Preliminary

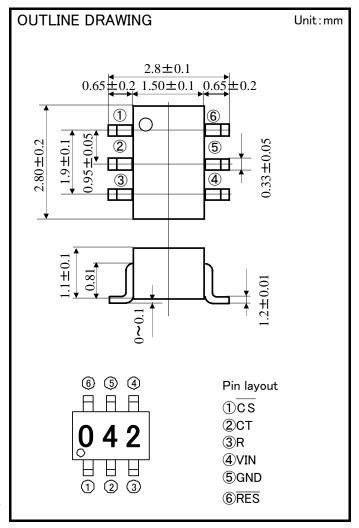
*This is tentative specification.

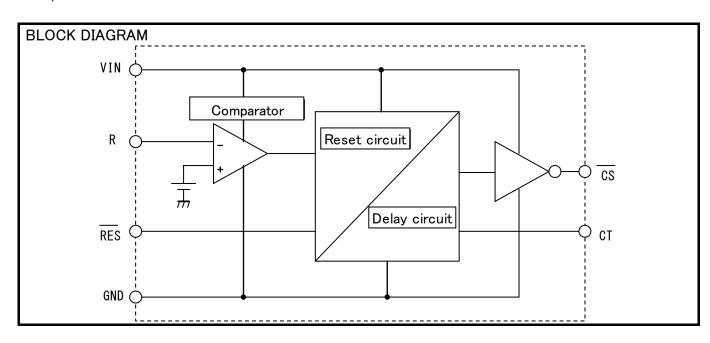
DESCRIPTION

RT8H042C is composed by NPN transistors,

PNP transistors and resistors. This product has the reset function, and controls the backup function of the memory of SRAM and the microcomputer (internal organs RAM)

The reset $signal(\overline{RES})$ is output to the microcomputer when the down of power and the power supply are abnormal. At the same time, RAM is switched from the main power supply to the backup power supply, the signal


(CS)that becomes a stand-by state is output, and RAM is switched to the backup circuit.


FEATURES

- Miniaturization of a set.
- Detecting voltage (Power supply watch voltage)Standard: 1.23V
- Chip selection signal output(CS)
- Reset output (RES)

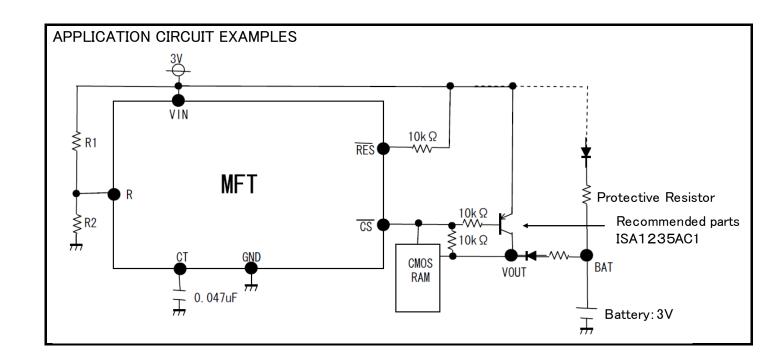
APPLICATION

- Backup of memories of 3V faction microcomputer systems such as electronic office equipment, industrial equipment, and home electrical appliances
- Control system of power supply where switch of external source and battery like SRAM board with built-in backup function is needed

Preliminary

*This is tentative specification.

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)


Symbol	Parameter	Test conditions	Ratings	Unit
VIN	Operating supply voltage range		12	V
Pd	Internal power dissipation	Ta≧25°C	200	mW
κθ	Thermal derating		1.6	mW/°C
Tj	Junction temperature		150	°C
Tstg	Storage temperature	(keep dry)	−40~150	°C
Topr	Operating temperature	(keep dry)	−20~ 75	°C

ELECTRICAL CHARACTERISTIC (Ta=25°C,VCC=3V unless otherwise noted.)

Symbol	Parameter	Test conditions	De	Designed value		
			Min	Тур	Max	Unit
VIN	Operating supply voltage range		2	-	10	٧
IIN	Circuit current	$\overline{\text{RES}}$ -VIN: $10k\Omega$ pullup $\overline{\text{CS}}$: $10k\Omega$, $3V$ pullup, R: $0V$	_	700	1050	uA
VRTH	R threshold voltage	R:H⇒L RES-VIN:10kΩpullup CS:10kΩ,3Vpullup,CT:OPEN	1.18	1.23	1.28	٧
⊿VRTH	Hysteresis	R: H⇒L, RES-VIN: 10kΩ pullup CS: 10kΩ,3Vpullup	50	104	200	mV
СТН	Output voltage (Terminal CT in level HI)	R:2V, \overline{RES} -VIN: $10k\Omega$ pullup $\overline{CS}: 10k\Omega, 3V$ pullup	0.65	1.32	2	٧
CTL	Output voltage (Terminal CT in level Low)	R:1V, \overline{RES} -VIN:10k Ω pullup \overline{CS} :10k Ω ,3Vpullup	_	-	0.3	٧
RRESL	Output voltage (RES in level Low)	R:2V, \overline{RES} -VIN:10k Ω pullup \overline{CS} :10k Ω ,3Vpullup	_	1	VIN	٧
RRESH	Output voltage (RES in level HI)	RES:1mA(SINK) R:1V,CS:10kΩ,3Vpullup	-	_	0.5	V
CSH	Output voltage (CS in level HI)	R: $1V, \overline{RES} - VIN$: $10k\Omega$ pullup $\overline{CS}: 10k\Omega, 3V$ pullup	_	-	VIN	٧
CSL	Output voltage (CS in level Low)	CS:1mA(SINK) R:2V,RES-VIN:10kΩpullup	-	-	0.5	٧
TPD	Delay time	R:L⇒H, RES-VIN:10kΩ pullup CS:10kΩ,3Vpullup,CT:0.047uF	9.0	18.0	27.0	ms
CSLEAK	CS leak current (VIN in level Low)	\overline{RES} -VIN: $10k\Omega$ pullup R: LOW(1V), \overline{CS} : $10k\Omega$, 3 Vpullup	-	-	0.5	uA

Delay time= $3.83 \times 10^5 \times Ct$

*This is tentative specification.

6-41 Tsukuba, Isahaya, Nagasaki, 854-0065 Japan

Keep safety first in your circuit designs!

ISAHAYA Electronics Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (1) placement of substitutive, auxiliary, (2) use of non-farmable material or (3) prevention against any malfunction or mishan.

Notes regarding these materials

- These materials are intended as a reference to our customers in the selection of the ISAHAYA products best suited to the customer's application; they don't convey any license under any intellectual property rights, or any other rights, belonging
- Customer's application; they don't convey any license under any intellectual property rights, or any other rights, belonging ISAHAYA or third party.

 ISAHAYA or third party.

 ISAHAYA Electronics Corporation assumes no responsibility for any damage, or infringement of any third party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by ISAHAYA Electronics Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact ISAHAYA Electronics Corporation or an authorized ISAHAYA products distributor for the latest product information before purchasing product listed becomes
- ISAHAYA Electronics Corporation products are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact ISAHAYA electronics corporation or an authorized ISAHAYA products distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of ISAHAYA Electronics Corporation is necessary to reprint or reproduce in whole or in part these
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 •Please contact ISAHAYA Electronics Corporation or authorized ISAHAYA products distributor for further details on these
- materials or the products contained therein.