Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 **Renesas Electronics Corporation**

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

-ot-annour

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

HA16341NT/FP, HA16342NT/FP

Redundant Secondary Switching Power Supply Controller

REJ03F0148-0400 (Previous: ADE-204-035C) Rev.4.00 Jun 15, 2005

Description

The HA16341NT/FP and the HA16342NT/FP are switching regulator control ICs for the off-line converters of redundant power supplies.

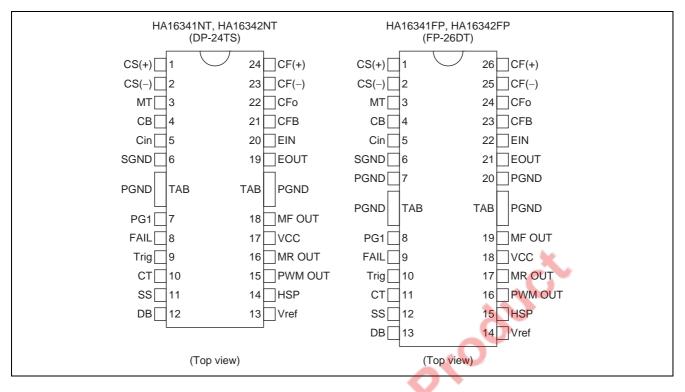
The HA16342NT/FP is reverse current detection less version of the HA16341NT/FP.

The HA16341NT/FP have the functions of current sharing and hot swap control for redundancy. These functions enable high efficiency and high reliability for switching power supplies.

dPrc

Combination the HA16341 with the HA16141 is suitable for the redundant AC to DC converters.

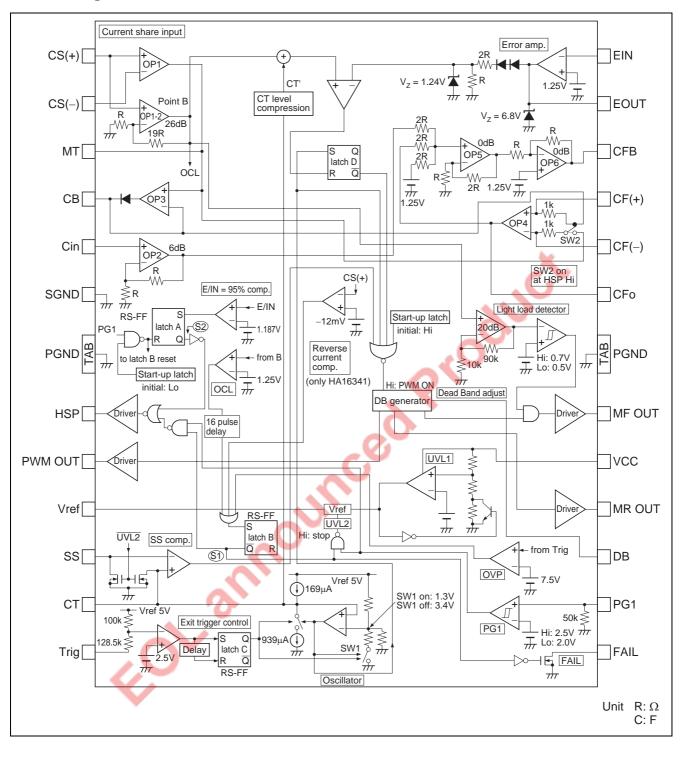
Features


- Secondary-side synchronous rectification control
- Main switching controller
- Dead-time adjustment for synchronous rectification MOS
- Current share function with line resistance compensation
- Hot swap power MOS FET control
- Remote on/off function, FAIL output function
- Synchronized switching with primary side
- Soft start function
- Maximum duty adjustment
- Overcurrent limiting, overcurrent shutdown functions
- Reverse current detection (only the HA16341NT/FP)
- Light load detection
- OVP function
- VCC pin UVL function

Ordering Information

Type No.	Package Code
HA16341NT	DP-24TS
HA16342NT	
HA16341FP	FP-26DT
HA16342FP	

Pin Arrangement



Pin Functions

Pin No.			0.
DP-24TS	FP-26DT	Symbol	Pin Name
1	1	CS(+)	Current sense amp input (+)
2	2	CS(–)	Current sense amp input (-)
3	3	MT	Current sense amp output
4	4	СВ	Current bus output
5	5	Cin	Line resistance compensation input
6	6	SGND	Signal ground
7	8	PG1	Remote on/off
8	9	FAIL	FAIL output (open-drain)
9	10	Trig	External synchronization input
10	11	СТ	Timing capacitance
11	12	SS	Soft start
12	13	DB	Dead band
13	14	Vref	Vref (5 V)
14	15	HSP	Hot swap output
15	16	PWM OUT	PWM output
16	17	MR OUT	MR output
17	18	VCC	Power supply voltage
18	19	MF OUT	MF output
19	21	EOUT	Error amp output
20	22	EIN	Error amp input
21	23	CFB	Current share feedback output
22	24	CFo	Current share differential amp output
23	25	CF(-)	Current share differential amp input (-)
24	26	CF(+)	Current share differential amp input (+)
TAB	TAB, 7, 20	PGND	Power ground

Block Diagram

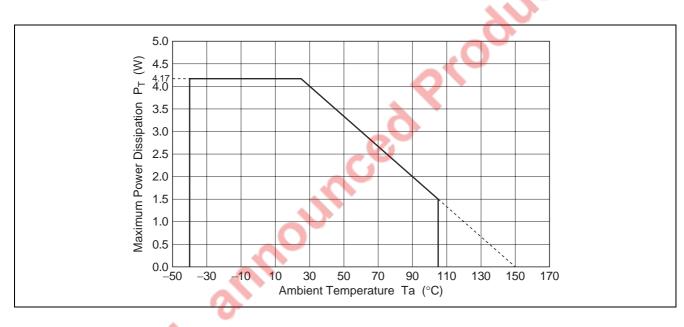
Absolute Maximum Ratings

				(Ta = 25°C)
ltem	Symbol	Ratings	Unit	Note
Supply Voltage	VCC	18	V	
DC output current1	lo1	±0.1	A	PWM OUT *1
Peak output current1	lopeak1	±1.0	A	PWM OUT *2
DC output current2	lo2	±0.2	A	MF OUT *1
Peak output current2	lopeak2	±2.0	A	MF OUT *2
DC output current3	lo3	±0.1	A	MR OUT *1
Peak output current3	lopeak3	±1.0	A	MR OUT *2
DC output current4	lo4	_	mA	CB OUT
DC output current5	lo5	±500	μΑ	CFB OUT
DC output current6	lo6	20	mA	FAIL OUT
DC output current7	lo7	-5.0	mA	Vref OUT
Peak output current4	lopeak4	0.5	A 🗶	HSP sink
DC output current8	lo8	±500	μА	MT OUT
DC output current9	lo9	±500	μΑ	CFo OUT
DC output current10	lo10	6	mA	EOUT sink
TRIG terminal voltage	Vtrigmax	-1.5 to V _{cc}	V V	
CT terminal voltage	VCTmax	-0.3 to Vref	V	
Vref terminal voltage	Vrefmax	-0.3 to Vref	V	
SS terminal voltage	Vssmax	-0.3 to Vref	V	
EIN terminal voltage	VEINmax	-0.3 to Vref	V	
EOUT terminal voltage	VEOUTmax	-0.3 to V _{cc}	V	
PG1 terminal voltage	VPG1max	-0.3 to Vref	V	
FAIL terminal voltage	VFAILmax	–0.3 to V _{cc}	V	
PWM OUT terminal voltage	VoPWMmax	–0.3 to V _{cc}	V	
MR OUT terminal voltage	VoMRmax	-0.3 to V _{cc}	V	
MF OUT terminal voltage	VoMFmax	-0.3 to V _{CC}	V	
HSP terminal voltage	VoH <mark>SPmax</mark>	-0.3 to V _{CC}	V	
CFB terminal voltage	VCFBmax	-0.3 to Vref	V	
CS(+) terminal voltage	VCS(+)max	-0.3 to Vref	V	
CS(-) terminal voltage	VCS(-)max	-0.3 to Vref	V	
MT terminal voltage	VMTmax	–0.3 to Vref	V	
Cin terminal voltage	VCinmax	-0.3 to Vref	V	

Notes: 1. $V_{DS} = 10 \text{ V}$ max. Therefore test condition must be $V_{OH} = V_{CC} - 10 \text{ V}$ or over , $V_{OL} = 10 \text{ V}$ or under.

2. $V_{DS} = 10$ V max. Pulse duration ≤ 10 ms

Absolute Maximum Ratings (cont.)


(Ta	=	25°	C)
(\sim

Item	Symbol	Ratings	Unit	Note
CF(+) terminal voltage	VCF(+)max	–0.3 to Vref	V	
CF(-) terminal voltage	VCF(-)max	–0.3 to Vref	V	
CFo terminal voltage	VCFomax	–0.3 to Vref	V	
CB terminal voltage	VCBmax	–0.3 to Vref	V	
DB terminal voltage	VDBmax	–0.3 to Vref	V	
Maximum power dissipation	PT	4.17	W	1
Operating temperature	Topr	-40 to +105	°C	
Storage temperature	Tstg	-55 to +150	°C	
Junction temperature	Тј	150	°C	

Note: 1. This is allowable value up to $Ta = 25^{\circ}C$.

Derate by θj -a = 30°C/W above that temperature.

 $\theta_{j-a} = 30^{\circ}$ C/W is the case that HA16341NT is mounted on 30% wiring density glass epoxy board (105 mm × 76.2 mm × 1.6 mmt) and HA16341FP is mounted on a board which thermal resistance is 23°C/W because of θ_{j} -pin (SOP) = 7°C/W typ.

Electrical Characteristics

 $(Ta = 25^{\circ}C, VCC = 12V, PG1 = 3V, Vtrig = 0V, VCS(+) = 0V, VCin = 0V, CCT = 330pF, GvOP1 = 26dB, GvOP4 = 40dB, RDB = 1.8k\Omega)$

Current share

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
CB output Hi voltage	VCBH	2.5	-	-	V	losource = 300μA VCS(+) = 1V	
CB output Lo voltage	VCBL	-	-	25	mV	$VCS(+) = 0V, RCB = 10k\Omega$	
CFB output Lo voltage	VCFBL	-	-	100	mV	losink = 100μ A, HSP ON VCS(+) = 0V, VCB = 0.1 V	
CFB output typ voltage	VCFBtyp	1.19	1.25	1.31	V	VCS(+) = 0V, VCB = 0V RfOP4 = $1k\Omega$, HSP ON	
OP1 input offset voltage	VioOP1	-	-	(1)	mV		1
CS(+) input bias current	libCS(+)	-	-20	-30	μA	VCS(+) = 0V, VCS(-) = 0V	
CS(-) input bias current	libCS(-)	-	0.2	1.0	μA	VCS(+) = 0V, VCS(-) = 0V	
Cin input bias current	libCin	-	0.2	1.0	μA	Vcin = 0V	
OP4 input resistance	Rsin	0.75	1.00	1.25	kΩ		1, 2
Open loop gain OP1–OP6	Avo	(70)	80	-	dB	No.	1
Band width OP1-OP6	BWCS	-	700	-	kHz	.0	1
OCL detector threshold voltage	VthOCL	59.5	62.5	65.5	mV	CS(+) terminal voltage sensing	
Light load detector threshold Hi voltage	VthHLL	(2.0)	3.5	(5.0)	mV	CS(+) terminal voltage sensing	1
Light load detector threshold Lo voltage	VthLLL	(1.0)	2.5	(4.0)	mV	CS(+) terminal voltage sensing	1
VthLL hysteresis	dVthLL	(0.5)	1.0	(1.5)	mV		1
Reverse current detector threshold Hi voltage	VthRC	-6	-12	-18	mV	CS(+) terminal voltage sensing	3

Notes: 1. Design spec.

- 2. Temperature coefficient is 5400ppm/°C.
- 3. Only HA16341NT/FP.

• Hot swap

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
HSP ON threshold voltage	VthHSP	1.14	1.19	1.23	V	95% typ of reference 1.25V	
HSP charge current	IcHSP	-7	-10	-13	μA	VHSP = 5V, VEIN = 2V	
HSP output Lo voltage	VOLHSP	-	0.3	0.6	V	VEIN = 1V, losink = 50mA	

 $(Ta = 25^{\circ}C, VCC = 12V, PG1 = 3V, Vtrig = 0V, VCS(+) = 0V, VCin = 0V, CCT = 330pF, GvOP1 = 26dB, GvOP4 = 40dB, RDB = 1.8k\Omega)$

• Oscillator

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Typical oscillating frequency	fosctyp	180	200	220	kHz		±10%
Maximum oscillating frequency	foscmax	400	-	_	kHz		
Typical oscillating temperature stability	dfosc	-	±5	_	%	–20°C < Ta < 85°C	1
CT charge current	lci	-135	-169	-203	μA		±20%
CT discharge current	Icd	616	770	924	μΑ		±20%
Upper trip point	VthCTH	-	3.4	-	V		2
Lower trip point	VthCTL	-	1.3	-	V		
Amplitude	dVCT	-	2.1	-	V		
Exit trigger Vth	Vthtrig	-0.3	-0.5	-0.7	V		

Notes: 1. Design spec.

 In case of external trigger control, CCT should be changed from 330 pF to 430 pF. At this synchronous and 430 pF CCT condition VthCTH becomes about 2.9 V.

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Reference voltage	Vref	4.9	5.0	5.1	V	losource = 1mA	±2%
Line regulation	Vref-line	-	5	20	mV	losource = 1mA 12V < V _{CC} < 18V	
Load regulation	Vref-load	-	5	20	mV	0 < losource < 3mA	
Temperature stability	dVref	-	80	-	ppm/°C	–20°C < Ta < 85°C	1

Note: 1. Design spec.

• UVL

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Hi threshold voltage	VH 🌄	9.5	10.0	10.5	V		
Lo threshold voltage	VL	8.5	9.0	9.5	V		
Hysteresis	dVUVL	0.6	1.0	1.4	V		

(Ta = 25°C, V_{CC} = 12V, PG1 = 3V, Vtrig = 0V, VCS(+) = 0V, VCin = 0V, CCT = 330pF, GvOP1 = 26dB, $GvOP4 = 40dB, RDB = 1.8k\Omega$)

• PG1

	Min	Тур	Max	Unit	Test Conditions	Note
VthHPG1	2.4	2.5	2.6	V		
VthLPG1	1.9	2.0	2.1	V		
RinPG1	(37.5)	50.0	(62.5)	kΩ		1
V	thLPG1	thLPG1 1.9	thLPG1 1.9 2.0	thLPG1 1.9 2.0 2.1	thLPG1 1.9 2.0 2.1 V	thLPG1 1.9 2.0 2.1 V

Note: 1. Design spec.

• FAIL

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Leak current	lleakFAIL	-	-	-10	μA	VFAIL = 5V	
Output Lo voltage	VOLFAIL	-	-	0.5	V	losink = 10mA 🔶	
• Error amp.		_	_	_		JUCK	
ltem	Symbol	Min	Typ	Max	Unit	Test Conditions	Note

r							
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Input threshold voltage	VthEIN	1.23	1.25	1.27	V	VEOUT = 1.25V	±1.6%
Input bias current	libEIN	-	-0.2	-2.0	μA	VEIN = 2V	
Open loop gain	AvoEA	60	80	-	dB		
Band width	BWEA	(0.7)	1.4	-	MHz		1
EOUT sink current	losinkEA	0.5	5.0	-	mA	VEIN = 1.5V, EOUT = 1.1V	
EOUT source current	IosourceEA	-100	-250	- 72	μA	VEIN = 1.0V, EOUT = 5V	
EOUT clamp voltage	VOHEA	5.8	6.8	7.8	V	VEIN = 1.0V	
EOUT Lo voltage	VOLEA	-	-	1.0	V	VEIN = 1.5V, Iosink = $200\mu A$	
Note: 1. Design spec.PWM OUT		~	JUN				
11			-			The Constitution	NI . 4 .

• PWM OUT

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Output Lo voltage	VOLPWM	-	0.2	0.4	V	losink = 100mA	
Output Hi voltage	VOHPWM	V _{cc} –0.4	V _{CC} -0.2	-	V	losource = 100mA	
Rise time	_trPWM 🚩	20	50	100	ns	CL = 3300pF	
Fall time	tfPWM	20	50	100	ns	CL = 3300pF	
Maximum duty	Dmax	58	65	72	%	VSS = 4V, VEIN = 1.0V	
Minimum duty	Dmin	_	_	0	%	VSS = 4V, VEIN = 1.5V	

Note: 1. Design spec.

 $(Ta = 25^{\circ}C, V_{CC} = 12V, PG1 = 3V, Vtrig = 0V, VCS(+) = 0V, VCin = 0V, CCT = 330pF, GvOP1 = 26dB, GvOP4 = 40dB, RDB = 1.8k\Omega)$

• MR OUT

ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Output Lo voltage	VOLMR	-	0.2	0.4	V	losink = 100mA	
Output Hi voltage	VOHMR	VCC-0.4	VCC-0.2	-	V	losource = 100mA	
Rise time	trMR	20	50	100	ns	CL = 3300pF	
Fall time	tfMR	20	50	100	ns	CL = 3300pF	

• MF OUT

ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Output Lo voltage	VOLMF	-	0.2	0.4	V	losink = 200mA	
Output Hi voltage	VOHMF	VCC-0.4	VCC-0.2	-	V	losource = 200mA	
Rise time	trMF	20	50	100	ns	CL = 6000pF	
Fall time	tfMF	20	50	100	ns	CL = 6000pF	

• Dead band time

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Dead band time1	Td1typ	0	50	100	ns	RDB = 1.8kΩ	
Dead band time2	Td2typ	0	100	200	ns	RDB = 1.8kΩ	
MR to MF delay time	t1	(-20)	-	(50)	ns	t1 = MF off – MR on	1
PWM to MR delay time	t2	(-20)	-	(50)	ns	t2 = MR off – PWM off	1
MR delay time	t3	_	1	0	μs	t3 = CT low trip point – MR on	1
Maximum Dead band adjust time1	Tdadj1	-	Td1typ +300	-	ns	RDB = 47kΩ	1
Maximum Dead band adjust time2	Tdadj2	-	Td2typ +600	_	ns	RDB = 47kΩ	1

Note: 1. Design spec.

Measurement is 50% slice point.

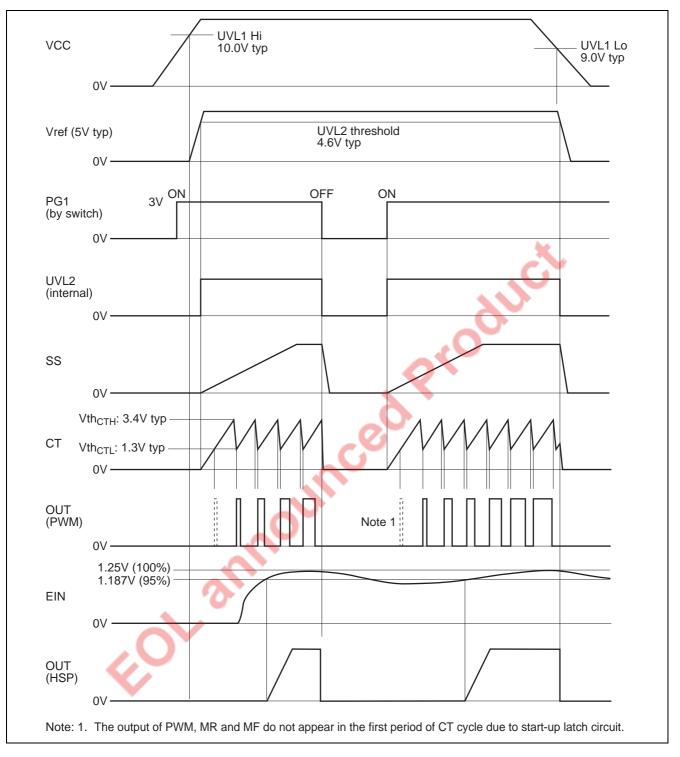
01-31

(Ta = 25°C, V_{CC} = 12V, PG1 = 3V, Vtrig = 0V, VCS(+) = 0V, VCin = 0V, CCT = 330pF, GvOP1 = 26dB, $GvOP4 = 40dB, RDB = 1.8k\Omega$)

• SS

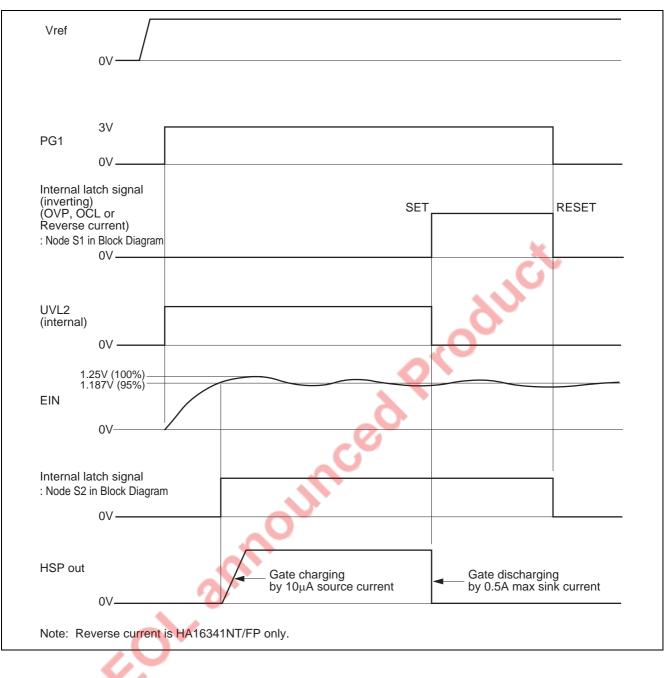
Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
SS sink current	ldss	500		-	μΑ	PG1 = 2V, VSS = 2V	

• OVP

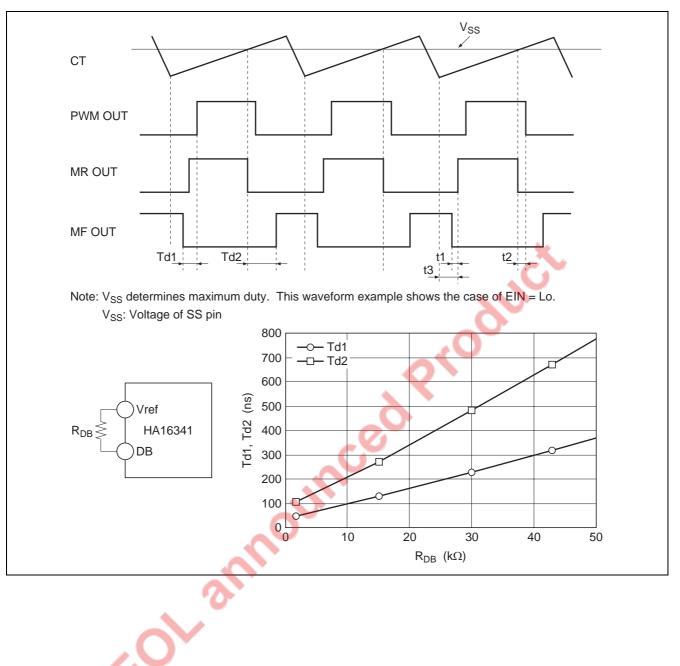

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
OVP latch voltage	VOVP	6.5	7.5	8.5	V		

• Current consumption

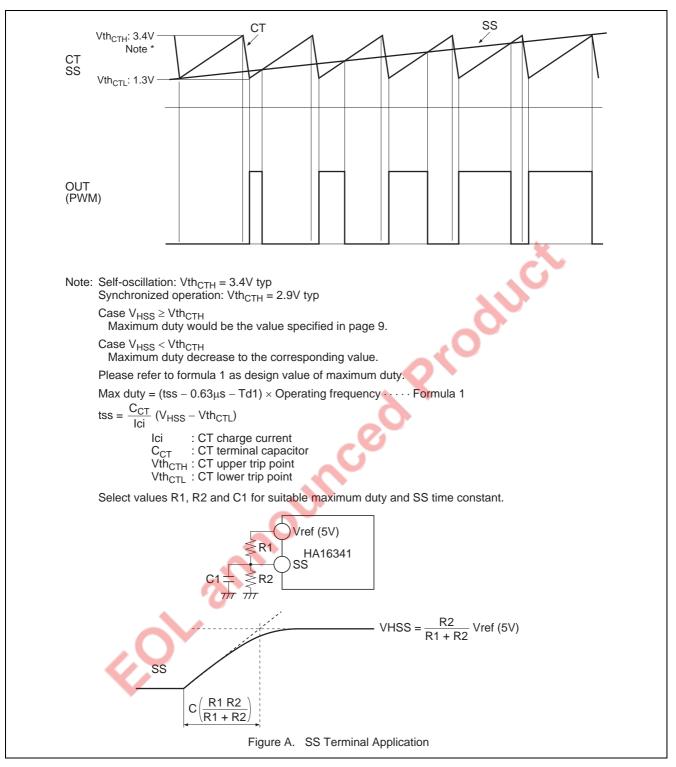
Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
Operating current	ICC	5.4	7.4	9.4	mA	VCT = 1V	
Standby current	ISTBY	_	200	600	μΑ	VCC = 8V, PG1 = 0V	
	01-21		ىر	ce	8	, ou	
K	01-31	huc					
	01-34						


Rev.4.00 Jun 15, 2005 page 10 of 19

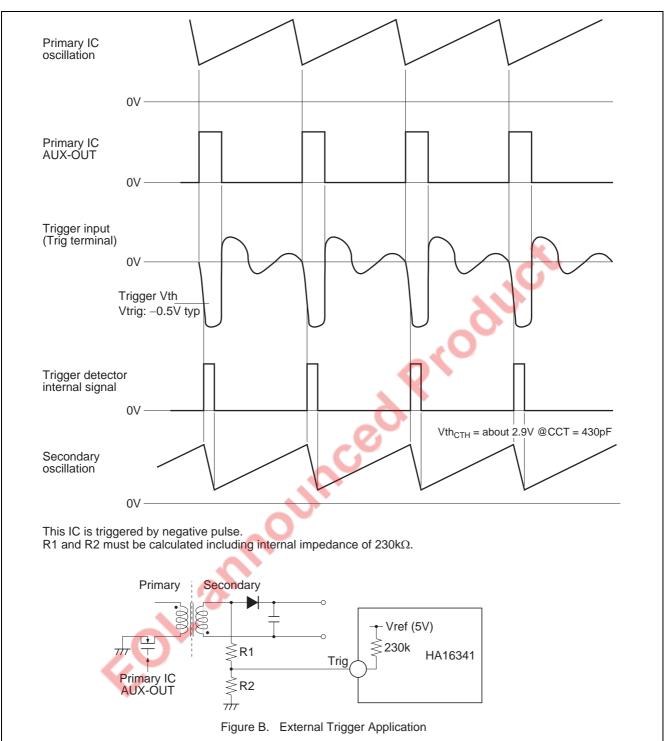
Timing Chart 1 (Total)



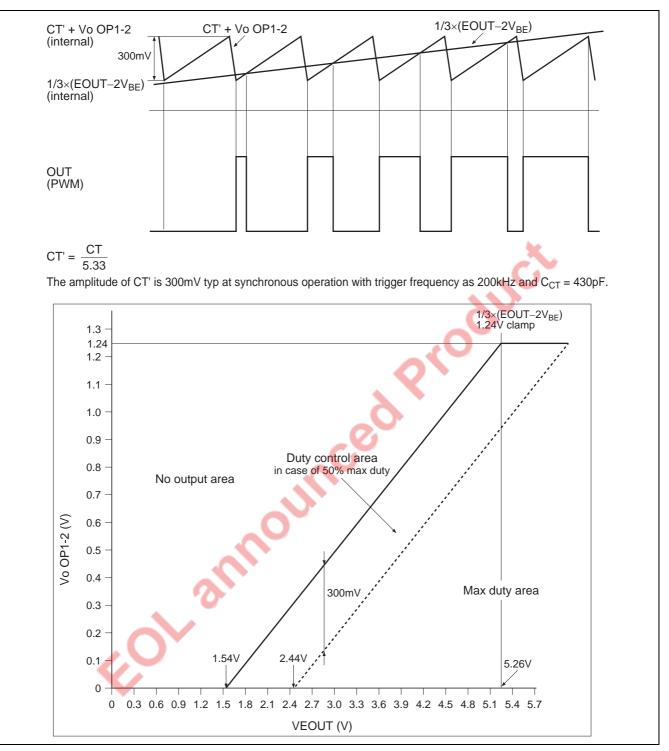
Timing Chart 2 (Hot Swap)


Timing Chart 3 (Dead Band Control)

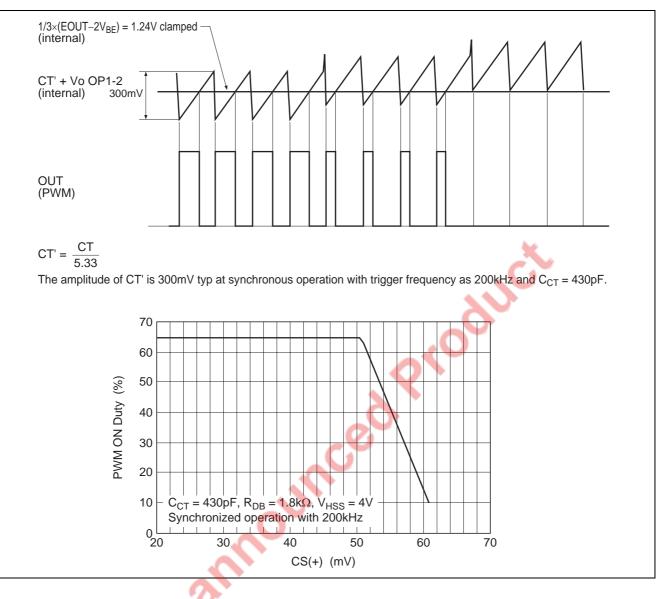
Rev.4.00 Jun 15, 2005 page 13 of 19



Timing Chart 4 (Soft Start)

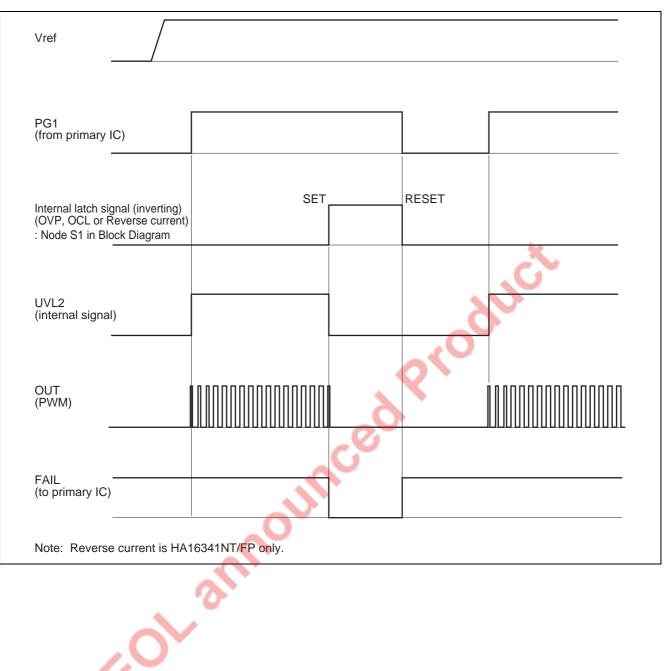


Timing Chart 5 (External Trigger Control)



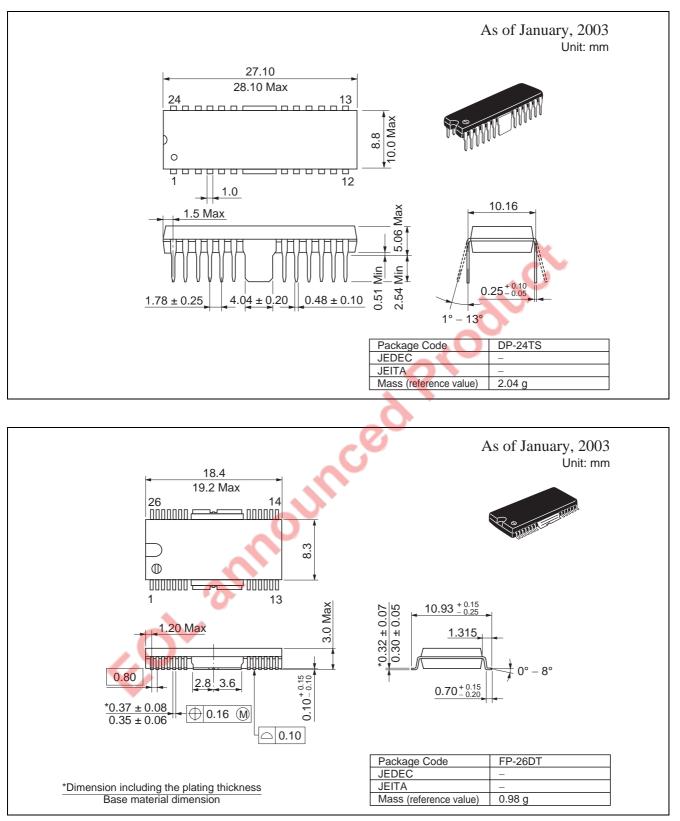
Timing Chart 6 (Duty Control)

Timing Chart 7 (Current Limitting)



Rev.4.00 Jun 15, 2005 page 17 of 19

0



Timing Chart 8 (Interface with Primary Control IC)

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, iability, or other loss rising from these inaccuracies or errors. Please also pay attention to information before making a final decision on the applicability of the information adagorithms, please be sure to evaluate all information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information actual system before making a final decision on the applicability of use and products. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com