

M5M51004BP,J-25V,-35V

1048576-BIT (262144-WORD BY 4-BIT) CMUS STATIC RAM

DESCRIPTION

The M5M51004BP,J are a family of 262144-word by 4-bit static RAMs, fabricated with the high performance CMOS silicon gate process and designed for high-speed application.

The M5M51004BP,J are offered in a 28-pin plastic dual-in-line package (DIP), 28-pin plastic small outline J-lead package (SOJ).

These devices operate on a single 3.3V supply, and are directly TTL compatible. They include power down feature as well.

FEATURES

Tuno namo		Power supply current		
Type name	Access time (max)	Active (max)	Stand-by (max)	
M5M51004BP,J - 25 M5M51004BP,J - 35	25ns 35ns	70 mA 60 mA	1mA	

- Single +3.3V power supply
- Fully staric operation : No clocks, No refresh
- Common data I/O
- Easy memory expansion by S
- Three-state outputs : OR-tie capability
- OĒ prevents data contention in the I/O bus
- Directly TTL compatible : All inputs and outputs

PACKAGE

M5M51004BP	 28pin 400mil DIP
M5M51004BJ	 28pin 400mil SQJ

APPLICATION

High speed memory units

FUNCTION

The operation mode of the M5M51004B series is determined by a combination of the device control inputs \overline{s} , \overline{W} . Each mode is

summarized in the function table shown in next page.

A write cycle is executed whenever the low level \overline{W} overlaps with the low level \overline{S} . The address must be set-up before the write cycle and must be stable during the entire cycle.

The data is latched into a cell on the trailing edge of $\overline{\mathbb{W}}$, $\overline{\mathbb{S}}$ whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable input $\overline{\text{OE}}$ directly controls the output stage. Setting the $\overline{\text{OE}}$ at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting \overline{W} at a high level and \overline{OE} at a low level while \overline{S} are in an active state (\overline{S} = L)

1048576-BIT (262144-WORD BY 4-BIT) CMOS STATIC RAM

When setting S at a high level, the chip is in a non-selectable mode in which both reading and write are disabled. In this mode the output stage is in a high-impedance state, allowing OR -tie with other chips and memory expansion by S.

other chips and memory expansion by S.

Signal-S controls the power-down feature. When \$ goes high. power dissipation is reduced extremely. The access time from ₹ is equivalent to the address access time.

FUNCTION TABLE

ই	W	ŌĒ	Mode	DQ	loc
H	X	X	Non selection	High-impedance	Stand-by
L	L	X	Write	Din	Active
L	Н	L	Read	Dout	Active
L	Н	Н		High-impedance	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Voc	Supply voltage		-3.5*~7	V
Vı	Input voltage	With respect to GND	-3.5*~Vcc + 0.3	V
Vo	Output voltage		-3.5*~7	V
Pd	Power dissipation	Ta = 25℃	1000	mW
Торг	Operating temperature		0~70	°C
Tstg (bias)	Storage temperature (bias)		- 10~85	ၓ
Tstg	Storage temperature		- 65~150	င

^{*}Pulse width ≤ 20ns, in case of DC: - 0.5V

DC ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V ∞ = 3.3V \pm 10%, unless otherwise noted)

Symbol	Parameter	T4	Test conditions		Limits		
- Cynnoon		l est conditi			Тур	Max	Unit
ViH	High-level input voltage			2.2		Vcc+0.3V	٧
VIL	Low-level input voltage			- 0.3*		8.0	
Vон	High-level output voltage	Iон = - 4mA		2.4			V
V OL	Low-level output voitage	IoL = 8mA				0.4	٧
li	Input current	V₁ = 0~Vcc				2	μА
loz	Output current in off-state	VI (S) = VIH VI/O = 0~VCC				10	μА
		VI (S) = VIL A	AC (25ns cycle)			70	
Icc1	Active supply current (TTL level)	other inputs ~ VIII or VII	AC (35ns cycle)			60	mA
	(11210401)	Output-open (duty 100%)	DC		30	40	
	Stond by supply suggest		AC (25ns cycle)			20	
ICC2	Stand-by supply current (TTL level)	VI (S) = VIH	AC (35ns cycle)			15	mΑ
	(172 16461)		DC			10	
lcca	Stand-by current (MOS level)	V _I (s)≧Vcc~0.2V other inputs V _I ≤0.2V o	r Vı≧Vcc–0.2V		0.1	1	mA

^{*}Pulse width ≤20ns, in case of AC: -3.0V

CAPACITANCE (Ta = $0 \sim 70^{\circ}$ C, Vcc = $3.3V \pm 10^{\circ}$ M, unless otherwise noted)

Sympol	Parameter	Test conditions	Limits			
- Jiliooi	- aramotor	Test conditions	Min	Тур	Max	Unit
Cı	Input capacitance	VI = GND, VI = 25mVrms, f = 1MHz			6	рF
Co	Output capacitance	Vo = GND,Vo = 25mVrms, f = 1MHz			6	pF

Note 1: Direction for current flowing into an IC is positive (no mark).
2: Typical value is Vcc = 3.3V, Ta = 25°C.
3: Ci, CO are periodically sampled and are not 100% tested.

1048576-BIT (262144-WORD BY 4-BIT) CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, Vcc = $3.3V \pm 10\%$, unless otherwise noted)

(1) MEASUREMENT CONDITIONS

Fig.1 Output load Fig.2 Output load for ten, tdis

(2) READ CYCLE

Symbol			Limits			
	Parameter Parameter	M5M510	M5M51004B-25V		M5M51004B-35V	
		Min	Max	Min	Max	
ton	Read cycle time	25		35		ns
ta (A)	Address access time		25		35	ПS
ta (S)	Chip select access time		25		35	ns
ta (OE)	Output enable access time		13		18	ns
tdis (S)	Output disable time after S high	0	8	0	15	ns
tdis (OE)	Output disable time after OE high	0	8	0	15	ns
ten (S)	Output enable time after 5 low	3		3		ns
ten (OE)	Output enable time after OE low	0		0		ns
tv (A)	Data valid time after address change	3		3		ns
t₽∪	Power-up time after chip selection	0		0		ns
tPD	Power-down time after chip selection		25		35	ns

(3) WRITE CYCLE

	Parameter	Limits				
Symbol		M5M510	M5M51004B-25V		M5M51004B-35V	
		Min	Max	Min	Max	
tow	Write cycle time	25		35		пѕ
tw (W)	Write pulse width	20		30		ns
tsu (A)	Address setup time	0		0		ns
tsu (A-WH)	Address setup time with respect to W	20		30		ns
tsu (S)	Chip select setup time	20		30		ns
tsu (D)	Data setup time	15		20		ns
th (D)	Data hold time	0		0		ns
trec (W)	Write recovery time	Ö		0		ns
tais (W)	Output disable time after W low	0	8	0	15	ns
tais (OE)	Output disable time after OE high	0	8	0	15	ns
teri (W)	Output enable time after W high	0		0		ns
teri (OE)	Output enable time after OE low	0		0		ns

1048576-BIT (262144-WORD BY 4-BIT) CMOS STATIC RAM

Note 4 : Addresses valid prior to or coincident with S transition low.

5 : Transition is measured ±500mV from steady state voltage with specified loading in Figure 2.

Read cycle 3 (Note 6)

Note 6 : Addresses and \overline{S} valid prior to \overline{OE} transition low by (ta (A)-ta (OE)), (ta (S)-ta (OE))

Write cycle (W control mode)

Write cycle (8 control mode)

Note 7: Hatching indicates the state is don't care.

- 8: When the falling edge of $\overline{\mathbf{W}}$ is simultaneous or prior to the falling edge of $\overline{\mathbf{S}}$, the output is maintained in the high impedance.
- 9: ten, this are periodically sampled and are not 100% tested.

