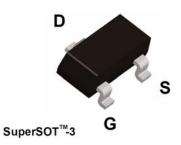
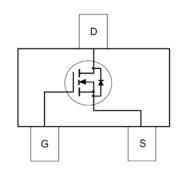


FDN8601

100 V, 2.7 A, 109 m Ω


Features


- Max $r_{DS(on)}$ = 109 m Ω at V_{GS} = 10 V, I_D = 1.5 A
- Max $r_{DS(on)}$ = 175 m Ω at V_{GS} = 6 V, I_D = 1.2 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL tested
- RoHS Compliant

Applications

- Primary DC-DC Switch
- Load Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		100	V
V_{GS}	Gate to Source Voltage		±20	V
I _D	-Continuous	(Note 1a)	2.7	^
	-Pulsed		12	A
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	13	mJ
P _D	Power Dissipation	(Note 1a)	1.5	w
	Power Dissipation	(Note 1b)	0.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	75	°C/\\/
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8601	FDN8601	SSOT-3	7 "	8 mm	3000 units

FDN8601

Electrical Characteristics T_J = 25 $^{\circ}$ C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		68		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			±100	nA

On Characteristics (Note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		-8		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 1.5 A		85.4	109	mΩ
		V _{GS} = 6 V, I _D = 1.2 A		117	175	
		V_{GS} = 10 V, I_{D} = 1.5 A, T_{J} = 125 °C		143	183	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 1.5 A		8		S

Dynamic Characteristics

C _{iss}	Input Capacitance	\\\ - 50\\\\\ - 0\\\	156	210	pF
C _{oss}	Output Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	47	65	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1011 12	2.7	5	pF
R_q	Gate Resistance		1.0		Ω

Switching Characteristics


t _{d(on)}	Turn-On Delay Time		4.3	10	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 1.5 A,	1.3	10	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10 V, R _{GEN} = 6 Ω	7.8	16	ns
t _f	Fall Time		3.4	10	ns
Q_g	Total Gate Charge	V _{GS} = 0 V to 10 V	3	5	nC
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ V to 5 V}$ $V_{DD} = 50 \text{ V},$	1.8	3	nC
Q_{gs}	Gate to Source Gate Charge	I _D = 1.5 A	0.9		nC
Q_{gd}	Gate to Drain "Miller" Charge		0.8		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 1.5 \text{ A}$ (Note 2)	0.81	1.3	V
t _{rr}	Reverse Recovery Time	I _E = 1.5 A. di/dt = 100 A/μs	29	46	ns
Q _{rr}	Reverse Recovery Charge	ης – 1.5 Α, αιναι – 100 Ανμs	15	27	nC

Notes:

^{1.} $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a) 80 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 180 °C/W when mounted on a minimum pad.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. Starting T $_{J}$ = 25 $^{\circ}\text{C};$ N-ch: L = 3 mH, I $_{AS}$ = 3 A, V $_{DD}$ = 100 V, V $_{GS}$ = 10 V.