

2SK3105

DESCRIPTION

The 2SK3105 is a switching device which can be driven directly by a 4 V power source.

The 2SK3105 features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

FEATURES

- Can be driven by a 4 V power source
- Low on-state resistance

 $R_{DS(on)1} = 95 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 10 \text{ V, ID} = 1.5 \text{ A)}$

RDS(on)2 = 135 m Ω MAX. (VGS = 4.5 V, ID = 1.5 A)

RDS(on)3 = 150 m Ω MAX. (VGS = 4.0 V, ID = 1.5 A)

ORDERING INFORMATION

PART NUMBER	PACKAGE
2SK3105	3-pin Mini Mold (Thin Type)

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage	Voss	30	V
Gate to Source Voltage	Vgss	±20	V
Drain Current (DC)	ID(DC)	±2.5	Α
Drain Current (pulse) Note1	I D(pulse)	±10	Α
Total Power Dissipation	P _{T1}	0.2	W
Total Power Dissipation Note2	P _{T2}	1.25	W
Channel Temperature	Tch	150	°C
Storage Temperature	T_{stg}	-55 to +150	°C

PACKAGE DRAWING (Unit: mm)

- 1 : Gate
- 2 : Source
- 3 : Drain

EQUIVALENT CIRCUIT

Marking: XA

- **Notes 1.** PW \leq 10 μ s, Duty Cycle \leq 1 %
 - **2.** Mounted on FR4 Board, $t \le 5$ sec.

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

2SK3105

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Drain Cut-off Current	IDSS	V _{DS} = 30 V, V _{GS} = 0 V			-10	μΑ
Gate Leakage Current	Igss	Vgs = ±16 V, Vps = 0 V			±10	μΑ
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1 mA	1.0	1.6	2.5	V
Forward Transfer Admittance	yfs	V _{DS} = 10 V, I _D = 1.5 A	1	3.5		S
Drain to Source On-state Resistance	RDS(on)1	Vgs = 10 V, ID = 1.5 A		56	95	mΩ
	RDS(on)2	Vgs = 4.5 V, ID = 1.5 A		82	135	mΩ
	RDS(on)3	Vgs = 4.0 V, ID = 1.5 A		91	150	mΩ
Input Capacitance	Ciss	V _{DS} = 10 V		211		pF
Output Capacitance	Coss	V _G s = 0 V		95		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		42		pF
Turn-on Delay Time	td(on)	V _{DD} = 10 V		12		ns
Rise Time	tr	ID = 1.0 A		44		ns
Turn-off Delay Time	t d(off)	V _{GS(on)} = 10 V		28		ns
Fall Time	t _f	$R_G = 10 \Omega$		15		ns
Total Gate Charge	Q _G	V _{DS} = 10 V		2.1		nC
Gate to Source Charge	Qgs	ID = 2.5 A		0.61		nC
Gate to Drain Charge	Q _{GD}	V _G S = 4.0 V		0.84		nC
Diode Forward Voltage	V _{F(S-D)}	IF = 2.5 A, VGS = 0 V		0.81		V
Reverse Recovery Time	trr	IF = 2.5 A, VGS = 0 V		15		ns
Reverse Recovery Charge	Qrr	di/dt = 90 A / μs		3.7		nC

TEST CIRCUIT 1 SWITCHING TIME

PG. $\bigcap_{RG} R_{G} = 10 \Omega$ $V_{GS} \bigvee_{Wave Form} V_{GS} \bigvee_{Wave Form} V_$

TEST CIRCUIT 2 GATE CHARGE

