72-Mbit ($2 \mathrm{M} \times 36$) Flow-Through SRAM with NoBL ${ }^{\text {TM }}$ Architecture

Features

$■$ No Bus Latency ${ }^{\text {TM }}\left(\right.$ NoBL $^{\text {TM }}$) architecture eliminates dead cycles between write and read cycles

■ Supports up to 133 MHz bus operations with zero wait states
■ Data is transferred on every clock
■ Pin compatible and functionally equivalent to $\mathrm{ZBT}^{\text {TM }}$ devices
■ Internally self timed output buffer control to eliminate the need to use OE

■ Registered inputs for flow through operation

- Byte write capability

■ 2.5 V I/O supply ($\mathrm{V}_{\mathrm{DDQ}}$)

- Fast clock-to-output times
a 6.5 ns (for $133-\mathrm{MHz}$ device)
■ Clock enable ($\overline{\mathrm{CEN}}$) pin to enable clock and suspend operation
- Synchronous self timed writes

■ Asynchronous output enable ($\overline{\mathrm{OE}}$)
■ CY7C1471V25 available in JEDEC-standard Pb-free 100-pin TQFP
$■$ Three chip enables $\left(\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}\right)$ for simple depth expansion.

■ Automatic power-down feature available using ZZ mode or CE deselect.

■ Burst capability - linear or interleaved burst order

- Low standby power

Functional Description

The CY7C1471V25 are $2.5 \mathrm{~V}, 2 \mathrm{M} \times 36$ synchronous flow through burst SRAMs designed specifically to support unlimited true back-to-back read or write operations without the insertion of wait states. The CY7C1471V25 are equipped with the advanced No Bus Latency (NoBL) logic required to enable consecutive read or write operations with data transferred on every clock cycle. This feature dramatically improves the throughput of data through the SRAM, especially in systems that require frequent write-read transitions.

All synchronous inputs pass through input registers controlled by the rising edge of the clock. The clock input is qualified by the clock enable (CEN) signal, which when deasserted suspends operation and extends the previous clock cycle. Maximum access delay from the clock rise is 6.5 ns ($133-\mathrm{MHz}$ device).
Write operations are controlled by two or four byte write select (BW_{X}) and a write enable (WE) input. All writes are conducted with on-chip synchronous self timed write circuitry.
Three synchronous chip enables ($\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}$) and an asynchronous output enable ($\overline{\mathrm{OE})}$ provide easy bank selection and output tristate control. To avoid bus contention, the output drivers are synchronously tristated during the data portion of a write sequence.

Selection Guide

Description	$\mathbf{1 3 3} \mathbf{~ M H z}$	Unit
Maximum access time	6.5	ns
Maximum operating current	305	mA
Maximum CMOS standby current	120	mA

Logic Block Diagram - CY7C1471V25

Contents

Pin Configurations 4
Pin Definitions 5
Functional Overview 6
Single Read Accesses 6
Burst Read Accesses 6
Single Write Accesses 6
Burst Write Accesses 6
Sleep Mode 6
Interleaved Burst Address Table 7
Linear Burst Address Table 7
ZZ Mode Electrical Characteristics 7
Truth Table 8
Truth Table for Read/Write 9
Maximum Ratings 10
Operating Range 10
Electrical Characteristics 10
Capacitance 11
Thermal Resistance 11
AC Test Loads and Waveforms 11
Switching Characteristics 12
Switching Waveforms 13
Ordering Information 16
Ordering Code Definitions 16
Package Diagrams 17
Acronyms 18
Document Conventions 18
Units of Measure 18
Errata 19
Part Numbers Affected 19
Product Status 19
Ram9 Sync/NoBL ZZ Pin Issues Errata Summary 19
Document History Page 20
Sales, Solutions, and Legal Information 23
Worldwide Sales and Design Support 23
Products 23
PSoC® Solutions 23
Cypress Developer Community 23
Technical Support 23

Pin Configurations

Figure 1. 100 -pin TQFP $(14 \times 20 \times 1.4 \mathrm{~mm})$ pinout ${ }^{[1]}$ CY7C1471V25

Note

1. Errata: The ZZ pin (Pin 64) needs to be externally connected to ground. For more information, see "Errata" on page 19.

Pin Definitions

Name	I/O	Description
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}$	Inputsynchronous	Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK. $A_{[1: 0]}$ are fed to the two-bit burst counter.
$\overline{B W}_{A}, \overline{B W}_{B},$	Inputsynchronous	Byte write inputs, active LOW. Qualified with $\overline{W E}$ to conduct writes to the SRAM. Sampled on the rising edge of CLK.
WE	Inputsynchronous	Write enable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal must be asserted LOW to initiate a write sequence.
ADV/LD	Inputsynchronous	Advance/load input. Used to advance the on-chip address counter or load a new address. When HIGH (and $\overline{\mathrm{CEN}}$ is asserted LOW) the internal burst counter is advanced. When LOW, a new address can be loaded into the device for an access. After being deselected, ADV/LD must be driven LOW to load a new address.
CLK	Inputclock	Clock input. Captures all synchronous inputs to the device. CLK is qualified with $\overline{C E N}$. CLK is only recognized if CEN is active LOW.
$\overline{\mathrm{CE}}_{1}$	Inputsynchronous	Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_{2} and $\overline{\mathrm{CE}}_{3}$ to select or deselect the device.
CE_{2}	Inputsynchronous	Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\mathrm{CE}}_{1}$ and CE_{3} to select or deselect the device.
$\overline{\mathrm{CE}}_{3}$	Inputsynchronous	Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\mathrm{CE}}_{1}$ and CE_{2} to select or deselect the device.
$\overline{O E}$	Inputasynchronous	Output enable, asynchronous input, active LOW. Combined with the synchronous logic block inside the device to control the direction of the I/O pins. When LOW, the I/O pins are enabled to behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as input data pins. $\overline{O E}$ is masked during the data portion of a write sequence, during the first clock when emerging from a deselected state, when the device has been deselected.
$\overline{\mathrm{CEN}}$	Inputsynchronous	Clock enable input, active LOW. When asserted LOW the clock signal is recognized by the SRAM. When deasserted HIGH the clock signal is masked. Because deasserting CEN does not deselect the device, $\overline{C E N}$ can be used to extend the previous cycle when required.
$\mathrm{ZZ}^{[2]}$	Inputasynchronous	ZZ "sleep" input. This active HIGH input places the device in a non-time-critical "sleep" condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.
$D Q_{s}$	I/Osynchronous	Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by $\overline{\mathrm{OE}}$. When $\overline{\mathrm{OE}}$ is asserted LOW, the pins behave as outputs. When HIGH, DQ ${ }_{\mathrm{s}}$ and DQP X_{X} are placed in a tristate condition. The outputs are automatically tristated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of $\overline{\mathrm{OE}}$.
$\mathrm{DQP}_{\mathrm{x}}$	I/Osynchronous	Bidirectional data parity I/O lines. Functionally, these signals are identical to DQ_{s}. During write sequences, DQP_{X} is controlled by BW_{X} correspondingly.
MODE	Input strap pin	Mode input. Selects the burst order of the device. When tied to Gnd selects linear burst sequence. When tied to V_{DD} or left floating selects interleaved burst sequence.
V_{DD}	Power supply	Power supply inputs to the core of the device.
$\mathrm{V}_{\text {DDQ }}$	I/O power supply	Power supply for the I/O circuitry.
$\mathrm{V}_{\text {SS }}$	Ground	Ground for the device.
NC	-	No connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are address expansion pins and are not internally connected to the die.

[^0]
Functional Overview

The CY7C1471V25 are synchronous flow through burst SRAMs designed specifically to eliminate wait states during write-read transitions. All synchronous inputs pass through input registers controlled by the rising edge of the clock. The clock signal is qualified with the clock enable input signal (CEN). If CEN is HIGH, the clock signal is not recognized and all internal states are maintained. All synchronous operations are qualified with $\overline{C E N}$. Maximum access delay from the clock rise ($\mathrm{t}_{\mathrm{CDV}}$) is 6.5 ns (133-MHz device).
Accesses are initiated by asserting all three chip enables ($\overline{\mathrm{CE}}_{1}$, $\mathrm{CE}_{2}, \mathrm{CE}_{3}$) active at the rising edge of the clock. If CEN is active LOW and ADV/LD is asserted LOW, the address presented to the device is latched. The access can either be a read or write operation, depending on the status of the write enable (WE). Byte write select $\left(\overrightarrow{\mathrm{BW}}_{\mathrm{X}}\right)$ can be used to conduct byte write operations.
Write operations are qualified by the $\overline{\mathrm{WE}}$. All writes are simplified with on-chip synchronous self timed write circuitry.
Three synchronous chip enables ($\left.\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}\right)$ and an asynchronous output enable (OE) simplify depth expansion. All operations (reads, writes, and deselects) are pipelined. ADV/LD must be driven LOW after the device is deselected to load a new address for the next operation.

Single Read Accesses

A read access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CEN}}$ is asserted LOW, (2) $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and CE_{3} are all asserted active, (3) WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The address presented to the address inputs is latched into the address register and presented to the memory array and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the output buffers. The data is available within 6.5 ns ($133-\mathrm{MHz}$ device) provided $\overline{\mathrm{OE}}$ is active LOW. After the first clock of the read access, the output buffers are controlled by $\overline{\mathrm{OE}}$ and the internal control logic. $\overline{\mathrm{OE}}$ must be driven LOW to drive out the requested data. On the subsequent clock, another operation (read/write/deselect) can be initiated. When the SRAM is deselected at clock rise by one of the chip enable signals, the output is tristated immediately.

Burst Read Accesses

The CY7C1471V25 has an on-chip burst counter that enables the user the ability to supply a single address and conduct up to four reads without reasserting the address inputs. ADV/LD must be driven LOW to load a new address into the SRAM, as described in the Single Read Accesses section. The sequence of the burst counter is determined by the MODE input signal. A LOW input on MODE selects a linear burst mode, a HIGH selects an interleaved burst sequence. Both burst counters use A0 and A1 in the burst sequence, and wraps around when incremented sufficiently. A HIGH input on ADV/LD increments the internal burst counter regardless of the state of chip enable inputs or $\overline{W E}$. WE is latched at the beginning of a burst cycle. Therefore, the type of access (read or write) is maintained throughout the burst sequence.

Single Write Accesses

Write accesses are initiated when these conditions are satisfied at clock rise:

- $\overline{\mathrm{CEN}}$ is asserted LOW

■ $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and $\overline{\mathrm{CE}}_{3}$ are all asserted active
■ $\overline{W E}$ is asserted LOW.
The address presented to the address bus is loaded into the address register. The write signals are latched into the control logic block. The data lines are automatically tristated regardless of the state of the $\overline{\mathrm{OE}}$ input signal. This allows the external logic to present the data on DQs and DQP x.
On the next clock rise the data presented to DQs and DQP ${ }_{X}$ (or a subset for byte write operations, see "Truth Table for Read/Write" on page 9 for details) inputs is latched into the device and the write is complete. Additional accesses (read/write/deselect) can be initiated on this cycle.
The data written during the write operation is controlled by $\overline{\mathrm{BW}}_{\mathrm{X}}$ signals. The CY7C1471V25 provide byte write capability that is described in the "Truth Table for Read/Write" on page 9. The input $\overline{\mathrm{WE}}$ with the selected $\overline{\mathrm{BW}}_{\mathrm{x}}$ input selectively writes to only the desired bytes. Bytes not selected during a byte write operation remain unaltered. A synchronous self timed write mechanism is provided to simplify the write operations. Byte write capability is included to greatly simplify read/modify/write sequences, which can be reduced to simple byte write operations.
Because the CY7C1471V25 are common I/O devices, data must not be driven into the device while the outputs are active. The $\overline{\mathrm{OE}}$ can be deasserted HIGH before presenting data to the DQs and $D Q P_{X}$ inputs. This tristates the output drivers. As a safety precaution, DQs and $D Q P_{X}$ are automatically tristated during the data portion of a write cycle, regardless of the state of OE.

Burst Write Accesses

The CY7C1471V25 have an on-chip burst counter that enables the user to supply a single address and conduct up to four write operations without reasserting the address inputs. ADV/LD must be driven LOW to load the initial address, as described in the Single Write Accesses section. When ADV/LD is driven HIGH on the subsequent clock rise, the chip enables ($\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and $\overline{\mathrm{CE}}_{3}$) and WE inputs are ignored and the burst counter is incremented. The correct $\overline{B W}_{X}$ inputs must be driven in each cycle of the burst write, to write the correct bytes of data.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected before entering the "sleep" mode. $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and $\overline{\mathrm{CE}}_{3}$, must remain inactive for the duration of $\mathrm{t}_{\text {ZZREC }}$ after the ZZ input returns LOW.

CY7C1471V25

Interleaved Burst Address Table
(MODE = Floating or V_{DD})

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table
(MODE = GND)

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
IDDZZ	Sleep mode standby current	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	120	mA
tzzs	Device operation to ZZ	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$t_{\text {ZZREC }}$	ZZ recovery time	$\mathrm{ZZ} \leq 0.2 \mathrm{~V}$	$2 \mathrm{t}_{\mathrm{CYC}}$	-	ns
tzzı	ZZ active to sleep current	This parameter is sampled	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$t_{\text {RZZI }}$	ZZ inactive to exit sleep current	This parameter is sampled	0	-	ns

Truth Table

The truth table for CY7C1471V25 follows. ${ }^{[3, ~ 4, ~ 5, ~ 6, ~ 7, ~ 8, ~ 9] ~}$

Operation	Address Used	CE_{1}	$C E_{2}$	$\overline{C E}_{3}$	ZZ	ADV/LD	WE	BW_{X}	OE	CEN	CLK	DQ
Deselect cycle	None	H	X	X	L	L	X	X	X	L	L->H	Tristate
Deselect cycle	None	X	X	H	L	L	X	X	X	L	L->H	Tristate
Deselect cycle	None	X	L	X	L	L	X	X	X	L	L->H	Tristate
Continue deselect cycle	None	X	X	X	L	H	X	X	X	L	L->H	Tristate
Read cycle (begin burst)	External	L	H	L	L	L	H	X	L	L	L->H	Data out (Q)
Read cycle (continue burst)	Next	X	X	X	L	H	X	X	L	L	L->H	Data out (Q)
NOP/dummy read (begin burst)	External	L	H	L	L	L	H	X	H	L	L->H	Tristate
Dummy read (continue burst)	Next	X	X	X	L	H	X	X	H	L	L->H	Tristate
Write cycle (begin burst)	External	L	H	L	L	L	L	L	X	L	L->H	Data in (D)
Write cycle (continue burst)	Next	X	X	X	L	H	X	L	X	L	L->H	Data in (D)
NOP/write abort (begin burst)	None	L	H	L	L	L	L	H	X	L	L->H	Tristate
Write abort (continue burst)	Next	X	X	X	L	H	X	H	X	L	L->H	Tristate
Ignore clock edge (stall)	Current	X	X	X	L	X	X	X	X	H	L->H	-
Sleep mode	None	X	X	X	H	X	X	X	X	X	X	Tristate

[^1]
Truth Table for Read/Write

The read-write truth table for CY7C1471V25 follows. ${ }^{[10,11,12]}$

Function	$\overline{\mathbf{W E}}$	$\overline{\mathbf{B W}}_{\mathbf{A}}$	$\overline{\mathbf{B W}}_{\mathbf{B}}$	$\overline{\mathbf{B W}}_{\mathbf{C}}$	$\overline{\mathbf{B W}}_{\mathbf{D}}$
Read	H	X	X	X	X
Write no bytes written	L	H	H	H	H
Write byte $\mathrm{A}-\left(\mathrm{DQ}_{\mathrm{A}}\right.$ and $\left.\mathrm{DQP}_{\mathrm{A}}\right)$	L	L	H	H	H
Write byte $\mathrm{B}-\left(\mathrm{DQ}_{\mathrm{B}}\right.$ and $\left.\mathrm{DQP}_{\mathrm{B}}\right)$	L	H	L	H	H
Write byte $\mathrm{C}-\left(\mathrm{DQ}_{\mathrm{C}}\right.$ and $\left.\mathrm{DQP}_{\mathrm{C}}\right)$	L	H	H	L	H
Write byte $\mathrm{D}-\left(\mathrm{DQ}_{\mathrm{D}}\right.$ and $\left.\mathrm{DQP}_{\mathrm{D}}\right)$	L	H	H	H	L
Write all bytes	L	L	L	L	L

[^2]
Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with
power applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage on $V_{D D}$ relative to GND
...... -0.5 V to +3.6 V
Supply voltage on $V_{D D Q}$ relative to $G N D \ldots \ldots-0.5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{DD}}$
DC voltage applied to outputs
in tristate
-0.5 V to $\mathrm{V}_{\mathrm{DDQ}}+0.5 \mathrm{~V}$
DC input voltage -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$

Current into outputs (LOW) .. 20 mA
Static discharge voltage
(MIL-STD-883, method 3015) > 2001 V
Latch up current ...> 200 mA
Operating Range

Range	Ambient Temperature	\mathbf{V}_{DD}	$\mathbf{V}_{\mathrm{DDQ}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.5 \mathrm{~V}-5 \% /$ $+5 \%$	$2.5 \mathrm{~V}-5 \%$ to V_{DD}

Electrical Characteristics

Over the Operating Range

Parameter ${ }^{[13,14]}$	Description	Test Conditions		Min	Max	Unit
$V_{\text {DD }}$	Power supply voltage			2.375	2.625	V
$\mathrm{V}_{\text {DDQ }}$	I/O supply voltage	For $2.5 \mathrm{VI} / \mathrm{O}$		2.375	V_{DD}	V
V_{OH}	Output HIGH voltage	For $2.5 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.0	-	V
V_{OL}	Output LOW voltage	For $2.5 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$		-	0.4	V
V_{IH}	Input HIGH voltage ${ }^{\text {[13] }}$	For $2.5 \mathrm{~V} \mathrm{I/O}$		1.7	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
V_{IL}	Input LOW voltage ${ }^{[13]}$	For $2.5 \mathrm{~V} \mathrm{I/O}$		-0.3	0.7	V
${ }^{\text {IX }}$	Input leakage current except ZZ and MODE	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$		-5	5	$\mu \mathrm{A}$
	Input current of MODE	Input $=\mathrm{V}_{\text {SS }}$		-30		$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$		-	5	$\mu \mathrm{A}$
	Input current of ZZ	Input $=\mathrm{V}_{\text {SS }}$		-5	-	$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$		-	30	$\mu \mathrm{A}$
I_{Oz}	Output leakage current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$, output disabled		-5	5	$\mu \mathrm{A}$
${ }_{\text {ID }}$	V_{DD} operating supply current	$\begin{aligned} & V_{\mathrm{DD}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	$\begin{aligned} & 6.5 \mathrm{~ns} \text { cycle, } \\ & 133 \mathrm{MHz} \end{aligned}$	-	305	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE power-down current - TTL inputs	$\begin{aligned} & V_{D D}=\text { Max, device deselected, } \\ & V_{\text {IN }} \geq V_{I H} \text { or } V_{I N} \leq V_{I L}, \\ & f=f_{\text {MAX }} \text {, inputs switching } \end{aligned}$	$\begin{aligned} & 6.5 \text { ns cycle, } \\ & 133 \mathrm{MHz} \end{aligned}$	-	170	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE power-down current - CMOS inputs	$\mathrm{V}_{\mathrm{DD}}=$ Max, device deselected, $\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$, $\mathrm{f}=0$, inputs static	$\begin{aligned} & 6.5 \mathrm{~ns} \text { cycle, } \\ & 133 \mathrm{MHz} \end{aligned}$	-	120	mA
$\mathrm{I}_{\text {SB3 }}$	Automatic CE power-down current - CMOS inputs	$\begin{aligned} & V_{D D}=\text { Max, device deselected, } \\ & V_{I N} \leq 0.3 \mathrm{~V} \text { or } V_{I N} \geq V_{D D Q}-0.3 \mathrm{~V}, \\ & f=f_{M A X}, \text { inputs switching } \end{aligned}$	$6.5 \text { ns cycle, }$ $133 \text { MHz }$	-	170	mA
$\mathrm{I}_{\text {SB4 }}$	Automatic CE power-down current - TTL inputs	$V_{D D}=$ Max, device deselected, $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}$, $\mathrm{f}=0$, inputs static	6.5 ns cycle, 133 MHz	-	135	mA

[^3]
Capacitance

Parameter ${ }^{[15]}$	Description	Test Conditions	$\underset{\text { Max }}{100-\text { pin }^{2} \text { TQFP }}$	Unit
C ADDRESS	Address input capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=2.5 \mathrm{~V} \end{aligned}$	6	pF
$\mathrm{C}_{\text {DATA }}$	Data input capacitance		5	pF
$\mathrm{C}_{\text {CTRL }}$	Control input capacitance		8	pF
$\mathrm{C}_{\text {CLK }}$	Clock input capacitance		6	pF
$\mathrm{C}_{1 \mathrm{O}}$	Input-output capacitance		5	pF

Thermal Resistance

Parameter ${ }^{[15]}$	Description	Test Conditions	100-pin TQFP Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, according to EIA/JESD51.	24.63	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}	Thermal resistance (junction to case)	2.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

2.5 V I/O Test Load

Note
15. Tested initially and after any design or process change that may affect these parameters.

Switching Characteristics

Over the Operating Range

Parameter ${ }^{[16,17]}$	Description	133 MHz		Unit
		Min	Max	
$t_{\text {POWER }}$	V_{DD} (typical) to the first access ${ }^{[18]}$	1	-	ms
Clock				
$\mathrm{t}_{\mathrm{CYC}}$	Clock cycle time	7.5	-	ns
t_{CH}	Clock HIGH	2.5	-	ns
t_{CL}	Clock LOW	2.5	-	ns
Output Times				
$\mathrm{t}_{\text {CDV }}$	Data output valid after CLK rise	-	6.5	ns
$t_{\text {DOH }}$	Data output hold after CLK rise	2.5	-	ns
${ }^{\text {t }}$ LZ	Clock to low Z ${ }^{\text {[19, 20, 21] }}$	3.0	-	ns
${ }^{\text {chenz }}$	Clock to high $\mathrm{Z}^{\text {[19, 20, 21] }}$	-	3.8	ns
toev	$\overline{\mathrm{OE}}$ LOW to output valid	-	3.0	ns
toelz	$\overline{\mathrm{OE}}$ LOW to output low $\mathrm{Z}^{\text {[19, 20, 21] }}$	0	-	ns
$\mathrm{t}_{\text {OEHz }}$	$\overline{\mathrm{OE}}$ HIGH to Output high $\mathrm{Z}^{[19, ~ 20, ~ 21] ~}$	-	3.0	ns
Setup Times				
$\mathrm{t}_{\text {AS }}$	Address setup before CLK rise	1.5	-	ns
$\mathrm{t}_{\text {ALS }}$	ADV/ $\overline{\mathrm{LD}}$ setup before CLK rise	1.5	-	ns
$\mathrm{t}_{\text {WES }}$	$\overline{\mathrm{WE}}, \overline{\mathrm{BW}}_{\mathrm{X}}$ setup before CLK rise	1.5	-	ns
$\mathrm{t}_{\text {CENS }}$	$\overline{\mathrm{CEN}}$ setup before CLK rise	1.5	-	ns
t_{DS}	Data input setup before CLK rise	1.5	-	ns
$\mathrm{t}_{\text {CES }}$	Chip enable setup before CLK rise	1.5	-	ns
Hold Times				
t_{AH}	Address hold after CLK rise	0.5	-	ns
$\mathrm{t}_{\text {ALH }}$	ADV/LD hold after CLK rise	0.5	-	ns
${ }^{\text {t WEH }}$	$\overline{\mathrm{WE}}, \overline{\mathrm{BW}}_{\mathrm{X}}$ hold after CLK rise	0.5	-	ns
${ }^{\text {t CENH }}$	$\overline{\text { CEN }}$ hold after CLK rise	0.5	-	ns
${ }^{\text {t }}$ DH	Data input hold after CLK rise	0.5	-	ns
$\mathrm{t}_{\text {CEH }}$	Chip enable hold after CLK rise	0.5	-	ns

Notes

16. Timing reference level is 1.25 V when $\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$
17. Test conditions shown in (a) of Figure 2 on page 11 unless otherwise noted.
18. This part has a voltage regulator internally; tPOWER is the time that the power needs to be supplied above $V_{D D \text { (minimum) }}$ initially, before a read or write operation can be initiated.
19. $\mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OELZ}}$, and $\mathrm{t}_{\mathrm{OEHz}}$ are specified with AC test conditions shown in part (b) of Figure 2 on page 11 . Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage.
20. At any supplied voltage and temperature, $\mathrm{t}_{\mathrm{OEHZ}}$ is less than $\mathrm{t}_{\mathrm{OELZ}}$ and $\mathrm{t}_{\mathrm{CHZ}}$ is less than $\mathrm{t}_{\mathrm{CLZ}}$ to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve high Z before low Z under the same system conditions.
21. This parameter is sampled and not 100% tested.

CY7C1471V25

Switching Waveforms

Figure 3. Read/Write Timing ${ }^{[22,23,24]}$

[^4]Switching Waveforms (continued)
Figure 4. NOP, STALL and DESELECT Cycles ${ }^{[25,26,27]}$

[^5]Switching Waveforms (continued)
Figure 5. ZZ Mode Timing ${ }^{[28,29]}$

Notes

28. Device must be deselected when entering ZZ mode. See "Truth Table" on page 8 for all possible signal conditions to deselect the device.
29. DQs are in high Z when exiting $Z Z$ sleep mode.

Ordering Information

Cypress offers other versions of this type of product in different configurations and features. The following table contains only the list of parts that are currently available.
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products, or contact your local sales representative.
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (MHz)	Ordering Code	Package Diagram	Part and Package Type	Operating Range
133	CY7C1471V25-133AXC	$51-85050$	100-pin TQFP $(14 \times 20 \times 1.4 \mathrm{~mm})$ Pb-free	Commercial

Ordering Code Definitions

Package Diagrams

Figure 6. 100 -pin TQFP ($14 \times 20 \times 1.4 \mathrm{~mm}$) A100RA Package Outline, 51-85050

CY7C1471V25

Acronyms

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{CEN}}$	Clock Enable
I/O	Input/Output
JEDEC	Joint Electron Devices Engineering Council
NoBL	No Bus Latency
$\overline{\text { OE }}$	Output Enable
SRAM	Static Random Access Memory
TQFP	Thin Quad Flat Pack
TTL	Transistor-Transistor Logic
$\overline{\text { WE }}$	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
MHz	megahertz
$\mu \mathrm{A}$	microampere
mA	milliampere
mm	millimeter
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
$\%$	percent
pF	picofarad
V	volt
W	watt

Errata

This section describes the Ram9 Sync/NoBL ZZ pin, JTAG and Chip Enable issues. Details include trigger conditions, the devices affected, proposed workaround and silicon revision applicability. Please contact your local Cypress sales representative if you have further questions.

Part Numbers Affected

$\left.\begin{array}{|c|c|c|}\hline \text { Density \& Revision } & \text { Package Type } & \begin{array}{c}\text { Operating Range } \\ \hline 72 \mathrm{Mb}-\text { Ram9 NoBL SRAMs: CY7C147*, CY7C147*V25 }\end{array} \text { All packages }\end{array} \begin{array}{c}\text { Commercial/ } \\ \text { Industrial }\end{array}\right]$

Product Status

All of the devices in the Ram9 72Mb Sync/NoBL family are qualified and available in production quantities.

Ram9 Sync/NoBL ZZ Pin Issues Errata Summary

The following table defines the errata applicable to available Ram9 72Mb Sync/NoBL family devices.

Item	Issues	Description	Device	Fix Status
1.	ZZ Pin	When asserted HIGH, the ZZ pin places device in a "sleep" condition with data integrity preserved.The ZZ pin currently does not have an internal pull-down resistor and hence cannot be left floating externally by the user during normal mode of operation.	72M-Ram9 (90nm)	For the 72M Ram9 (90 nm) devices, this issue was fixed in the new revision. Please contact your local sales rep for availability.

1. ZZ Pin Issue

- PROBLEM DEFINITION

The problem occurs only when the device is operated in the normal mode with $Z Z$ pin left floating. The $Z Z$ pin on the SRAM device does not have an internal pull-down resistor. Switching noise in the system may cause the SRAM to recognize a HIGH on the ZZ input, which may cause the SRAM to enter sleep mode. This could result in incorrect or undesirable operation of the SRAM.

■ TRIGGER CONDITIONS
Device operated with ZZ pin left floating.
■ SCOPE OF IMPACT
When the ZZ pin is left floating, the device delivers incorrect data.
■ WORKAROUND
Tie the $Z Z$ pin externally to ground.

- FIX STATUS

Fix was done for the 72Mb RAM9 Synchronous SRAMs and 72M RAM9 NoBL SRAMs devices. Fixed devices have a new revision. The following table lists the devices affected and the new revision after the fix.

Table 1. List of Affected Devices and the new revision

Revision before the Fix	New Revision after the Fix
CY7C147*	CY7C147*B
CY7C147*V25	CY7C147*BV25

Document History Page

Document Title: CY7C1471V25, 72-Mbit (2 M $\times 36$) Flow-Through SRAM with NoBL ${ }^{\text {TM }}$ Architecture Document Number: 38-05287				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	114674	08/06/02	PKS	New data sheet.
*A	121522	01/27/03	CJM	Changed status from Advanced Information to Preliminary. Updated Features (for package offering). Updated Ordering Information (Updated part numbers).
*B	223721	See ECN	NJY	Updated Features (Removed 150 MHz frequency related information). Updated Functional Description (Removed 150 MHz frequency related information). Updated Logic Block Diagram (Splitted Logic Block Diagram into three Logic Block Diagrams). Updated Selection Guide (Removed 150 MHz frequency related information). Updated Functional Overview (Removed 150 MHz frequency related information). Updated Boundary Scan Exit Order (Replaced TBD with values for all packages). Updated Electrical Characteristics (Removed 150 MHz frequency related information, replaced TBD with values for maximum values of $I_{D D}, I_{S B 1}, I_{S B 2}$, $\mathrm{I}_{\mathrm{SB} 3}, \mathrm{I}_{\mathrm{SB} 4}$ parameters). Updated Capacitance (Replaced TBD with values for all packages). Updated Thermal Resistance (Replaced TBD with values for all packages). Updated Switching Characteristics (Removed 150 MHz frequency related information). Updated Switching Waveforms. Updated Ordering Information (Updated part numbers). Updated Package Diagrams (spec 51-85165 (Changed revision from ** to *A), removed spec 51-85143 and included spec 51-85167 for 209-Ball BGA package, removed spec 51-85115 (corresponding to 119-BGA package)).
*C	235012	See ECN	RYQ	Minor Change (To match on the spec system and external web).
*D	243572	See ECN	NJY	Updated Pin Configurations (Updated Figure "165-Ball FBGA $(15 \times 17 \times 1.40 \mathrm{~mm}$) pinout (3 Chip Enable with JTAG)" (Changed ball H2 from V_{DD} to NC), updated Figure " $209-$ ball BGA ($14 \times 22 \times 1.76 \mathrm{~mm}$) pinout" (Changed ball R11 from DQPa to DQPe)). Updated Capacitance (Splitted $\mathrm{C}_{\mathbb{I N}}$ parameter into $\mathrm{C}_{\text {ADDRESS }}, \mathrm{C}_{\text {DATA }}, \mathrm{C}_{\text {CLK }}$ parameters and also updated the values).
*E	299511	See ECN	SYT	Updated Features (Removed 117 MHz frequency related information). Updated Selection Guide (Removed 117 MHz frequency related information). Updated Electrical Characteristics (Removed 117 MHz frequency related information). Updated Thermal Resistance (Changed value of Θ_{JA} from $16.8^{\circ} \mathrm{C} / \mathrm{W}$ to $24.63^{\circ} \mathrm{C} / \mathrm{W}$, changed value of Θ_{Jc} from $3.3^{\circ} \mathrm{C} / \mathrm{W}$ to $2.28^{\circ} \mathrm{C} / \mathrm{W}$ for 100 -pin TQFP package). Updated Switching Characteristics (Removed 117 MHz frequency related information). Updated Ordering Information (Updated part numbers (Removed 117 MHz frequency related information, added Pb-free information for 100 -pin TQFP, 165-ball FBGA and 209-ball BGA Packages), added comment of "Pb-free BG packages availability" below the Ordering Information).

Document History Page (continued)
Document Title: CY7C1471V25, 72-Mbit (2 M $\times 36$) Flow-Through SRAM with NoBL ${ }^{\text {TM }}$ Architecture Document Number: 38-05287

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
*F	323039	See ECN	PCI	Updated Pin Configurations (Address expansion pins/balls in the pinouts for all packages are modified as per JEDEC standard, changed package name from 209-Ball PBGA to 209-Ball FBGA on page\# 7). Updated Pin Definitions (Added Address Expansion pins in the Pin Definitions Table). Updated Operating Range (Added Industrial Temperature Range). Updated Electrical Characteristics (Updated Test Conditions of $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$ parameters). Updated Ordering Information (Updated part numbers (Added Pb-free information in the ordering information table), removed comment of "Pb-free BG packages availability" below the Ordering Information).
*G	416221	See ECN	NXR	Changed status from Preliminary to Final. Changed address of Cypress Semiconductor Corporation from "3901 North First Street" to "198 Champion Court". Updated Electrical Characteristics (Updated Note 14 (Changed $\mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\text {IH }}<\mathrm{V}_{\mathrm{DD}}$), changed description of I_{X} parameter from Input Load Current except ZZ and MODE to Input Leakage Current except ZZ and MODE, changed minimum value of I_{X} parameter (corresponding to Input Current of MODE (Input $=\mathrm{V}_{\mathrm{SS}}$) from $-5 \mu \mathrm{~A}$ to $-30 \mu \mathrm{~A}$, changed maximum value of I_{X} parameter (corresponding to Input Current of MODE (Input = $\left.\mathrm{V}_{\mathrm{DD}}\right)$) from $30 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$, changed minimum value of I_{X} parameter (corresponding to Input Current of $Z Z$ $\left(\right.$ Input $\left.=\mathrm{V}_{\mathrm{SS}}\right)$) from $-30 \mu \mathrm{~A}$ to $-5 \mu \mathrm{~A}$, changed maximum value of I_{X} parameter (corresponding to Input Current of $Z Z\left(\right.$ Input $\left.=V_{D D}\right)$) from $5 \mu \mathrm{~A}$ to $30 \mu \mathrm{~A}$). Updated Ordering Information (Updated part numbers, replaced Package Name column with Package Diagram in the Ordering Information table).
*H	472335	See ECN	VKN	Updated Pin Configurations (Updated Figure "209-ball FBGA $\left(14 \times 22 \times 1.76 \mathrm{~mm}\right.$) pinout" (Corrected the ball name for H 9 to V_{SS} from $\left.\mathrm{V}_{\mathrm{SSQ}}\right)$). Updated TAP AC Switching Characteristics (Changed minimum value of t_{TH}, t_{TL} parameters from 25 ns to 20 ns , changed maximum value of $\mathrm{t}_{\mathrm{TDOV}}$ parameters from 5 ns to 10 ns). Updated Maximum Ratings (Added the Maximum Rating for Supply Voltage on $V_{\text {DDQ }}$ Relative to GND). Updated Ordering Information (Updated part numbers).
*	1274732	See ECN	VKN / AESA	Updated Switching Waveforms (Updated Figure 4 (Corrected typo)).
*J	2897278	03/22/2010	NJY	Updated Ordering Information (Removed obsolete part numbers from Ordering Information table). Updated Package Diagrams.
*K	3034798	09/21/2010	NJY	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits and updated in new template.
*L	3353119	08/24/2011	PRIT	Updated Functional Description (Updated Note as "For best practice recommendations, refer to SRAM System Guidelines."). Updated Package Diagrams (spec 51-85050 (Changed revision from *C to *D), spec 51-85165 (Changed revision from *B to *C)).

Document History Page (continued)

Document Title: CY7C1471V25, 72-Mbit (2 M $\times 36$) Flow-Through SRAM with NoBL ${ }^{\text {TM }}$ Architecture Document Number: 38-05287

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting \& Power Control	cypress.com/go/powerpsoc
cypress.com/go/plc	
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC ${ }^{\circledR}$ Solutions
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 the express written permission of Cypress.

 assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Note
 2. Errata: The ZZ pin (Pin 64) needs to be externally connected to ground. For more information, see "Errata" on page 19.

[^1]: Notes
 3. $X=$ "Don't Care." H = Logic HIGH, L = Logic LOW. $\overline{B W}_{X}=L$ signifies at least one byte write select is active, $\overline{B W}_{X}=$ valid signifies that the desired byte write selects are asserted, see "Truth Table for Read/Write" on page 9 for details.
 4. Write is defined by $\overline{B W}_{X}$, and \bar{W}. See "Truth Table for Read/Write" on page 9.
 5. When a write cycle is detected, all I/Os are tristated, even during byte writes.
 6. The DQs and DQP x pins are controlled by the current cycle and the $\overline{\mathrm{OE}}$ signal. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock.
 7. $\overline{\mathrm{CEN}}=\mathrm{H}$, inserts wait states.
 8. Device powers up deselected with the I/Os in a tristate condition, regardless of $\overline{\mathrm{OE}}$.
 9. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and $\mathrm{DQP} \mathrm{P}_{\mathrm{X}}=$ tristate when $\overline{\mathrm{OE}}$ is inactive or when the device is deselected, and DQs and $D Q P_{X}=$ data when $\overline{O E}$ is active.

[^2]: Notes
 10. $X=$ "Don't Care." H = Logic HIGH, L = Logic LOW. $\overline{B W}_{X}=L$ signifies at least one byte write select is active, $\overline{B W}_{X}=$ valid signifies that the desired byte write selects are asserted, see "Truth Table for Read/Write" on page 9 for details.
 11. Write is defined by $\overline{B W}_{X}$, and WE. See "Truth Table for Read/Write" on page 9.
 12. Table lists only a partial listing of the byte write combinations. Any combination of $\overline{B W}_{X}$ is valid. Appropriate write is based on which byte write is active.

[^3]: Notes
 13. Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}<\mathrm{V}_{\mathrm{DD}}+1.5 \mathrm{~V}$ (pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$). Undershoot: $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}>-2 \mathrm{~V}$ (pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$).
 14. $T_{\text {Power-up: }}$ assumes a linear ramp from 0 V to $\mathrm{V}_{\mathrm{DD}(\text { min })}$ within 200 ms . During this time $\mathrm{V}_{I H}<\mathrm{V}_{D D}$ and $\mathrm{V}_{D D Q} \leq \mathrm{V}_{D D}$.

[^4]: Notes
 22. For this waveform $Z Z$ is tied LOW.
 23. When $\overline{C E}$ is LOW, $\overline{C E}_{1}$ is LOW, C_{2} is HIGH , and $\overline{C E}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}, \overline{\mathrm{CE}}_{1}$ is $\mathrm{HIGH}, \mathrm{CE}_{2}$ is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH. 24. Order of the burst sequence is determined by the status of the MODE ($0=$ Linear, $1=$ Interleaved). Burst operations are optional.

[^5]: Notes
 25. For this waveform ZZ is tied LOW
 26. When $\overline{C E}$ is LOW, $\overline{C E}_{1}$ is LOW, CE_{2} is HIGH , and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}, \overline{\mathrm{CE}}_{1}$ is $\mathrm{HIGH}, \mathrm{CE}_{2}$ is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH .
 27. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates $\overline{C E N}$ being used to create a pause. A write is not performed during this cycle.

