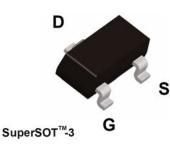
Product specification

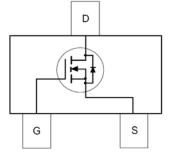
FDN8601

100 V, 2.7 A, 109 m Ω

Features

- Max r_{DS(on)} = 109 mΩ at V_{GS} = 10 V, I_D = 1.5 A
- Max $r_{DS(on)}$ = 175 m Ω at V_{GS} = 6 V, I_D = 1.2 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Applications

- Primary DC-DC Switch
- Load Switch

MOSFET Maximum Ratings TA = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		100	V	
V _{GS}	Gate to Source Voltage		±20	V	
1	-Continuous	(Note 1a)	2.7	•	
D	-Pulsed		12	— A	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	13	mJ	
D	Power Dissipation	(Note 1a)	1.5	W	
P _D	Power Dissipation	(Note 1b)	0.6	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	75	°C/M	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	°C/W	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8601	FDN8601	SSOT-3	7 "	8 mm	3000 units

Product specification

FDN8601

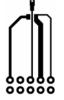
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		68		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			±100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	2.0	3.0	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-8		mV/°C
	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 1.5 A		85.4	109	mΩ
r _{DS(on)}		V _{GS} = 6 V, I _D = 1.2 A		117	175	
		V_{GS} = 10 V, I _D = 1.5 A, T _J = 125 °C		143	183	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 1.5 A		8		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			156	210	pF
C _{oss}	Output Capacitance	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		47	65	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		2.7	5	pF
R _g	Gate Resistance			1.0		Ω
	Characteristics					
t _{d(on)}	Turn-On Delay Time			4.3	10	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 1.5 A,		1.3	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		7.8	16	ns
t _f	Fall Time			3.4	10	ns

C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	156	210	pF
C _{oss}	Output Capacitance		47	65	pF
C _{rss}	Reverse Transfer Capacitance		2.7	5	pF
R _g	Gate Resistance		1.0		Ω

t _{d(on)}	Turn-On Delay Time		4.3	10	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 1.5 A,	1.3	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	7.8	16	ns
t _f	Fall Time		3.4	10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	3	5	nC
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V V_{DD} = 50 V,$	1.8	3	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 1.5 A	0.9		nC
Q _{gd}	Gate to Drain "Miller" Charge		0.8		nC

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.5 A (Note 2)	0.81	1.3	V
t _{rr}	Reverse Recovery Time	I _F = 1.5 A, di/dt = 100 A/μs		29	46	ns
Q _{rr}	Reverse Recovery Charge	$T_{\rm F} = 1.5$ Å, u/ut = 100 Å/µs		15	27	nC


Notes:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 80 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 180 °C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 3 A, V_DD = 100 V, V_GS = 10 V.