Standard Products

 UT7R995 RadHard Clock Generator

 UT7R995 RadHard Clock Generator}

Advanced Data Sheet
March 21, 2005

Aeroflex
A passion for performance.

FEATURES:

Figure 1a. 49-Pin Ceramic CGA (9mm x 9mm)

INTRODUCTION:

The UT7R995 is a low-voltage, low-power, eight-output, 6-to200 MHz clock driver. It features output phase programmability which is necessary to optimize the timing of high-performance microprocessor and communication systems.
The user programs both the frequency and the phase of the output banks through $n F[1: 0]$ and $\operatorname{DS}[1: 0]$ pins. The adjustable phase feature allows the user to skew the outputs to lead or lag the reference clock. Connect any one of the outputs to the feedback input to achieve different reference frequency multiplication and division ratios.
The device also features split output bank power supplies which enable the user to run two banks (1Qn and 2Qn) at a power supply level different from that of the other 2 banks (3Qn and 4Qn). The ternáry $\mathrm{PE} / \mathrm{HD}$ pin controls the synchronization of output signals to either the rising or the falling edge of the reference clock and selects the drive strength of the output buffers. The UT7R995 interfaces to either a digital clock reference or a quartz crystal. The flexible reference interface maximizes the number of reference options available to the user.

Figure 1b. 48-Lead Ceramic Flatpack Pin Description

Figure 2. UT7R995 Block Diagram

1.0 DEVICE CONFIGURATION:

The outputs of the UT7R995 can be configured to run at frequencies ranging from 6 MHz to 200 MHz . Each output bank has the ability to run at separate frequencies and with various phase skew. Depending upon the output used for feedback to the PLL, numerous clock division and multiplication options exist.

The following discussion and list of tables will summarize the available configuration options for the UT7R995. Tables 1 through 11, are relevant to the following configuration discussions.

Table 1. Feedback Divider Settings (N-factor)
Table 2. Reference Divider Settings (R-Factor)
Table 3. Output Divider Settings - Bank 3 (K-factor)
Table 4. Output Divider Settings - Bank 4 (M-Factor)
Table 5. Frequency Divider Summary
Table 6. Calculating Output Frequency Settings
Table 7. Frequency Range Select
Table 8. Multiplication Factor (MF) Calculation
Table 9. Output Skew Settings
Table 10: Signal Propagation Delays in Various Media
Table 11. PE/HD Settings
Table 12. Power Supply Constraints

1.1 Divider Configuration Settings:

The feedback input divider is controlled by the 3-level DS[1:0] pins as indicated in Table 1 and the reference input divider is controlled by the 3-level $\overline{\text { PD }} / \mathrm{DIV}$ pin as indicated in Table 2. Although the Reference divider will continue to operate when the UT7R995 is in the standard TEST mode of operation, the Feedback Divider will not be available.

Table 1: Feedback Divider Settings (N-factor)

DS[1:0]	Feedback Input Divider $-(N)$	Permitted Output Divider (K or M) Connected to FB
LL	2	1 or 2
LM	3	1
LH	4	1,2 , or 4
ML	5	1 or 2
MM	6	1,2 , or 4
MH	10	1 or 2
HL	12	1 or 2
HM		1
HH		1

Table 2: Reference Divider Settings (R-factor)

$\overline{\mathbf{P D}} / \mathbf{D I V}$	Operating Mode	Reference Input Divider $-(\boldsymbol{R})$
LOW $^{\mathbf{1}}$	Powered Down	Not Applicable
MID	Normal Operation	$\mathbf{2}$
HIGH	Normal Operation	$\mathbf{1}$

Note: 1. When $\overline{\mathrm{PD}} / \mathrm{DIV}=\mathrm{LOW}$, the device enters power-down mode.
In addition to the reference and feedback dividers, the UT7R995 includes output dividers on Bank 3 and Bank 4, which are controlled by $3 \mathrm{~F}[1: 0]$ and $4 \mathrm{~F}[1: 0]$ as indicated in Tables 3 and 4, respectively.

Table 3: Output Divider Settings - Bank 3 (K-factor)

3F(1:0)	Bank 3 Output Divider - (K)
LL	2
HH	4
Other $^{\mathbf{1}}$	1

Note: 1. These states are used to program the phase of the respective banks. Please see Equation 1 along with Tables 8 and 9.

Table 4: Output Divider Settings - Bank 4 (M-factor)

4F[1:0]	Bank 4 Output Divider (M)
LL	2
Other 1	1

Note: 1.These states are used to program the phase of the respective banks. Please see Equation 1 along with Tables 8 and 9.

Each of the four divider options and their respective settings are summarized in Table 5. By applying the divider options in Table 5 to the calculations shown in Table 6, the user determines the proper clock frequency for every output bank.

Table 5: Frequency Divider Summary

Division Factors	Available Divider Settings
N	$1,2,3,4,5,6,8,10,12$
R	1,2
K	$1,2,4$
M	1,2

Table 6: Calculating Output Frequency Settings

Configuration	Output Frequency		
Clock Output Connected to FB	1Q[1:0] and 2Q[1:0]	3Q[1:0]	4Q[1:0]
1Qn or 2Qn	$(\mathrm{N} / \mathrm{R}) * \mathrm{f}_{\mathrm{XTAL}}$	$(\mathrm{N} / \mathrm{R}) *(1 / \mathrm{K}) * \mathrm{f}_{\mathrm{XTAL}}$	$(\mathrm{N} / \mathrm{R}) *(1 / \mathrm{M}) * \mathrm{f}_{\mathrm{XTAL}}$
3 Qn	$(\mathrm{N} / \mathrm{R}) * \mathrm{~K}^{*} \mathrm{f}_{\mathrm{XTAL}}$	$(\mathrm{N} / \mathrm{R}) * \mathrm{f}_{\mathrm{XTAL}}$	$(\mathrm{N} / \mathrm{R}) *(\mathrm{~K} / \mathrm{M}) * \mathrm{f}_{\mathrm{XTAL}}$
4 Qn	$(\mathrm{N} / \mathrm{R}) * \mathrm{M}^{*} \mathrm{f}_{\mathrm{XTAL}}$	$(\mathrm{N} / \mathrm{R}) *(\mathrm{M} / \mathrm{K}) * \mathrm{f}_{\mathrm{XTAL}}$	$(\mathrm{N} / \mathrm{R}) * \mathrm{f}_{\mathrm{XTAL}}$

Notes:

1. These outputs are undivided copies of the VCO clock. Therefore, the formulas in this column can be used to calculate the nominal VCO operating frequency ($\mathrm{f}_{\text {NOM }}$) at a given reference frequency ($\mathrm{f}_{\mathrm{XTAL}}$) and the divider and feedback configuration. The user must select a configuration and a reference frequency that will generate a VCO frequency that is within the range specified by FS pin. Please see Table 7.

1.2 Frequency Range and Skew Selection:

The PLL in the UT7R995 operates within three nominal frequency ranges. Each of which is selectable by the user through the 3-level FS control pin. The selected FS settings given in Table 7 determine the nominal operating frequency range of the divide-by-one outputs of the UT7R995. Reference the first column of equation in Table 6 to calculate the value of $\mathrm{f}_{\text {NOM }}$ for any given feedback clock.

Table 7: Frequency Range Select

FS	Nominal PLL Frequency Range ($\boldsymbol{f}_{\text {NOM }}$)
L	24 to 50 MHz
M	48 to 100 MHz
H	96 to 200 MHz

Selectable output skew is in discrete increments of time unit $\left(\mathrm{t}_{\mathrm{U}}\right)$. The value of t_{U} is determined by the FS setting and the maximum nominal frequency. The equation to be used to determine the t_{U} value is as follows:

Equation 1.

The $\mathrm{f}_{\text {NOM }}$ term, selected by the FS signal, is found in Table 7, and the multiplication factor (MF), also determined by FS, is shown in Table 8.

After calculating the time unit $\left(\mathrm{t}_{\mathrm{U}}\right)$ based on the nominal PLL frequency ($\mathrm{f}_{\text {NOM }}$) and multiplication factor (MF), the circuit designer plans routing requirements of each clock output and its respective destination receiver. With an understanding of signal propagation delays through a conductive medium (see Table 10), the designer specifies trace lengths which ensure a signal propagation delay that is equal to one of the t_{U} multiples show in Table 9. For each output bank, the t_{U} skew factors are selected with the tri-level, bank-specific, $n F[1: 0]$ pins.

Table 8: MF Calculation

FS	MF	$\mathbf{f}_{\text {NOM }}$ at which $\mathbf{t}_{\mathbf{U}}$ is 1.0ns
L	32	31.25 MHz
M	16	62.5 MHz
H	8	125 MHz

Table 9: Output Skew Settings

$\mathbf{n F [1 : 0] ~}$	Skew 1Q[1:0], 2Q[1:0]	Skew 3Q[1:0]	Skew 4Q[1:0]
LL $^{\mathbf{1 , 2}}$	$-4 \mathrm{t}_{\mathrm{U}}$	Divide by 2	Divide by 2
LM	$-3 \mathrm{t}_{\mathrm{U}}$	$-6 \mathrm{t}_{\mathrm{U}}$	$-6 \mathrm{t}_{\mathrm{U}}$
LH	$-2 \mathrm{t}_{\mathrm{U}}$	$-4 \mathrm{t}_{\mathrm{U}}$	$-4 \mathrm{t}_{\mathrm{U}}$
ML	$-1 \mathrm{t}_{\mathrm{U}}$	$-2 \mathrm{t}_{\mathrm{U}}$	$-2 \mathrm{t}_{\mathrm{U}}$
MM	Zero Skew	Zero Skew	Zero Skew
MH	$+1 \mathrm{t}_{\mathrm{U}}$	$+2 \mathrm{t}_{\mathrm{U}}$	$+2 \mathrm{t}_{\mathrm{U}}$
HL	$+2 \mathrm{t}_{\mathrm{U}}$	$+4 \mathrm{t}_{\mathrm{U}}$	$+4 \mathrm{t}_{\mathrm{U}}$
HM	$+3 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{U}}$
HH $^{\mathbf{2}}$	$+4 \mathrm{t}_{\mathrm{U}}$	Divide by $4^{\text {Inverted }^{\mathbf{3}}}$	

Notes:

1. $\mathrm{nF}[1: 0]=$ LL disables bank specific outputs if TEST=MID and $\overline{\mathrm{SOE}}=$ HIGH. 2. When TEST=MID or HIGH, the Divide-by-2, Divide-by-4, and Inversion options function as defined in Table 9.
2. When $4 \mathrm{Q}[1: 0]$ are set to run inverted $(4 \mathrm{~F}[1: 0]=\mathrm{HH}), \overline{\mathrm{sOE}}$ disables these outputs HIGH when PE/HD = HIGH or MID, $\overline{\mathrm{SOE}}$ disables them LOW when $\mathrm{PE} / \mathrm{HD}=$ LOW .

Table 10: Examples of Common Signal Propagation Delays found in Various Mediums

Medium	Propagation Delay (ps/inch)	Dielectric Constant
Air (Radio Waves)	85	1.0
Coax. Cable (75\% Velocity)	113	1.8
Coax. Cable (66\% Velocity)	129	2.3
FR4 PCB, Outer Trace	$140-180$	$2.8-4.5$
FR4 PCB, Inner Trace	180	4.5
Alumina PCB, Inner Trace	$240-270$	$8-10$

Figure 3. Typical Outputs with FB Connected to a Zero-Skewed Output

A graphical summary of Table 9 is shown in Figure 3. The drawing assumes that the FB input is driven by a clock output programmed with zero skew. Depending upon the state of the $n F[1: 0]$ pins the respective clocks will be skewed, divided, or inverted relative the fedback output as shown in Figure 3.

1.3 Output Drive, Synchronization, and Power Supplies:

The UT7R995 employs flexible output buffers providing the user with selectable drive strengths, independent power supplies, and synchronization to either edge of the reference input. Using the 3-level PE/HD pin, the user selects the reference edge synchronization and the output drive strength for all clock outputs. The options for edge synchronization and output drive strength selected by the PE/HD pin are listed in Table 11.

When the outputs are configured for low drive operation, they will provide a minimum 12 mA of drive current regardless of the selected output power supply. If the outputs are configured for high drive operation, they will provide a minimum 24 mA of drive current under a 3.3 V power supply and 20 mA when powered from a 2.5 V supply.

Table 11: PE/HD Settings

PE/HD	Synchronization	Output Drive Strength $^{\mathbf{1}}$
L	Negative	Low Drive
M	Positive	High Drive
H	Positive	Low Drive

Notes:

1. Please refer to "DC Parameters" section for $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ specifications.

The UT7R995 features split power supply buses for Banks 1 and 2, Bank 3, and Bank 4. These independent power supplies enable the user to obtain both 3.3 V and 2.5 V output signals from one UT7R995 device. The core power supply (V_{DD}) must run from a 3.3 V power supply. Table 12 summarizes the power supply operations available with the UT7R995.

Table 12: Power Supply Constraints

$\mathbf{V}_{\mathbf{D D}}$	$\mathbf{V}_{\mathbf{D D}} \mathbf{Q 1}^{\mathbf{1 , 2}}$	$\mathbf{V}_{\mathbf{D D}} \mathbf{Q 3}^{\mathbf{1 , 2}}$	$\mathbf{V}_{\mathbf{D D}} \mathbf{Q 4}^{\mathbf{1}}$
3.3 V	3.3 V or 2.5 V	3.3 V or 2.5 V	3.3 V or 2.5 V

Notes:

1. Please refer to "DC Parameters" section for $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ specifications.

1.4 Oscillator Characteristics:

The UT7R995 accepts a quartz crystal oscillator, ceramic resonator, or 3.3 V digital clock. XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. To drive the UT7R995 from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4.

2.0 RADIATION HARDNESS:

The UT7R955 incorporates special features ensuring its operation in radiation intensive environments.

Table 13: Radiation Hardness Design Specifications

Parameter	Limit	Units
Total Ionizing Dose (TID)	$>1 \mathrm{E} 6$	$\mathrm{rads}(\mathrm{Si})$
Single Event Latchup (SEL) ${ }^{\mathbf{1 , 2}}$	>109	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
SEU Saturated Cross-Section ($\sigma_{\text {sat }}$)	$1.0 \mathrm{E}-8$	$\mathrm{~cm}^{2} / \mathrm{device}$
Onset Single Event Upset (SEU) LET Threshold $^{\mathbf{3}}$	109	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
Neutron Fluence	1.0 E 14	$\mathrm{n} / \mathrm{cm}^{2}$
Dose Rate Upset	TBD	$\mathrm{rads}(\mathrm{Si}) / \mathrm{sec}$
Dose Rate Survivability	TBD	$\mathrm{rads}(\mathrm{Si}) / \mathrm{sec}$

Notes:

1. The UT7R995 is immune to latchup to particles $>109 \mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$.
2. Worst case temperature and voltage of $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 1 / \mathrm{Q} 3 / \mathrm{Q} 4=3.6 \mathrm{~V}$ for SEL.
3. Worst case temperature and voltage of $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 1 / \mathrm{Q} 3 / \mathrm{Q} 4=3.0 \mathrm{~V}$ for SEU.
4. Adams 90% worst case particle environment, Geosynchronous orbit, 100 mils of Aluminum shielding.
Table 14: Weibull and Device Parameters (256 Registers ${ }^{1}$)

Parameter	Limit	Units
Shape Parameter	TBD	--
Width Parameter	TBD	--
Structural Cross-Section (σ)	$1.0 \mathrm{E}-8$	$\mathrm{cm}^{2} /$ device
Onset LET	109	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
Depletion Depth	TBD	$\mu \mathrm{m}$
Funnel Depth	TBD	$\mu \mathrm{m}$

Notes:

1. All SEU data specified in this datasheet is based on the storage elements used in the UT7R995. For a detailed white paper study of Single Event Transient (SET) effects on the phase-locked loop (PLL), please contact Aeroflex Colorado Springs at 719-594-8048.

3.0 PIN DESCRIPTION

Flatpack Pin No.	CGA Pin No.	Name	I/O	Type	Description
37	A4	XTAL1	I	LVTTL	Crystal or single ended reference input. If used with a crystal, the second pin on the crystal must be connected to XTAL2. If a singled ended reference clock is supplied to this pin, then XTAL2 should be left unconnected.
36	E4	XTAL2	O	LVTTL	Feedback output from the on-board crystal oscillator. When a crystal is used to supply the reference frequency for the UT7R995, this pin must be connected to the second terminal of the crystal resonator. If a singleended reference clock is supplied to XTAL1, then this output should be left unconnected.
13	D4	FB	I	LVTTL	Feedback input for the PLL.
28	G6	TEST ${ }^{1}$	I	3-Level	Built-in test control signal. When Test is set to the MID or HIGH level, it disables the PLL and the XTAL1 reference frequency is driven to all outputs (except for the conditions described in note 2). Set Test LOW for normal operation.
3	B4	$\overline{\mathrm{sOE}}$	I	LVTTL	Synchronous Output Enable. The $\overline{\text { sOE }}$ input is used to synchronously enable/disable the output clocks. Each clock output that is controlled by the $\overline{\mathrm{sOE}} \mathrm{pin}$ is synchronously enabled/disabled by the individual output clock. When HIGH, $\overline{\text { sOE }}$ disables all clocks except 2Q0 and 2Q1. When disabled, 1Q0, 1Q1, 3Q0, and 3Q1 will always enter a LOW state when PE/HD is MID or HIGH, and they will disable into a HIGH state when PE/HD is LOW. The disabled state of 4 Q 0 and 4 Q 1 is dependant upon the state of $\mathrm{PE} /$ HD and $4 \mathrm{~F}[1: 0]$. The following table illustrates the disabled state of bank 4 outputs as they are controlled by the state of $\mathrm{PE} / \mathrm{HD}$ and $4 \mathrm{~F}[1: 0]$. *All other combinations of 4F[1:0] will result in 4Q0 and 4Q1 disabling into a LOW state when PE/HD is MID or HIGH, and they will disable into a HIGH state when PE/HD is LOW. When TEST is held at the MID level and $\overline{\operatorname{sOE}}$ is HIGH, the $n F[1: 0$] pins act as individual output enable/disable controls for each output bank, excluding bank 2. Setting both $n F[1: 0$] signals LOW disables the corresponding output bank. Set $\overline{\text { SOE }}$ LOW to place the UT7R995 RadClock ${ }^{\text {TM }}$ outputs into their normal operating modes.
$\begin{gathered} 1,2,24, \\ 25,26,27, \\ 47,48 \end{gathered}$	$\begin{gathered} \text { A3, A5, B3 } \\ \text { B5, F3, F5 } \\ \text { G3, G5 } \end{gathered}$	[1:0]	I	3-Level	Output divider and phase skew selection for each output bank. Please see Tables 3, 4, 5, 6, and 9 for a complete explanation of the nF [1:0] control functions and their effects on output frequency and skew.
46	A6	FS	I	3-Level	VCO operating frequency range selection. Please see Tables 7 and 8.

Flatpack Pin No.	$\begin{gathered} \text { CGA } \\ \text { Pin No. } \end{gathered}$	Name	I/O	Type	Description
$\begin{gathered} 8,9,17 \\ 18,31,32, \\ 41,42 \end{gathered}$	$\begin{gathered} \text { C1, C2, C6, } \\ \text { C7, E1, E2, } \\ \text { E6, E7 } \end{gathered}$	nQ[1:0]	O	LVTTL	Four clock banks of two outputs each. Please see Table 6 for frequency settings and Table 9 for skew settings.
22, 23	G2, G4	DS[1:0]	I	3-Level	Feedback input divider selection. Please see Table 1 for a summary of the feedback input divider settings.
5	A2	PE/HD	I	3-Level	Positive/negative edge control and high/low output drive strength selection. The PE portion of this pin controls which edge of the reference input synchronizes the clock outputs. The HD portion of this pin controls the drive strength of the output clock buffers. The following table summarizes the effects of the PE/HD pin during normal operation. Low drive strength outputs provide 12 mA of drive strength while the high drive condition results in 24 mA of current drive. Output banks operating from a 2.5 V power supply guarantee a high drive of 20 mA .
4	A4	$\overline{\mathrm{PD}} / \mathrm{DIV}$	I	3-Level	Power down and reference divider control. This dual function pin controls the power down operation and selects the input reference divider. The following table summarizes the operating states controlled by the $\overline{\mathrm{PD}} / \mathrm{DIV}$ pin.
20	F4	LOCK	O	LVTTL	PLL lock indication signal. A HIGH state indicates that the PLL is in a locked condition. A LOW state indicates that the PLL is not locked and the outputs may not be synchronized to the input.
43	C5	$\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 4{ }^{2}$	PWR	Power	Power supply for Bank 4 output buffers. Please see Table 12 for supply level constraints.
7	C3	$\mathrm{V}_{\mathrm{DD}} \mathrm{Q}^{2}$	PWR	Power	Power supply for Bank 3output buffers. Please see Table 12 for supply level constraints.
19, 30	E3, E5	$\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 1^{2}$	PWR	Power	Power supply for Bank 1 and Bank 2 output buffers. Please see Table 12 for supply level constraints.
$\begin{gathered} 6,12,14 \\ 35,38 \end{gathered}$	$\begin{gathered} \text { B3, B6, D1, } \\ \text { D5, D7, F2, F6 } \end{gathered}$	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	PWR	Power	Power supply for internal circuitry. Please see Table 12 for supply level constraints.
$\begin{aligned} & 10,11,15, \\ & 16,21,29, \\ & 33,34,39, \\ & 40,44,45 \end{aligned}$	$\begin{gathered} \text { A1, A7, B1, } \\ \text { B7, D2, D3, } \\ \text { D6, F1, F7, } \\ \text { G1, G7 } \end{gathered}$	V_{SS}	PWR	Power	Ground

Notes:

1. When TEST = MID and $s \overline{O E}=$ HIGH, the PLL remains active with $n F[1: 0]=$ LL functioning as an output disable control for individual output banks. Skew selections remain in effect unless $n F[1: 0]=$ LL.
2. A bypass capacitor $(0.1 \mu \mathrm{~F})$ should be placed as close as possible to each positive power pin ($<0.2^{\prime \prime}$). An additional $1 \mu \mathrm{~F}$ capacitor should be located within $0.2^{\prime \prime}$ of the output bank power supplies $\left(\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 1, \mathrm{~V}_{\mathrm{DD}} \mathrm{Q} 3\right.$, and $\left.\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 4\right)$. If these bypass capacitors are not close to the pins, their high frequency filtering characteristics will be cancelled by the lead inductance of the traces.

4.0 ABSOLUTE MAXIMUM RATINGS: ${ }^{1}$

(Referenced to V_{SS})

Symbol	Description	Limits	Units
V_{DD}	Core Power Supply Voltage	-0.3 to 4.0	V
$\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 1, \mathrm{~V}_{\mathrm{DD}} \mathrm{Q} 3$, and $\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 4$	Output Bank Power Supply Voltage	-0.3 to 4.0	V
$\mathrm{V}_{\text {IN }}$	Voltage Any Input Pin	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {OUT }}$	Voltage Any Clock Bank Output	-0.3 to $\mathrm{V}_{\mathrm{DD}} \mathrm{Qn}+0.3$	V
V_{O}	Voltage on XTAL2 and LOCK Outputs	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{I}_{\text {I }}$	DC Input Current	± 10	mA
P_{D}	Maximum Power Dissipation	1	W
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature ${ }^{2}$	+150	${ }^{\circ} \mathrm{C}$
$\Theta_{\text {JC }}$	Thermal Resistance, Junction to Case	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD ${ }_{\text {HBM }}$	ESD Protection (Human Body Model) - Class II	3500	V

Notes:

1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance.
2. Maximum junction temperature may be increased to $+175^{\circ} \mathrm{C}$ during burn-in and steady-static life.

5.0 RECOMMENDED OPERATING CONDITIONS:

Symbol	Description	Limits	Units
V_{DD}	Core Operating Voltage	3.0 to 3.6	V
$\mathrm{~V}_{\mathrm{DD}} \mathrm{Q} 1, \mathrm{~V}_{\mathrm{DD}} \mathrm{Q} 3$, and $\mathrm{V}_{\mathrm{DD}} \mathrm{Q} 4$	Output Bank Operating Voltage	2.25 to 3.6	V
$\mathrm{~V}_{\mathrm{IN}}$	Voltage Any Configuration and Control Input	0 to V_{DD}	V
$\mathrm{V}_{\mathrm{OUT}}$	Voltage Any Bank Output	0 to $\mathrm{V}_{\mathrm{DD}} \mathrm{Qn}$	V
T_{C}	Case Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$

6.0 DC INPUT ELECTRICAL CHARACTERISTICS (Pre- and Post-Radiation)*

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Symbol	Description	Conditions	Min.	Max.	Units
$\mathrm{V}_{\mathrm{IH}}{ }^{1}$	High-level input voltage (XTAL1, FB and $\overline{\mathrm{SOE}}$ inputs)		2.0	--	V
$\mathrm{V}_{\mathrm{IL}}{ }^{1}$	Low-level input voltage (XTAL1, FB and sOE inputs)		--	0.8	V
$\mathrm{V}_{\mathrm{IHH}}{ }^{1,2}$	High-level input voltage		$\mathrm{V}_{\mathrm{DD}}-0.6$	--	V
$\mathrm{V}_{\text {IMM }}{ }^{1,2}$	Mid-level input voltage		$\mathrm{V}_{\mathrm{DD}} \div 2-0.3$	$\mathrm{V}_{\mathrm{DD}} \div 2+0.3$	V
$\mathrm{V}_{\mathrm{ILL}}{ }^{1,2}$	Low-level input voltage		--	0.6	V
$\mathrm{I}_{\text {IL }}$	Input leakage current (XTAL1 and FB inputs)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$	-5	5	$\mu \mathrm{A}$
$\mathrm{I}_{3 \mathrm{~L}}{ }^{2}$	3-Level input DC current	HIGH, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	--	200	$\mu \mathrm{A}$
		MID, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} / 2$	-50	50	$\mu \mathrm{A}$
		LOW, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-200	--	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V} ; \mathrm{TEST}=\mathrm{MID} ;$ XTAL1 \& $\overline{\text { sOE }}=$ LOW; Outputs not loaded	--	2	mA
$\mathrm{I}_{\text {DDPD }}$	Power-down current	$\overline{\mathrm{PD}} / \mathrm{DIV}$ \& $\overline{\mathrm{SOE}}=$ LOW; Test, $\mathrm{nF}[1: 0]$, \& DS[$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V}$	10 (typ)	25	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{IN}-2 \mathrm{~L}}{ }^{3}$	Input pin capacitance 2-level inputs	$f=1 \mathrm{MHzz} @ 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$	8.5		pF
$\mathrm{C}_{\text {IN-3L }}{ }^{3}$	Input pin capacitance 3-level inputs	$f=1 \mathrm{MHzz} @ 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$	15		pF

Notes:

* Post-radiation performance guaranteed at $25^{\circ} \mathrm{C}$ per MIL-STD-883 Method 1019, Condition A up to a TID level of 1.0E6 rad(Si).

1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}(\mathrm{min})}+20 \%,-0 \% ; \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}(\mathrm{max})}+0 \%,-50 \%$, as specified herein for LVTTL and LVCMOS inputs. For 3-level inputs, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IHH}(\min)}+50 \%,-0 \% ; \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{ILL}(\max)}+0 \%,-50 \%$; $\mathrm{V}_{\mathrm{IM}}=\mathrm{V}_{\mathrm{IMM}(\mathrm{nom})}+0.1 \mathrm{~V},-0.1 \mathrm{~V}$. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $\mathrm{V}_{\mathrm{IH}(\min)}, \mathrm{V}_{\mathrm{IL}(\max)}$, $\mathrm{V}_{\mathrm{IHH}(\min)}$, $\mathrm{V}_{\mathrm{ILL}(\max)}$, and $\mathrm{V}_{\mathrm{IMM}(\mathrm{nom})}$.
2. These inputs are normally wired to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or left unconnected. Internal termination resistors bias unconnected inputs to $\mathrm{V}_{\mathrm{DD}} / 2 \pm 0.3 \mathrm{~V}$. The 3 -level inputs include: TEST, $\overline{\mathrm{PD}} / \mathrm{DIV}, \mathrm{PE} / \mathrm{HD}, \mathrm{FS}, \mathrm{nF}[1: 0], \mathrm{DS}[1: 0]$.
3. Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1 MHz and a signal amplitude of 50 mV rms maximum.

7.0 DC OUTPUT ELECTRICAL CHARACTERISTICS (Pre- and Post-Radiation)*

$\left(\mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Symbol	Description	Conditions	Min.	Max.	Units
$\mathrm{V}_{\text {OL }}$	Output low voltage	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ LOW or HIGH); (Pins: nQ[1:0])	--	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}) ;$ (Pins: $\mathrm{nQ}[1: 0]$)	--	0.4	V
		$\mathrm{I}_{\text {OL }}=2 \mathrm{~mA}$ (Pins: LOCK)	--	0.4	V
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ LOW or HIGH); (Pins: nQ[1:0])	2.0	--	V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}\left(\mathrm{PE} / \mathrm{HD}=\right.$ MID); (Pins: $\left.\mathrm{nQ}[1: 0] ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.25 \mathrm{~V}\right)$	2.0	--	V
		$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ MID $) ;\left(\right.$ Pins: $\left.\mathrm{nQ}[1: 0] ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.375 \mathrm{~V}\right)$	2.0	--	V
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ (Pins: LOCK)	2.4	--	V
$\mathrm{I}_{\mathrm{OSQn}}{ }^{1}$	Short-circuit output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ Qn or $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V} ; \mathrm{PE} / \mathrm{HD}=\mathrm{MID}$	-500	500	mA
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ Qn or $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V} ; \mathrm{PE} / \mathrm{HD}=\mathrm{LOW}$ or HIGH	-300	300	mA
$\mathrm{I}_{\text {DDOP }}$	Dynamic supply current	@200MHz; $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} /$ output	--	250	mA
		$@ 100 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} /$ output	--	150	mA
		@ ${ }^{\text {a }}$ MHz; $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} /$ output	--	100	mA
$\mathrm{C}_{\text {OUT }}{ }^{2}$	Output pin capacitance	$f=1 \mathrm{MHz} @ 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+2.75 \mathrm{~V}$	15		pF

$\left(\mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Symbol	Description	Conditions	Min.	Max.	Units
$\mathrm{V}_{\text {OL }}$	Output low voltage	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ LOW or HIGH); (Pins: $\mathrm{nQ}[1: 0])$	--	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ MID); (Pins: $\mathrm{nQ}[1: 0])$	--	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ (Pins: LOCK)	--	0.4	V
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ LOW or HIGH); (Pins: $\mathrm{nQ}[1: 0])$	2.4	--	V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=$ MID $) ;($ Pins: $\mathrm{nQ}[1: 0])$	2.4	--	V
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ (Pins: LOCK)	2.4	--	V
$\mathrm{I}_{\text {OSQn }}{ }^{1}$	Short-circuit output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} \mathrm{Qn}$ or $\mathrm{V}_{\text {SS }} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.6 \mathrm{~V} ; \mathrm{PE} / \mathrm{HD}=\mathrm{MID}$	-600	600	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} \text { Qn or } \mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.6 \mathrm{~V} ; \\ & \mathrm{PE} / \mathrm{HD}=\text { LOW or } \mathrm{HIGH} \end{aligned}$	-300	300	mA
$\mathrm{I}_{\text {DDOP }}$	Dynamic supply current	@200MHz; $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} /$ output	--	400	mA
		@100MHz; $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} /$ output	--	230	mA
		$@ 50 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} /$ output	--	150	mA
$\mathrm{C}_{\text {OUT }}{ }^{2}$	Output pin capacitance	$f=1 \mathrm{MHz} @ 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=+3.6 \mathrm{~V}$	15		pF

Notes:

* Post-radiation performance guaranteed at $25^{\circ} \mathrm{C}$ per MIL-STD-883 Method 1019, Condition A up to a TID level of $1.0 \mathrm{E} 6 \mathrm{rad}(\mathrm{Si})$.

1. Supplied as a design limit. Neither guaranteed nor tested.
2. Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1 MHz and a signal amplitude of 50 mV rms maximum.

8.0 AC INPUT ELECTRICAL CHARACTERISTICS (Pre- and Post-Radiation)*

($\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Symbol	Description	Condition	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}{ }^{1}$	Input rise/fall time	VIH(min)-VIL(max)	--	10	ns/V
$\mathrm{t}_{\text {PWC }}$	Input clock pulse	HIGH or LOW	2	--	ns
${ }^{\text {t XTAL }}$	Input clock period	$1 \div \mathrm{F}_{\text {XTAL }}$	5	500	ns
$\mathrm{t}_{\text {DCIN }}$	Input clock duty cycle	HIGH or LOW	10	90	\%
$\mathrm{f}_{\text {XTAL }}{ }^{2}$	Reference input frequency	FS = LOW; $\overline{\text { PD }} / \mathrm{DIV}=\mathrm{HIGH}$	2	50	MHz
		FS = LOW; PD/DIV = MID	4	100	MHz
		FS = MID; $\overline{\text { PD }} / \mathrm{DIV}=\mathrm{HIGH}$	4	100	MHz
		FS = MID; $\overline{\text { PD }} / \mathrm{DIV}=$ MID	8	200	MHz
		FS = HIGH; $\overline{\text { PD/ } / \mathrm{DIV}=\mathrm{HIGH}}$	8	200	MHz
		FS $=$ HIGH; $\overline{\text { PD }} / \mathrm{DIV}=$ MID	16	200	MHz

Notes:

* Post-radiation performance guaranteed at $25^{\circ} \mathrm{C}$ per MIL-STD-883 Method 1019.

1. Tested on initial qualification and after any design or process changes that may affect this characteristic.
2. Although the input reference frequencies are defined as-low-as 2 MHz , the N and R dividers must be selected to ensure the PLL operates from $24 \mathrm{MHz}-50 \mathrm{MHz}$ when FS = LOW, 48MHz-100MHz when FS = MID, and $96 \mathrm{MHz}-200 \mathrm{MHz}$ when $\mathrm{FS}=\mathrm{HIGH}$.

9.0 AC OUTPUT ELECTRICAL CHARACTERISTICS (Pre- and Post-Radiation)*

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Symbol	Description	Condition	Min.	Max.	Unit
$\mathrm{f}_{\text {OR }}$	Output frequency range		6	200	MHz
$\mathrm{VCO}_{\text {LR }}$	VCO lock range		24	200	MHz
$\mathrm{VCO}_{\text {LBW }}{ }^{1}$	VCO loop bandwidth		0.25	3.5	MHz
$\mathrm{t}_{\text {SKEWPR }}{ }^{2}$	Matched-pair skew	Skew between the earliest and the latest output transitions within the same bank.	--	100	ps
$\mathrm{t}_{\text {SKEW0 }}{ }^{2}$	Output-output skew	Skew between the earliest and the latest output transitions among all outputs at $0 \mathrm{t}_{\mathrm{U}}$.	--	200	ps
$\mathrm{t}_{\text {SKEW } 1}{ }^{2}$		Skew between the earliest and the latest output transitions among all outputs for which the same phase delay has been selected.	--	200	ps
$\mathrm{t}_{\text {SKEW2 }}{ }^{2}$		Skew between the nominal output rising edge to the inverted output falling edge	--	500	ps
$\mathrm{t}_{\text {SKEW } 3}{ }^{2}$		Skew between non-inverted outputs running at different frequencies.	--	500	ps
$\mathrm{t}_{\text {SKEW4 }}{ }^{2}$		Skew between nominal to inverted outputs running at different frequencies.		500	ps
$\mathrm{t}_{\text {SKEW5 }}{ }^{2}$		Skew between nominal outputs at different power supply levels.	--	650	ps
$\mathrm{t}_{\text {PART }}$	Part-part skew	Skew between the outputs of any two devices under identical settings and conditions ($\mathrm{V}_{\mathrm{DD}} \mathrm{Qn}, \mathrm{V}_{\mathrm{DD}}$, temp, air flow, frequency, etc).	--	750	ps
$\mathrm{t}_{\text {PD }}{ }^{3}$	XTAL1 to FB propagation delay	3	-250	+250	ps
$\mathrm{t}_{\text {ODCV }}$	Output duty cycle	fout < 100 MHz , measured at $\mathrm{V}_{\mathrm{DD}} \div 2$	48	52	\%
		fout $>100 \mathrm{MHz}$, measured at $\mathrm{V}_{\mathrm{DD}} \div 2$	45	55	\%
$\mathrm{t}_{\text {PWH }}$	Output high time deviation from 50\%	Measured at 2.0 V	--	1.5	ns
$t_{\text {PWL }}$	Output low time deviation from 50\%	$\text { Measured at } 0.8 \mathrm{~V}$	--	2.0	ns
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output rise/fall time	$\begin{aligned} & \text { Measured as transition time between } \\ & \mathrm{V}_{\mathrm{OH}(\min)} \text { and } \mathrm{V}_{\mathrm{OL}(\max)} \\ & \text { for } \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=2.25 \mathrm{~V} \text { and } 2.75 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} \end{aligned}$	0.15	1.5	ns
		$\begin{aligned} & \text { Measured as transition time between } \\ & \mathrm{V}_{\mathrm{OH}(\min)} \text { and } \mathrm{V}_{\mathrm{OL}(\max)} \\ & \text { for } \mathrm{V}_{\mathrm{DD}} \mathrm{Qn}=3.0 \mathrm{~V} \text { and } 3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} \end{aligned}$	0.10	1.5	ns
$\mathrm{t}_{\text {LOCK }}{ }^{4,5}$	PLL lock time		--	500	ms
${ }^{\text {CCJ }}$	Cycle-cycle jitter	Divide by 1 output frequency, FS = LOW, FB = divide by any	--	100	ps
		Divide by 1 output frequency FS = MID or HIGH, FB = divide by any	--	150	ps

Notes:

1. Supplied as a design limit. Neither guaranteed nor tested.
2. Test load $=40 \mathrm{pF}$, terminated to $\mathrm{V}_{\mathrm{DD}} \div 2$. All outputs are equally loaded. See figure 11 .
3. t_{PD} is measured at 1.5 V for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ with XTAL1 rise/fall times of 1 ns between $0.8 \mathrm{~V}-2.0 \mathrm{~V}$.
4. $\mathrm{t}_{\text {LOCK }}$ is the time that is required before outputs synchronize to XTAL1. This specification is valid with stable power supplies which are within normal operating limits.
5. Lock detector circuit may be unreliable for input frequencies lower than 4 MHz , or for input signals which contain more than TBD ps or TBD $\%$ of jitter.

Figure 6. AC Timing Diagram

Figure 7. +3.3V LVTTL Output Waveform

Figure 8. +2.5V LVTTL Output Waveform

Figure 9. +3.3V LVTTL Input Test Waveform

Figure 10. LOCK Output Test Load Circuit

Figure 11. Clock Output AC Test Load Circuit

Figure 12. 49-Pin Ceramic Column Grid Array ($9 \mathrm{~mm} \times 9 \mathrm{~mm}$)

Figure 13. 48-Lead Ceramic Flatpack

ORDERING INFORMATION

UT7R995:

Notes:

1. Lead finish (A,C, or X) must be specified.
2. If an " X " is specified when ordering, then the part marking will match the lead finish and will be either " A " (solder) or " C " (gold).
3. Prototype flow per UTMC Manufacturing Flows Document. Tested at $25^{\circ} \mathrm{C}$ only. Lead finish is GOLD ONLY. Radiation neither tested nor guaranteed.
4. Military Temperature Range flow per Aeroflex Colorado Springs Manufacturing Flows Document. Devices are tested at $-55^{\circ} \mathrm{C}$, room temp, and $125^{\circ} \mathrm{C}$. Radiation neither tested nor guaranteed.

UT7R995: SMD

COLORADO

Toll Free: 800-645-8862
Fax: 719-594-8468
SE AND MID-ATLANTIC
Tel: 321-951-4164
Fax: 321-951-4254

INTERNATIONAL
Tel: 805-778-9229
Fax: 805-778-1980
WEST COAST
Tel: 949-362-2260
Fax: 949-362-2266

NORTHEAST

Tel: 603-888-3975
Fax: 603-888-4585

CENTRAL

Tel: 719-594-8017
Fax: 719-594-8468

Aeroflex Colorado Springs, Inc., reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties. attributes represented by these three icons: solution-minded, performance-driven and customer-focused

