
INTRODUCTION

The KA22241B is a monolithic integrated circuit consisting of dual equalizer amplifier with ALC, and it is suitable for stereo radio cassette tape recorder.

FEATURES

- Dual equalizer amplifier with built-in ALC circuit Low noise; $V_{Ni} = 1.0 \mu(Typ)$

- High open loop voltage gain; 80 dB (Typ)
 Wide operating supply voltage range; V_{CC} = 4.5V ~ 14V
 Good ALC response balance between channels
- Not necessary the input coupling capacitor
- Not necessary diode or transistor for ALC
- Built in power supply muting circuit
- Minimum number of external parts required

ORDERING INFORMATION

BLOCK DIAGRAM

Device	Package	Operating Temperature						
KA22241B	9-SIP	-20°C ~ +75°C						

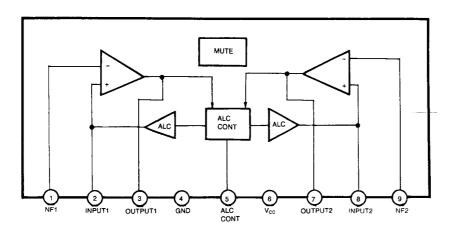
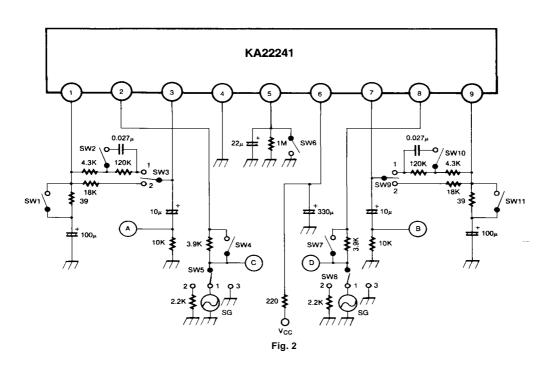


Fig. 1

ABSOLUTE MAXIMUM RATINGS

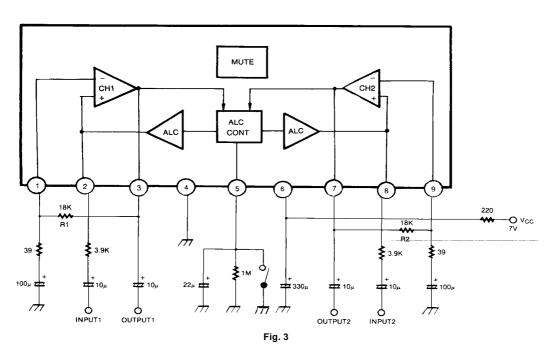
 10 Derated avobe Ta = 2°C in the propotion of 5.5mW/°C


Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	16	V
Power Dissipation	P _D	^{₁₫} 550	mW
Operating Temperature	T _{OPR}	-20 ~ +75	°C
Storage Temperature	T _{STG}	-20 ~ +125	°C

 $\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} \\ (Ta = 25 ^{\circ}C, \ V_{CC} = 7V, \ f = 1 KHz, \ unless \ otherwise \ specified) \\ \end{tabular}$

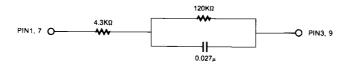
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current	Iccq	$V_1 = 0$	1.5	3.5	4.5	mA
Open Loop Voltage Gain	G _{vo}	$V_0 = 0.3V$	70	80		dB
Closed Loop Voltage Gain	G _{VC}	$V_0 = 0.3V$	45	48	50	dB
Output Voltage	Vo	THD = 1%	0.6	1.2		V
Total Harmonic Distortion	THD	$V_0 = 0.3V$		0.1	0.3	%
Equivalent Input Noise Voltage	V_{NI}	$R_G = 2.2K\Omega$, BW (-3dB) = 20Hz ~ 20KHz		1.0	2.0	μV
Input Resistance	R _I		15	25	45	ΚΩ
ALC Range	ΔV_{ALC}	R _G = 3.9K, THD = 10%	40	45		dB
ALC Balance	CB _{ALC}	$V_I = 1 \text{mV}$		0	2.5	dB

TEST CIRCUIT

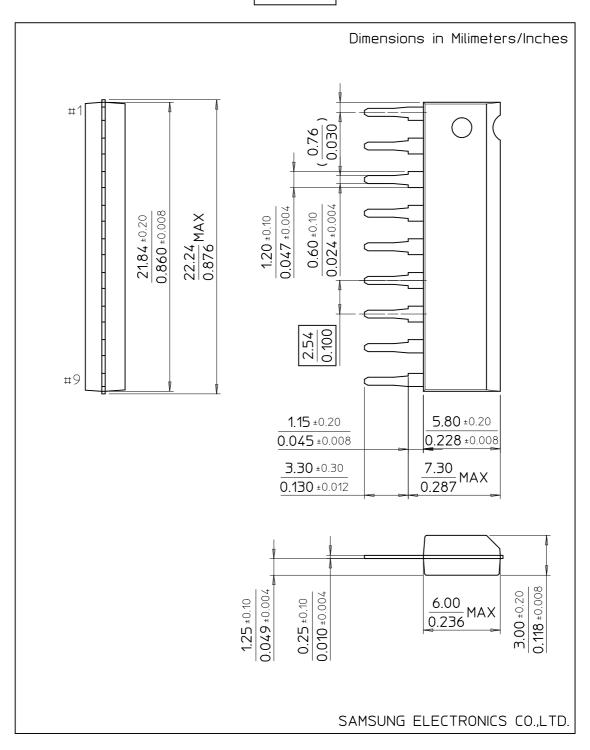


TEST METHOD

Syr	nbol	S1	S2	S 3	S4	S 5	S6	S 7	S8	S9	S10	S11
Iccq		ON	OFF	1	ON	3	ON	ON	3	1	OFF	ON
G _{VO}		ON	OFF	1	ON	1	ON	ON	3	1	OFF	ON
G _{VC}	CH -1	OFF	ON	1	ON	1	ON	ON	3	1	OFF	ON
THD	CH -1	OFF	ON	1	ON	1	ON	ON	3	1	OFF	ON
Vo	CH -1	OFF	ON	1	ON	1	ON	ON	3	1	OFF	ON
V _{NI}	CH -1	OFF	ON	1	ON	2	ON	ON	3	1	OFF	ON
	CH -2	ON	OFF	1	ON	3	ON	ON	2	1	ON	OFF
ΔV_{ALC}	CH -1	OFF	OFF	2	OFF	1	OFF	ON	3	1	OFF	ON
CB _{ALC}		OFF	OFF	2	OFF	1	OFF	OFF	1	2	OFF	OFF



APPLICATION CIRCUIT


NOTE

ON playback, connect the time constant circuit as follows below, instead of R1, R2 of Pins 1-3, 7-9, which are used in the NAB.

9-SIP

