2-Input 1-Output Video Switch (W/75 Ω driver)/3-Input 1-Output Video Switch (W/75 Ω driver)

Monolithic IC MM1221~MM1228

November 2, 2001

Outline

These ICs are high-end video switch ICs with 2-input 1-output or 3-input 1-output including a 75Ω driver. The series includes those with and without a built-in clamp circuit and a 6dB amp.

The circuit configuration table and block diagram are shown below.

MM1228 is introduced as a representative model in this document.

MM1221~MM1228 Series Circuit Configuration Table

Model name	# of Inputs	# of Outputs	6dB amp circuit	Clamp circuit	Power supply voltage range
MM1221	2	1	No	No	8~13V
MM1222	2	1	Yes	No	8~13V
MM1223	3	1	No	No	8~13V
MM1224	3	1	Yes	No	8~13V
MM1225	2	1	No	Yes	4.7~13V
MM1226	2	1	Yes	Yes	4.7~13V
MM1227	3	1	No	Yes	4.7~13V
MM1228	3	1	Yes	Yes	4.7~13V

MM1221~MM1228 Input/Output Voltage Measurement Values (typ.)

Model name	Power supply voltage	5V	9V	12V	Unit
MM1221	Input voltage		4.53	6.05	V
IVIIVIIZZI	Output voltage		4.5	6.1	V
MM1222	Input voltage		4.05	5.4	V
IVIIVIIZZZ	Output voltage		5.34	7.12	V
MM1223	Input voltage		4.53	6.05	V
IVIIVI I 223	Output voltage		4.5	6.1	V
MM1224	Input voltage		4.05	5.4	V
1011011224	Output voltage		5.34	7.12	V
MM1225	Input voltage	1.27	2.17	2.86	V
IVIIVI I 225	Output voltage	1.31	2.25	2.96	V
MM1226	Input voltage	1.3	2.2	2.9	V
IVIIVITZZO	Output voltage	1.4	2.23	2.88	V
MM1227	Input voltage	1.27	2.17	2.86	V
IVIIVI I ZZ I	Output voltage	1.31	2.25	2.96	V
MM1228	Input voltage	1.3	2.2	2.9	V
IVIIVI I 220	Output voltage	1.4	2.23	2.88	V

Block Diagram (MM1221~MM1228)

SW	OUT
L	IN1
Н	IN2

MM1222

SW	OUT
L	IN1
Н	IN2

SW1	SW2	OUT
L	L	IN1
Н	L	IN2
L/H	Н	IN3

Control input truth table

SW1	SW2	OUT
L	L	IN1
Н	L	IN2
L/H	Н	IN3

Control input truth table

SW	OUT
L	IN1
H	IN2

Control input truth table

SW	OUT
L	IN1
Н	IN2

Control input truth table

SW1	SW2	OUT
L	L	IN1
Н	L	IN2
L/H	Н	IN3

Control input truth table

SW1	SW2	OUT
L	L	IN1
Н	L	IN2
L/H	Н	IN3

Introduction of Main Model

3-Input 1-Output Video Switch (with 75 Ω driver, clamp and 6dB amp)

Monolithic IC MM1228

November 2, 2001

Outline

This is a high performance 3-input 1-output video switch IC with 6dB amp, clamp and 75Ω driver circuits. $1V_{P-P}$ video signals can be output externally with 75Ω output.

Features

- 1. Built-in 75Ω driver circuit
- 2. Built-in 6dB amp
- 3. Built-in clamp circuit
- 4. Models in the MM1221~MM1228 series without a clamp circuit can support audio or chroma circuits
- 5. Mute operation possible
- 6. Wide operating supply voltage range
- 7. Low current consumption
- 8. Wideband frequency response
- 9. Crosstalk

7MHz at 0dB

4.7~13V

-64dB (4.43MHz)

Packages

SOP-8C (MM1228XF)

Applications

- 1. TV
- 2. VCR
- 3. Video cameras
- 4. Other video equipment

Block Diagram

Control input truth table

SW1	SW2	OUT
L	L	IN1
Н	L	IN2
L/H	Н	IN3

Pin Description

Pin no.	Pin name	Function	Internal equivalent circuit diagram
1	IN1	Input	Vcc
3	IN2		
5	IN3		N 220
2	SW1	Switch	SW 85L
4	SW2		8.5k 8.5k
7	OUT	Output	VCC OUT
6	Vcc	Power supply	
8	GND	Ground	

Measuring Circuit

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+75	°C
Power supply voltage	Vcc	15	V
Allowable loss	Pd	300	mW

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5.0V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Operating power supply voltage range	Vcc		4.7		13.0	V
Consumption current	Id	Refer to Measuring Circuit		8.4	10.9	mA
Voltage gain	Gv	Refer to Measuring Circuit	+5.5	+6.0	+6.5	dB
Frequency characteristic	Fc	Refer to Measuring Circuit	-1	0	+1	dB
Differential gain	DG	Refer to Measuring Circuit		0	±3	%
Differential phase	DP	Refer to Measuring Circuit		0	±3	deg
Output offset voltage	Voff	Refer to Measuring Circuit			±30	mV
Crosstalk	Ст	Refer to Measuring Circuit		-64	-54	dB
SW1 input voltage H	V _{IH} 1	Refer to Measuring Circuit	2.1			V
SW1 input voltage L	VIL1	Refer to Measuring Circuit			0.7	V
SW2 input voltage H	V _{IH} 2	Refer to Measuring Circuit	2.1			V
SW2 input voltage L	VII.2	Refer to Measuring Circuit			0.7	V

Measuring Procedures (Vcc=5.0V, VC1=Vcc, VC2=0V)

		Switch state			tate			
Item	Symbol	S1	S2	S3	S4	S5	Measuring Procedure	
Consumption	Id	2	2	2	2	2	Connect a DC ammeter to the Vcc pin and measure. The	
current	Iu						ammeter is shorted for use in subsequent measurements.	
Voltage gain	Gv	1	2	2	2	2	Input a 1.0V _{P-P} , 100kHz sine wave to SG, and obtain Gv	
		2	1	2	1	2	from the following formula given TP1 voltage as V1	
		2	2	1	1	1	and TP3 voltage as V2.	
		2	2	1	2	1	Gv=20LOG (V2/V1) dB	
Frequency characteristic	Fc	1	2	2	2	2	For the above Gv measurement, given TP3 voltage for	
		2	1	2	1	2	7MHz as V3, Fc is obtained from the following formula.	
		2	2	1	1	1		
		2	2	1	2	1	Fc=20LOG (V3/V2) dB	
	DG	1	2	2	2	2	Input a 1.0V _{P-P} staircase wave to SG, and measure	
Differential gain		2	1	2	1	2	differential gain at TP4. APL=10~90%	
g		2	2	1	1	1		
		2	2	1	2	1		
		1	2	2	2	2		
Differential phase	DP	2	1	2	1	2	Proceed as for DG, and measure differential phase.	
		2	2	1	1	1	-	
		2	2	1	2	1		
Output offset voltage	Voff	2	2	2	2	2	Measure the DC voltage difference of each switch	
		2	2	2	1	2	status at TP2.	
_		2	$\frac{2}{2}$	$\frac{2}{2}$	1	2		
		1	2	$\frac{2}{2}$	2	1		
	Ст	1	2	$\frac{2}{2}$	1	1	Assume VC1=2.1V, VC2=0.7V.	
		2	1	2	2	2	Input a 1.0V _{P-P} , 4.43MHz sine wave to SG, and given	
Crosstalk		$\frac{2}{2}$	1	$\frac{2}{2}$	2	1	TP1 voltage as V4 and TP3 voltage as V5, C⊤ is	
		$\frac{2}{2}$	1	$\frac{2}{2}$	1	1	obtained from the following formula.	
		2	2	1	2	2	C _T =20LOG (V5/V4) dB	
		$\frac{2}{2}$	2	1	1	2		
		2	2	2	1	2		
Switch 1 input	V _{IH} 1	_			_	<u> </u>	Impress an optional DC voltage on TP7 and TP8.	
voltage H							Gradually raise from VC1=0V. TP5 voltage when TP8	
							voltage is output on TP2 is V _H 1. Gradually lower from	
Switch 1 input voltage L	VIL1						VC1=Vcc. TP5 voltage when TP7 voltage is output on	
							TP2 is V _{IL} 1.	
Switch 2 input voltage H	ViH2	2	2	2	2	1	v 150 t m5 1m5	
							Impress an optional DC voltage on TP7 and TP9. Gradually raise from VC1=0V. TP5 voltage when TP9	
Owital O	VIL2						voltage is output on TP2 is V _{IH} 2. Gradually lower from	
Switch 2 input							VC1=Vcc. TP6 voltage when TP7 voltage is output on	
voltage L							TP2 is V _{II} 2.	
					L			