R5 • ZT3


1	Pin Connection	133
2		
	Overcurrent protection	
2.3	solation	
3	Wiring to Input/Output Pin.	. 434
4	Series Operation and Parallel Operation .	434
4.1 \$	Series operation	
	Parallel redundancy operation	
5		
	nstallation method	
5.2 l	Derating	435
6	Input Voltage/Current Range	. 435
7	Cleaning	436
8	Soldering	
9	Input/Output Pin	
10	Peak Current (Pulse Load).	. 437

ZU/ZT


1. Pin Connection

No.	Pin connection	Function
1	+DC INPUT	+Side of input voltage
2	-DC INPUT	-Side of input voltage
3	+DC OUTPUT	+Side of output voltage
(4)	COMMON	GND of output voltage (Only applicable for Dual output)
(5)	-DC OUTPUT	-Side of output voltage
6	Case connecting pin	If connected to -side of input, the case potential can be fixed and the value of radiation noise can be reduced.

Single Output

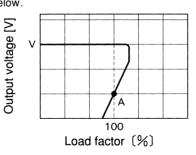
Dual(±)Output

Connecting pin

Case connecting pin is available. By connecting this pin to -side of input, the radiation noise from main body can be reduced.

2. Function

2.1 Input voltage


If the wrong input is applied, the unit will not operate properly and/or may be damaged.

2.2 Overcurrent protection

Overcurrent protection circuit is built-in and comes into effect at over 105% of the rated current. Overcurrent protection prevents the unit from short circuit and over current condition of less than 20 sec. The unit automatically recovers when the fault condition is cleared.

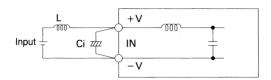
The power supply which has a current foldback characteristics may not start up when connected to nonlinear load such as lamp, motor or constant current load. See the characteristics below.

ZU/2T

----: Characteristics of load (lamp, motor, constant current load, etc.) Note: In case of nonlinear load, the output is locked out at A point.

se of nonlinear load, the output is locked out at A point.

Fig. 2.1 Current foldback characteristics


2.3 Isolation

For a receiving inspection, such as Hi-Pot test, gradually increase (decrease) the voltage for the start (shut down). Avoid using Hi-Pot tester with the timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer.

3. Wiring to Input/Output Pin

Input filter is built-in. A capacitor Ci, if installed near the input terminal, will lower the input conducted noise from converter due to the formation of the π type filter.

When the distance from the DC line to the unit is greatly extended, it makes the input feedback noise much higher and the input voltage several times higher than the normal level when turned ON. If this happens, the output power also becomes unstable. In order to prevent the unit form failing in this way; please connect Ci to the input terminal. In addition, when the filter with "L" is used, please Ci to the input terminal.

Model	ZUSIR5	ZUS3	ZUS6	ZUS10
Input voltage (V)	ZUWIR5	ZUW3	ZUW6	ZUW10
5	100	220	470	470
12	47	100	220	220
24	33	47	100	100
48	10	22	47	47

Capacity of external capacitor at input terminal: Ci $[\mu F]$

Fig. 3.1 Connecting method of capacitor at input terminal

To lower the output ripple voltage further, install an external capacitor Co at output terminal as shown below.

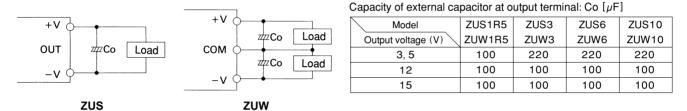


Fig. 3.2 Connecting method of external capacitor at output terminal

When the distance between load and DC output is long, please install capacitor at load as shown below.

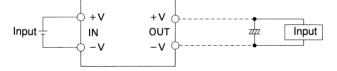
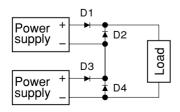


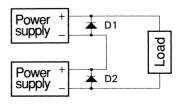
Fig. 3.3 Connection method of capacitor at load

4. Series Operation and Parallel Operation


4.1 Series operation

ZUS1R5/ZUW1R5 • ZUS3/ZUW3 • ZUS6/ZUW6

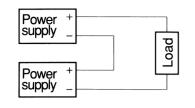
Series operation is available by connecting the outputs of two or more power supplies, as shown below. Output currents in series connection should be lower than the lowest rated current in each unit.

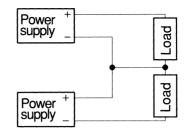

But at series operation with same output voltage, diode is not required to attach even if at (a).

When the output voltage is less than 5V.

D1~D4: Please use Schottky Barrier Diode.

When the output voltage is more than 12V.

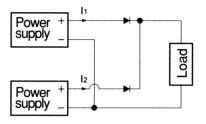

D1 · D2: Please use Schottky Barrier Diode.


•ZUS10/ZUW10

Series operation is available by connecting the outputs of two or more power supplies as shown below. Output currents in series connection should be lower than the lowest rated current in each unit.

(d)

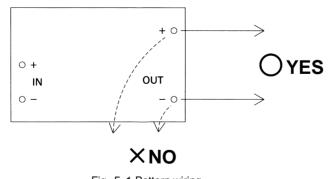
(c)



4.2 Parallel redundancy operation

Parallel redundancy operation is available by connecting the units as shown below.

I1, I2 \leq the rated current value

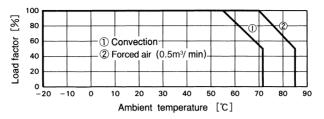


5. Assembling and Installation Method

5.1 Installation method

- The unit can be mounted in any direction. Position them with proper intervals to allow enough air ventilation. Ambient temperature around each power supply should not exceed the temperature range shown in derating curve.
- Avoid placing the DC input line pattern layout underneath the unit because it will increase the line conducted noise. Make sure to leave an ample distance between the line pattern layout and the unit. Also, avoid placing the DC output line pattern underneath the unit because it may increase the output noise. Lay out the pattern away from the unit.

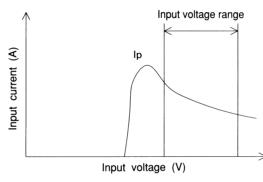
70/21



ZU1R5 • ZU3 • ZU6 • ZU10

5.2 Derating

By derating the output current, it is possible to operate the unit from $-20^{\circ}C + 71^{\circ}C$ ($-20^{\circ}C + 85^{\circ}C$ at forced air cooling).


When unit mounted any way other than in drawings below, it is required to consider ventilated environments by forced air cooling or temperature/load derating. For details, please consult our sales or engineering department.

6. Input Voltage/Current Range

When a non-regulated source is used as a front end, make sure that the voltage fluctuation together with the ripple voltage will not exceed the input voltage range.

Select the converter that is able to handle the start-up current (Ip).

7. Cleaning

Cleaning is possible by below listed conditions.

	Cleaning method						
No.	Classification	Cleaning agents	Cleaning method	Liquid Temp.	Period		
1		Pine Alpha ST-100S (ARAKAWA CHEMICAL CO.) Clean Through 750H (KAO Corporation)	Varnishing or Ultra sonic wave	Less than 60°C	Within 5 minutes		
3		IBA	Varnishing,Ultra sonic		Within 2		
4	Solvent type	Asahiklin AK–225AES (ASAHI GLASS CO.)	wave, Vapor	-	minutes		

During cleaning to drying (the condition that cleaning liquid is soaked into the ink of name plate), do not touch on the surface of name plate.

After cleaning, dry them enough.

8. Soldering

■Flow soldering : 260°C less than 15 seconds. ■Soldering iron : 450°C less than 5 seconds. LV/L

9. Input/Output Pin

- When too much stress is applied on the input/output pins of the unit, the internal connection may be weakened. As below Fig. 9.1, avoid applying stress of more than 19.6N (2kgf) on the pins horizontally and more than 39.2N (4kgf) vertically.
- The input/output pins are soldered on PCB internally, therefore, do not pull or bend them with abnormal forces.
- When additional stress is expected to be put on the input/output pins because of vibration or impacts, fix the unit on PCB (using silicone rubber or fixing fittings) to reduce the stress onto the input/output pins.

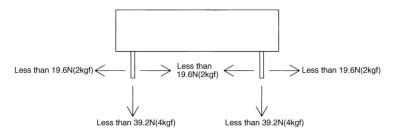
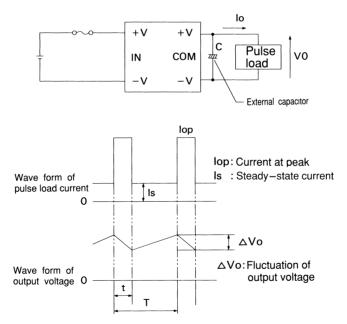



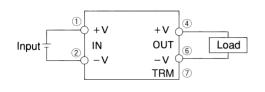
Fig. 9.1 Stress onto the pins

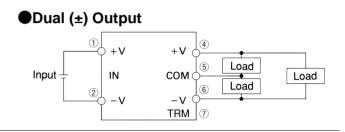
10. Peak Current (Pulse Load)

It is possible to supply the pulse current for the pulse load by connecting the capacitor externally at the output side.

The average current lav of output is shown in below formula.

$$lav = ls + \frac{(lop - ls) t}{T}$$


The required electrolytic capacitor C is found by below formula.


$$C = \frac{(lop - lav) t}{\Delta Vo}$$

1. Pin Connection

No.	Pin connection	Function
1	+DC INPUT	+Side of input voltage
2	-DC INPUT	-Side of input voltage
3	RC	Remote ON/OFF
(4)	+DC OUTPUT	+Side of output voltage
5	COMMON	GND of output voltage (Only applicable for Dual output)
6	-DC OUTPUT	-Side of output voltage
7	TRM	Adjustment voltage range

Single Output

2. Function

2.1 Input voltage

■If the wrong input is applied, the unit will not operate properly and ⁄or may be damaged.

2.2 Overcurrent protection

Overcurrent protection circuit is built-in and comes into effect at over 105% of the rated current. Overcurrent protection prevents the unit from short circuit and over current condition of less than 20 sec. The unit automatically recovers when the fault condition is cleared.

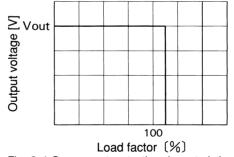


Fig. 2.1 Overcurrent protection characteristics

2.3 Overvoltage protection

Single Output

The overvoltage protection circuit is built-in and comes into effect at 115~140% of the rated voltage. The DC input voltage should be shut down if overvoltage protection is in operation. The minimum interval of DC recycling for recovery 2 to 3 minutes (*).

* The recovery time depends on input voltage.

Multiple Output

■By detecting overvoltage condition between +V and -V, overvoltage protection circuit comes into effect at 115~140% of the rated voltage. The DC input voltage should be shut down if overvoltage protection is in operation. The minimum interval of DC recycling for recovery 2 to 3 minutes (*).

* The recovery time depends on input voltage.

Remarks:

Please note that unit's internal components may be damaged if excessive voltage (over rated voltage) is applied to output terminal of power supply. This could happen when the customer tests the overvoltage performance of the unit.

2.4 Adjustable voltage range

The output voltage is adjustable by external potentiometer.

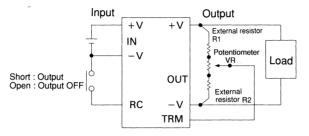
When the output voltage adjustment is not used, open the TRM pin.

The over voltage protection circuit comes into effect when the output voltage is set too high.

Output voltage is increased by turning potentiometer clockwise and is decreased by turning potentiometer counterclockwise.

The wiring to the potentiometer should be as short as possible and connected to the remote sensing pins (+S and -S). The temperature coefficient varies depending on the type of resistor and potentiometer. It is recommended that the following types be used.

Resistor Metal film type. coefficient of less than ± 300 ppm/°C Potentiometer Cermet type, coefficient of less than ± 100 ppm/°C



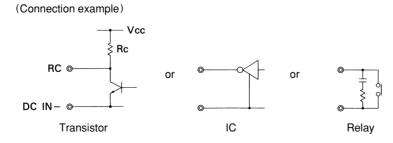

Fig. 2.2 Connection devices outside the power supply

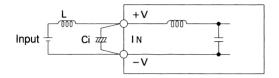
Table 2.1	Devices outside	the power supply	(Adjustable ±5%)
-----------	-----------------	------------------	------------------

No.	Output voltage	The constant value of devices outside the power supply (Unit: Ω)			
NO.	voltage	VR	R1	R2	
1	3.3V	1K	470	150	
2	5V	1K	100	270	
3	12V	5K	270	2.7K	
4	±12V	5K	10K	3.9K	
5	±15V	5K	10K	2.7K	

2.5 Remote ON/OFF

■The ground terminal of remote ON/OFF circuit is connected with –V input terminal. Between RC and –V input: Output voltage is ON at "Low" level or short circuit (0~1.2V) Between RC and –V input: Output voltage is OFF at "High" level or open circuit (2.4~5.5V)

When RC terminal is "Low" level, fan out current is 1mA typ. When Vcc is applied, use $5V \le Vcc \le 24V$. When remote ON/OFF function is not used, please short between RC and -V input.


2.6 Isolation

For a receiving inspection, such as Hi-Pot test, gradually increase (decrease) the voltage for the start (shut down). Avoid using Hi-Pot tester with the timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer.

3. Wiring to Input/Output Pin

The input filter is built-in. A capacitor (Ci), if installed near the input terminal, will lower the input conducted noise from converter due to the formation of the π type filter.

When the distance from the DC line to the unit is greatly extended, it makes the input feedback noise much higher and the input voltage several times higher than the normal level when turned ON. If this happens, the output power also becomes unstable. In order to prevent the unit form failing in this way; please connect Ci to the input terminal. In addition, when the filter with "L" is used, please connect Ci to the input terminal.

Capacity of external capacitor at input terminal: Ci [µF]

Model	ZUS15	ZUS25
Input voltage(V)	ZUW15	ZUW25
5	330	470
12	150	220
24	68	100
48	33	47

Fig. 3.1 Connection method of capacitor at input terminal

To decrease the ripple voltage further, install an external capacitor Co at output terminal as shown below.

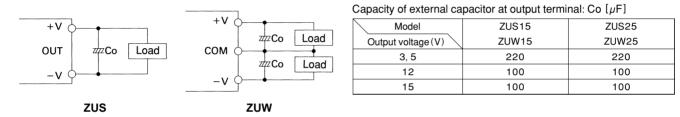
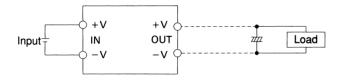
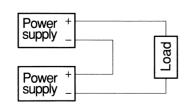


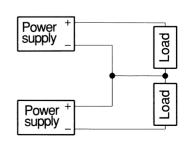
Fig. 3.2 Connecting method of external capacitor at output terminal

When the distance between load and DC output is long, please install capacitor at load as below.

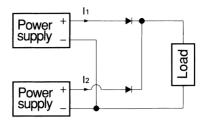



Fig. 3.3 Connection method of capacitor at load

4. Series Operation and Parallel Operation


4.1 Series operation

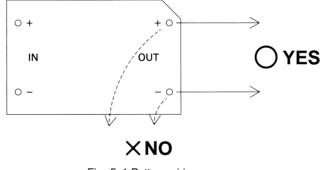
Series operation is available by connecting the outputs of two or more power supplies, as shown below. Output currents in series connection should be lower than the lowest rated current in each unit.



711/7T

4.2 Parallel redundancy operation

Parallel redundancy operation is available by connecting the units as shown below.


- ■Values of I₁ and I₂ become unbalanced by a slight different of the output voltage. Make sure that the output voltage of units is of equal value and the output current from each power supply does not exceed the rated current.
- $I_1, I_2 \leq \text{the rated current value}$
- Use external potentiometer is recommended which can adjust the output voltage.

5. Assembling and Installation Method

5.1 Installation method

- The unit can be mounted in any direction. Position them with proper intervals to allow enough air ventilation. Ambient temperature around each power supply should not exceed the temperature range shown in derating curve.
- Avoid placing the DC input line pattern layout underneath the unit because it will increase the line conducted noise. Make sure to leave an ample distance between the line pattern layout and the unit. Also, avoid placing the DC output line pattern underneath the unit because it may increase the output noise. Lay out the pattern away from the unit.

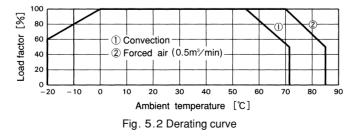


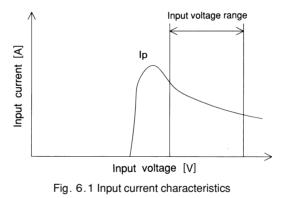
Fig. 5.1 Pattern wiring

5.2 Derating

By derating the output current, it is possible to operate the unit from $-20^{\circ}C + 71^{\circ}C$ ($-20^{\circ}C + 85^{\circ}C$ at forced air cooling).

When unit mounted any way other than in drawings below, it is required to consider ventilated environments by forced air cooling or temperature/load derating. For details, please consult our sales or engineering departments.

ZU15 • ZU25


The temperature increase of case surface at full load is shown by below table as referenced data.

			-
Input Voltage	Output Voltage	15W	25W
	3V, 5V	30	38
5V	12V	36	42
50	±12V	39	39
	±15V	38	40
	5V	28	36
12V	12V	34	42
120	±12V	36	43
	±15V	35	45
	5V	31	32
24V	12V	38	38
241	±12V	34	36
	±15V	27	35
	3V, 5V	21	28
48V	12V	23	25
401	±12V	24	31
	±15V	26	31

6. Input Voltage/Current Range

When a non-regulated source is used as a front end, make sure that the voltage fluctuation together with the ripple voltage will not exceed the input voltage range.

Select the converter that is able to handle the start-up current (lp).

7. Cleaning

■Cleaning agents	: No.	Classification	Cleanig agents
	1	Water type	Pine Alpha ST-100S (ARAKAWA CHEMICAL CO.)
	2	water type	Clean Through 750H (KAO Corporation)
	3		IPA
	4	Solvent type	Asahiklin AK-225AES (ASAHI GLASS CO.)

Cleaning period : The total time of varnishing, ultrasonic wave and vaper should be within 2 minutes. In case of ultrasonic wave cleaning, the ultrasonic should be less than 15kw/m³. During cleaning to drying (the condition that cleaning liquid is soaked into the ink of name plate), do not touch on the surface of name plate.

■After cleaning, dry them enough.

8. Soldering

Flow soldering : 260°C less than 15 seconds.
Soldering iron : 450°C less than 5 seconds.

711/7T

9. Input/Output Pin

- When too much stress is applied on the input/output pins of the unit, the internal connection may be weakened. As below Fig. 9.1, avoid applying stress of more than 19.6N (2kgf) on the pins horizontally and more than 39.2N (4kgf) vertically.
- The input/output pins are soldered on PCB internally, therefore, do not pull or bend them with abnormal forces.
- When additional stress is expected to be put on the input/output pins because of vibration or impacts, fix the unit on PCB (using silicone rubber or fixing fittings) to reduce the stress onto the input/output pins.

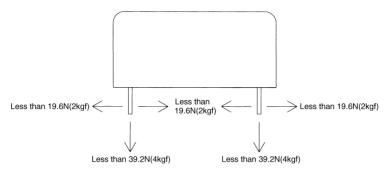
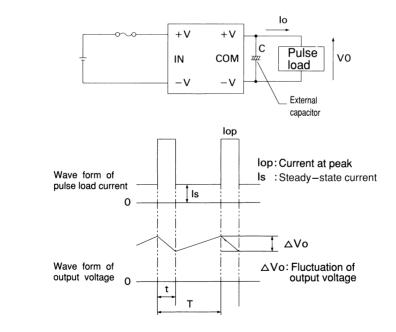
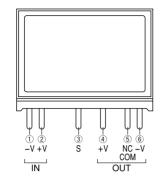



Fig. 9.1 Stress onto the pins

10. Peak Current (Pulse Load)

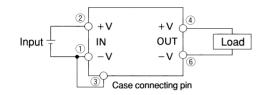
It is possible to supply the pulse current for the pulse load by connecting the capacitor externally at the output side.

The average current lav of output is shown in below formula.

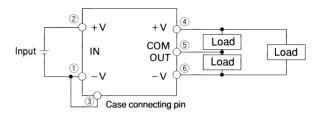

$$lav = ls + \frac{(lop - ls) t}{T}$$

The required electrolytic capacitor C is found by below formula.

$$=\frac{(lop - lav) t}{\Delta Vo}$$


С

1. Pin Connection



No.	Pin connection	Function	
1	-DC INPUT	-Side of input voltage	
2	+DC INPUT	JT +Side of input voltage	
3	Case Connecting Pin	If connected to -side of input, the case potential can be fixed and the value of radiation noise can be reduced.	
4	+DC OUTPUT	+Side of output voltage	
	NC (Single output)	No Connection	
5	COM (Dual output)	GND of output voltage (Only applicable for Dual output)	
6	-DC OUTPUT	-Side of output voltage	

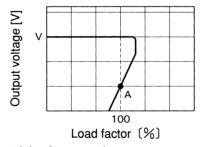
Single Output

Dual(±)Output

Case Connectiong Pin

Case connecting pin is available. By connecting the pin to -side of input, the radiation noise from main body can be reduced.

2. Function


2.1 Input voltage

If the wrong input is applied, the unit will not operate properly and/or may be damaged.

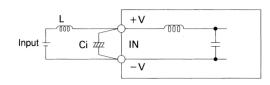
2.2 Overcurrent protection

Overcurrent protection circuit is built-in and comes into effect at over 105% of the rated current. Overcurrent protection prevents the unit from short circuit and over current condition of less than 20 sec. The unit automatically recovers when the fault condition is cleared.

The power supply which has a current foldback characteristics may not start up when connected to nonlinear load such as lamp, motor or constant current load. See the characteristics below.

Load characteristics of power supply
 ----: Characteristics of load (lamp, motor, constant current load, etc.)
 Note: In case of nonlinear load, the output is locked out at A point.

Fig. 2.1 Current foldback characteristics


2.3 Isolation

For a receiving inspection, such as Hi-Pot test, gradually increase (decrease) the voltage for the start (shut down). Avoid using Hi-Pot tester with the timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer.

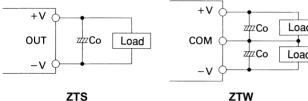
3. Wiring to Input/Output Pin

Input filter is built-in. A capacitor Ci, if installed near the input terminal, will lower the input conducted noise from converter due to the formation of the π type filter.

When the distance from the DC line to the unit is greatly extended, it makes the input feedback noise much higher and the input voltage several times higher than the normal level when turned ON. If this happens, the output power also becomes unstable. In order to prevent the unit form failing in this way; please connect Ci to the input terminal. In addition, when the filter with "L" is used, please Ci to the input terminal.

Capacity of external capacitor at input terminal: Ci [μ F]

Capacity of external capacitor at output terminal: Co $[\mu F]$


100

100

Model	ZTSIR5	ZTS3
Input voltage (V)	ZTWIR5	ZTW3
5	100	220
12	47	100
24	33	47
48	10	22

Fig. 3.1 Connecting method of capacitor at input terminal

To lower the output ripple voltage further, install an external capacitor Co at output terminal as shown below.

		-	-
	Model	ZTS1R5	ZTS3
ad	Output voltage (V)	ZTW1R5	ZTW3
	5	100	220
ad	12	100	100

15

Fig. 3.2 Connecting method of external capacitor at output terminal

When the distance between load and DC output is long, please install capacitor at load as shown below.

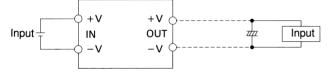
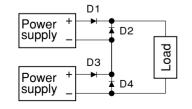
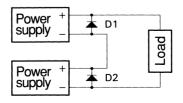


Fig. 3.3 Connection method of capacitor at load


4. Series Operation and Parallel Operation

4.1 Series operation

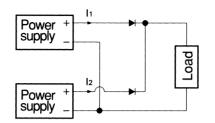
Series operation is available by connecting the outputs of two or more power supplies, as shown below. Output currents in series connection should be lower than the lowest rated current in each unit.


But at series operation with same output voltage, diode is not required to attach even if at (a).

When the output voltage is less than 5V.

D1~D4: Please use Schottky Barrier Diode.

When the output voltage is more than 12V.

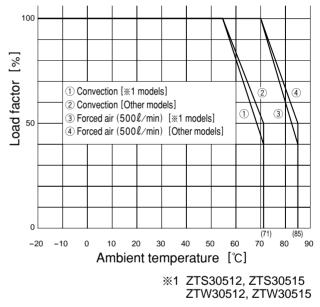


D1, D2: Please use Schottky Barrier Diode.

4.2 Parallel redundancy operation

Parallel redundancy operation is available by connecting the units as shown below.

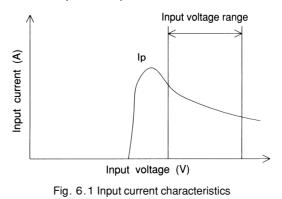
 $I_1, I_2 \leq$ the rated current value


5. Assembling and Installation Method

5.1 Installation method

The unit can be mounted in any direction. Install the device, with proper intervals to allow enough air ventilation.

5.2 Derating


Ambient temperature around each power supply should not exceed the temperature range shown in derating curve.

6. Input Voltage/Current Range

When a non-regulated source is used as a front end, make sure that the voltage fluctuation together with the ripple voltage will not exceed the input voltage range.

Select the converter that is able to handle the start-up current (Ip).

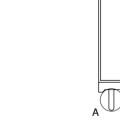
7. Cleaning

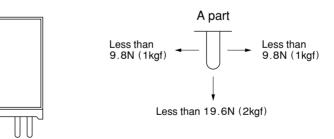
Cleaning is possible by below listed conditions.

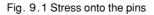
	Cleaning	method
--	----------	--------

ſ	No.	Classification	Cleaning agents	Cleaning method	Liquid Temp.	Period
	1	Matar tura	Pine Alpha ST-100S (ARAKAWA CHEMICAL CO.)	Varnishing or Ultra	Less than	Within 5
	2	Water type	Clean Through 750H (KAO Corporation)	sonic wave	60°C	minutes
	3	Columntture	IPA	Varnishing,Ultra sonic		Within 2
	4	Solvent type	Asahiklin AK-225AES (ASAHI GLASS CO.)	wave, Vapor	-	minutes

During cleaning to drying (the condition that cleaning liquid is soaked into the ink of name plate), do not touch on the surface of name plate.

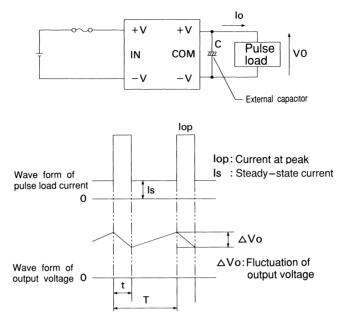

■After cleaning, dry them enough.


8. Soldering


Flow soldering : 260°C less than 15 seconds.
 Soldering iron : 450°C less than 5 seconds.

9. Input/Output Pin

- When too much stress is applied on the input/output pins of the unit, the internal connection may be weakened. As below Fig. 9.1, avoid applying stress of more than 9.8N (1kgf) on the pins horizontally and more than 19.6N (2kgf) vertically.
- When additional stress is expected to be put on the input/output pins because of vibration or impacts, fix the unit on PCB (using silicone rubber or fixing fittings) to reduce the stress onto the input/output pins.



10. Peak Current (Pulse Load)

It is possible to supply the pulse current for the pulse load by connecting the capacitor externally at the output side.

The average current lav of output is shown in below formula.

$$lav = ls + \frac{(lop - ls) t}{T}$$

The required electrolytic capacitor C is found by below formula.

$$C = \frac{(lop - lav) t}{\Delta Vo}$$

2U/2T